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Abstract: Recent studies have demonstrated that seed-borne bacteria can enhance the performance
of invasive plants in novel introduced habitats with environmental stresses. The effect of this plant-
bacteria interaction may vary with plant species or even genotype; however, the genotype-dependent
effects of seed bacteria have rarely been assessed. In this study, we examined the effects of bacterial
strains isolated from seeds on the genotypes of an invasive xerophytic plant, Lactuca serriola. Plant
genotypes were grown under drought conditions, and their plastic responses to bacterial infections
were evaluated. Some genotypes produced more biomass, whereas others produced less biomass
in response to infection with the same bacterial strain. Notably, the quantity of root-adhering soil
depended on the bacterial treatment and plant genotypes and was positively correlated with the
plastic responses of plant performance. Because tested bacteria could colonize the plant rhizosphere,
bacterial infection appears to induce the differential formation of soil rhizosheaths among plant
genotypes, consequently affecting the maintenance of soil water content under drought conditions.
Given that drought tolerance is a critical attribute for the invasive success of L. serriola, these results
imply that bacterial symbionts can facilitate the establishment of alien plant species, but their effects
are likely genotype-specific.

Keywords: drought tolerance; invasive plants; plant genotypes; seed bacteria; soil water contents

1. Introduction

Plant-associated microbes have been suggested to constitute plant holobiomes and
influence plant development and growth [1,2]. Plants can benefit from microbes that
assist in nutrient acquisition or produce exogenous phytohormones [3,4]. In addition,
plant growth-promoting (PGP) microbes can protect the host plant from abiotic stresses by
diverse stress ameliorating mechanisms [5,6].

Recent studies have proposed that PGP microbes can contribute to the invasive capa-
bility of exotic plant species [7–9]. They can alleviate biotic and abiotic stresses in newly
arrived habitats, and consequently, stimulate plant establishment and competitive ability.
Among plant-associated microbes, endophytic bacteria residing inside the seeds are of
particular interest. Because seeds and microbes would move together to the new habitat,
seed bacteria can provide an advantage to invasive plants regardless of the existence of
mutualistic microbes in the introduced sites [10]. In addition, seed endophytes are ex-
pected to be transmitted vertically to their offspring; hence, their effects can be present for
generations [11].

A xerophytic invasive plant, Lactuca serriola (Asteraceae), has rapidly expanded its
geographic range in South Korea since its first report in 1978 [12]. In a previous study,
bacteria were isolated from the seeds of L. serriola, and their drought stress-ameliorating
effects were evaluated in a model plant species, Arabidopsis thaliana [10]. The bacterial
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isolates grew vigorously under high osmotic pressure, indicating that they could tolerate
drought stress. One strain out of the 12 isolates, Kosakonia cowanii GG1, stimulated the
growth of A. thaliana under drought stress. However, the mutualistic interaction between
plants and bacteria tends to depend on the host plant species [13,14]. Thus, the effects
of isolated bacteria on plant performance should be examined in L. serriola host plants to
evaluate their ecological significance in terms of invasiveness.

Bacteria producing exopolysaccharides have been demonstrated to alter soil char-
acteristics, consequently ameliorating drought stress. Bacterial exopolysaccharides can
contribute to soil aggregation and water retention around plant roots [10,15]. In addition,
exopolysaccharides can induce a firm adherence of soil to the roots, which is referred
to as the rhizosheath. A thick rhizosheath can alleviate drought stress by securing soil
water [16,17]. In A. thaliana, K. cowanii GG1 can colonize in the root and produce a relatively
high amount of exopolysaccharides when grown in media with a negative water potential.
Based on these observations, the production of exopolysaccharide by K. cowanii GG1 was
suggested to promote the drought tolerance of A. thaliana. A similar mechanism might
occur in L. serriola.

Similar to species-specific responses to endophytic bacteria, plant genotypes may
also respond differently to endophytic bacteria. The role of plant genotypes in shaping
seed microbiome has been well-established, suggesting that plant-endophyte interaction is
possibly dependent on plant genotypes [18,19]. However, few studies explicitly assessed
the responses of multiple plant genotypes to bacterial treatments and the information
about genotype-specificity is still inconclusive [20–22]. From an evolutionary ecological
perspective, characterizing plant genetic variation in response to endophytic bacteria is of
interest because the variation indicates that the fitness difference among plant genotypes
probably depends on the existence of endophytic bacteria.

In this study, we inoculated the previously isolated seed endophytic bacteria into their
original host, L. serriola, and evaluated whether the isolates alleviated drought stress in the
host plant. In particular, we assessed the plastic responses of five maternal genotypes of
L. serriola to bacterial infection under drought stress to examine genotype-specific responses
to bacterial treatments. Bacterial strains transformed with a plasmid containing green
fluorescent protein (GFP) gene were used to confirm colonization by the bacterial isolates.
Effects of bacterial inoculation on soil characteristics were also assessed, including the
quantity of root-adhering soil and its polysaccharide content.

Specifically, we addressed the following questions: (1) Do the genotypes of L. ser-
riola exhibit differential plastic responses to the infection of seed bacteria under drought
conditions? (2) Do the infection of seed bacteria and plant genotypes influence soil char-
acteristics? (3) Does the plant performance under drought conditions correlate with
soil characteristics?

2. Materials and Methods
2.1. Preparation of Isolates Transformed with a Plasmid Containing GFP for the Infection
into Seeds

To confirm whether the isolates colonized the plants, ten isolates (Pantoea septica YJ1,
Kosakonia cowanii YJ4, Erwinia tasmaniensis YJ6, K. cowanii SD1, P. ananatis SD16, P. dispersa
SD25, Cronobacter dublinensis subsp. dublinensis MS24, C. dublienesis subsp. lausanneisis
MS26, K. cowanii GG1, and P. ananatis GG19) from a previous study were subjected to
transformation with a broad host range plasmid pDSK-GFPuv (#PVT12964, Nova Lifetech,
Singapore) containing GFPuv protein and kanamycin resistance gene for selection [10,23].
The plasmid was amplified using chemically competent Escherichia coli DH5a (#CP011,
Enzynomics, Daegeon, Korea) cells that were transformed using the heat-shock method
and then extracted from the cells using the QIAprep Spin Miniprep Kit (#27106, Qiagen,
Hilden, Germany). Electrocompetent cells were prepared following the manufacturer’s
instructions using a MicroPulser (#165-2100, Bio-Rad Laboratories, Hercules, CA, USA). The
pDSK-GFPuv plasmid (2 µL) was injected into 40 µL of electrocompetent cell suspension
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using a MicroPulser with a 0.1 cm electroporation cuvette (#165-2089, Bio-Rad). A pulse of
1.8 kV voltage at 5 ms intervals was applied. After recovery in Luria–Bertani (LB) broth
(#244620, BD Difco, Franklin Lakes, NJ, USA) at 37 ◦C for 1 h, the transformed colonies
were selected on LB agar (#244520, BD Difco) medium containing kanamycin (50 µg/mL)
and stored at −80 ◦C.

2.2. Experimental Design

The seeds of five maternal genotypes of L. serriola collected from Bongsan-ro, Cheongju-
si, South Korea (latitude: 36.620556, longitude: 127.328611), were used. Seed surfaces
were sterilized by soaking the seeds in 3% sodium hydrochloride for 3 min. Seeds were
inoculated with the ten isolates by immersing them overnight in a bacterial suspension
(108 CFU mL−1) containing phosphate-buffered saline (PBS) [24]. Seeds submerged in
PBS were used as controls. The GFP-transformed isolates were used to confirm bacterial
infection after harvesting.

Seeds were sown in trays with 105 holes with sterile commercial soil and watered
daily. Twenty-five days after sowing, six seedlings of each maternal genotype were ran-
domly chosen in each bacterial treatment. A single seedling was transplanted into a pot
(8 cm × 7.5 cm × 6 cm) containing sterile vermiculate (Green Fire Chemicals, Hongseong,
Korea) and sand (Glpark, Seoul, Korea) in a ratio of 3:1 (volume) [25]. Because most of the
seeds inoculated with P. ananatis SD16, P. dispersa SD25, and C. dublinensis subsp. dublinensis
MS24 failed to germinate, they were excluded from further experiments. This resulted
in a total of 240 seedlings for the drought treatment (eight bacterial treatments including
negative control × five maternal genotypes × six replicates).

The pots were placed in a walk-in chamber, following a completely randomized design,
maintained at 22 ◦C under a 12/12 h light/dark photoperiod throughout the experiment.
Deionized water was applied on alternative days, and the Hoagland’s solution (1.25 mM
KNO3, 1.5 mM Ca(NO3)2, 0.75 mM MgSO4, 0.5 mM KH2PO4, 0.05 mM H3BO3, 0.01 mM
MnCl2, 0.002 mM ZnSO4, 0.0015 mM CuSO4, 0.075 µM NH4Mo7O24, and 0.074 mM Fe-
EDTA) was applied once a week to ensure nutrient supply [25]. Drought treatment was
applied 42 d after sowing and maintained for 13 days. Among the six plants of each mater-
nal genotype in each bacterial treatment, four plants were subjected to drought conditions
by stopping their water supply, and the remaining two plants were watered regularly to
confirm the effects of the drought treatment. Five individuals in the uninoculated control
accidentally died during the maintenance period of transplanted seedlings and drought
treatment. Thus, two plants were watered regularly, and two to four plants were imposed
under drought conditions in each maternal genotype and each bacterial treatment. The
sample size for each bacterial treatment and plant genotype is given in Table S1.

2.3. Plant Trait Measurements

After 13 d of drought treatment, the plants were harvested for trait measurements. The
shoot and root fresh weights were measured immediately after harvesting. The roots were
dried in a drying oven (Hanbaek Co. Ltd., Anyang-si, Kyunggi-do, Korea) at 70 ◦C for 72 h
for dry weight measurements [26]. To confirm the colonization of the infected isolates in
the plant rhizosphere, five out of twenty plants in each bacterial treatment under drought
stress were randomly selected. Root tissues of these plants were pooled together, cut into
small pieces using sterilized scissors, and placed on LB agar medium containing kanamycin
(50 µg/mL). The plates were incubated at 28 ◦C, and GFPuv-expressing bacterial colonies
were observed under UV light.

To evaluate the effects of bacterial treatment on the physiological responses of plants
to drought stress, we measured the relative water content (RWC) and malondialdehyde
(MDA) content in the leaves. In response to drought, the RWC of plants has been known
to decrease and the MDA content in leaves has been known to increase due to oxidative
damage to membrane lipids. The RWC in one leaf was determined by calculating the
difference between the fresh weight and dry weight, which was measured after drying
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the leaf in a drying oven at 70 ◦C for 72 h, divided by the difference between the fresh
weight and turgid weight, which was measured after submerging the leaf in deionized
water for 24 h at 4 ◦C [27]. The MDA content in leaf tissue (0.1 g), which was stored at
−80 ◦C immediately after harvesting, was measured using thiobarbituric acid reactive
substances (TBARS) assay [28,29]. The leaves were ground using TissueLyser II (QIAGEN)
and homogenized using 1 mL of 0.1% (w/v) trichloroacetic acid (TCA, T6399, Sigma-
Aldrich, St. Louis, MI, USA). After centrifugation, the supernatant was mixed with 4 mL of
20% TCA containing 0.5% thiobarbituric acid (T5500, Sigma-Aldrich), and the mixture was
boiled at 95 ◦C for 15 min. The absorbance of the solution was measured at 532 nm using
the BioSpectrometer basic (Eppendorf, Hamburg, Germany).

2.4. Soil Characteristics

Three soil characteristics were examined to determine the bacterial effects. The gravi-
metric soil water content was measured as the difference between the weight of the soil
at harvest and the weight of the soil after drying at 105 ◦C for 72 h. Root-adhering soil
(RAS) was collected in a conical tube by washing the roots with ddH2O after gentle shaking
and air-drying. The soil (5 mg) was transferred to another tube, and the concentration of
soil polysaccharides was measured using the direct determination method as previously
described [30]. The dry weight of the RAS was measured after drying at 105 ◦C for 72 h.

2.5. Visualization of GFP-Transformed Isolates Using Confocal Microscopy

Seeds of genotypes one (P1) and five (P5) were infected with GFPuv-transformed
bacterial isolates as described previously and then sown on Murashing and Skoog medium
(M0222.0050, DUCHEFA, Haarlem, The Netherlands) containing 1.5% Bacto Agar (214010,
BD Difco). After germination, the roots of seedlings were fixed with 4% paraformaldehyde
(158127, Sigma-Aldrich) for 120 min, and then washed twice with PBS solution [31]. To
eliminate autofluorescence from plant tissue, the samples were soaked in ClearSee solution
(10 % (w/v) xylitol powder, 15 % (w/v) sodium deoxycholate, 25 % (w/v) urea; 1.410 refrac-
tive index) for 1 week. Thereafter, the samples were stained using calcofluor white (18909,
Sigma-Aldrich) for 30 min, followed by washing with the ClearSee solution for 30 min [32].
The samples were observed under a FV3000RS confocal laser scanning microscope (CLSM)
with a UPLSAPO 30× silicon lens (Olympus, Tokyo, Japan). The images were taken using
the z-stack method at 0.620 µm intervals. Calcofluor white signal was measured at 461 nm
emission with 405 nm excitation, whereas the GFPuv signal was measured at 513 nm
emission with 488 nm excitation.

2.6. Statistical Analyses

All statistical analyses were performed using R software 4.0.1 (R Foundation for
Statistical Computing, Austria). A mixed-model analysis of covariance (ANCOVA) was
performed to confirm the effect of drought treatment on plant performance. Drought
treatment was a fixed factor, and maternal genotype and bacterial treatment were random
factors. Leaf length at transplanting was included as a covariate to control the influence of
plant size on the effect of drought treatment.

A subset of the entire dataset, including pots with drought treatment, was constructed
to examine plant responses to bacterial treatments under drought conditions. The relative
distance plasticity index (RDPI) is well-acknowledged as an appropriate measure for
comparing differential plastic responses to treatments among plant genotypes [33]. We
adopted this method and calculated the RDPI of the bacterial treatments for each plant
genotype. First, the relative distances of trait values were calculated as differences in trait
values divided by the sum of trait values between all pairs of individuals in the different
bacterial treatments. The RDPI of the bacterial treatment was measured as the average of
the relative distances between the control and each bacterial infection. For calculating the
relative distance, the difference in trait values was used instead of the absolute values of
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the difference to consider the direction of plastic responses. The number of data points
ranged from eight to sixteen for each bacterial treatment and each plant genotype.

Two-way analyses of variance were conducted to compare the RDPI of bacterial treat-
ments among plant genotypes. The model comprised bacterial treatment, plant genotype,
and their interactions as fixed factors. Tukey’s post hoc multiple comparison tests were
conducted for each bacterial treatment to interpret the interactions between bacteria and
plant genotypes.

3. Results

In response to drought treatment, plants exhibited reduced shoot (F1,309 = 476.15,
p < 0.001) and root (F1,310 = 336.68, p < 0.001) fresh weights and root dry weight (F1,262 = 27.73,
p < 0.001) compared with those in the control (Figure 1). RWC in leaves decreased
(F1,318 = 242.38, p < 0.001) and MDA content in leaves increased (F1,317 = 275.53, p < 0.001)
in response to the drought treatments (Figure 1). Drought treatment decreased the soil
water content by at least 16%.
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Bacterial colonies with fluorescence were observed when the roots of the plants were
incubated on agar plates (Figure 2). When two plant genotypes (P1 and P5) were infected
by the bacterial strains, colonized bacteria were observed inside and on the surface of the
roots (Figure 3 and Figure S1).
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L. serriola genotypes exhibited differential plastic responses to bacterial treatments
for all measured plant traits when grown under drought conditions, as indicated by
the significant interactions between the genotype and bacterial treatment (Table 1). Plant
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genotype P3 exhibited positive RDPIs for shoot fresh weight, root fresh weight, and root dry
weight in response to all bacterial treatments, except P. ananatis GG19 (Figure 4). In addition,
genotypes P2, P4, and P5 showed positive RDPIs with E. tasmaniensis YJ6, K. cowanii YJ4,
and P. ananatis GG19, respectively, for the shoot and root biomass (Figure 4). The positive
RDPIs indicate that plants infected by bacterial isolates produced higher shoot and root
biomass than the control plants. In contrast, negative RDPIs of root and shoot biomass
were found for the P1 and P5 genotypes infected by E. tasmaniensis YJ6, C. dublienesis MS26,
K. cowanii SD1, or K. cowanii GG1, indicating that these plants produced less biomass than
the control plants under drought conditions (Figure 4). Bacterial treatments that resulted in
positive RDPIs for plant biomass tended to cause positive RDPIs for leaf RWC and negative
RDPIs for leaf MDA content (Figure 4). The positive RDPIs for MDA content indicate that
drought stress increased the oxidative damage to membrane lipids.

Table 1. Results of analysis of variance comparing relative distance plasticity index (RDPI) among
plant genotypes in response to bacterial treatments under drought conditions. F ratios are given.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Genotype (d.f. = 4) Bacterial treatment (d.f. = 6) Genotype × Bacteria (d.f. = 24)

RDPI of plant traits
Shoot fresh weight 9.30 *** 8.82 *** 4.82 ***
Root fresh weight 4.12 ** 7.75 *** 4.96 ***
Root dry weight 5.30 *** 6.15 *** 4.97 ***

Relative water contents in leaves 15.45 *** 7.07 *** 3.70 ***
MDA contents in leaves 4.24 ** 6.23 *** 2.70 ***

RDPI of soil characteristics
Soil water contents 6.62 *** 2.79 * 3.00 ***
Root-adhering soil 1.90 4.40 *** 2.25 ***

Polysaccharide concentration 11.87 *** 5.78 *** 3.43 ***

The RDPIs for the measured soil characteristics exhibited a pattern similar to that of
the RDPIs for plant biomass. Pot soil with plants exhibiting positive RDPIs for biomass
tended to have positive RDPIs for RAS and soil water content (Figure 5). In addition, the
RDPIs for soil water, RAS, and plant biomass production were positively correlated as
determined by the Pearson’s correlation analysis (Figure 6). The RDPIs for polysaccharide
concentration were not correlated with the RDPIs for the other measured traits.
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4. Discussion

Bacterial strains isolated from the seeds of invasive L. serriola could colonize the
rhizosphere of their original host. When plants were grown under drought conditions,
plant genotypes exhibited differential plastic responses to bacterial treatments, indicating
that the effects of bacterial infection on plant performance depend on the plant genotype.

4.1. Genotype-Specific Responses to Bacterial Infection

In plant genotype P3, six out of seven tested bacterial strains stimulated the shoot
and root biomass of plants under drought stress. They increased RWC and reduced MDA
content in leaves, indicating that they ameliorated the drought stress imposed on plants.
Similar to this study, inoculation of the endophytic bacterium C. dublinensis strain MKS-1
in pearl millet increased plant biomass, leaf RWC, and osmotolerant proline content under
drought stress [34]. Additionally, although the drought-tolerant effects of other species
are unknown, the salt stress-ameliorating effects of K. cowanii and P. ananatis have been
reported previously [35,36].

Notably, the beneficial effects of seed bacteria were manifested mostly in genotype
P3, and the same bacterial strains had neutral or even negative effects on the growth of
other plant genotypes. Previous studies have reported contrasting results regarding the
effects of plant genotypes. For instance, A. thaliana accessions showed variable responses
in shoot and root development when applying volatile organic compounds produced by
Pseudomonas simiae [37]. Additionally, wheat cultivars infected with Paenibacillus sp. show
differential resistance to pathogens [20]. In contrast, Pseudomonas sp. and Methylorubrum
sp. isolated from rice seeds show similar growth-promoting activities in the two rice
cultivars [21]. Our results support the hypothesis that the effects of endophytic bacteria
depend on the plant genotype.

Suppose that drought tolerance is one of the critical attributes for the invasive success
of L. serriola. In that case, seed bacteria can facilitate the invasion of some genotypes by pro-
moting plant performance under drought conditions, but they can also hinder the invasion
of other genotypes. This suggests that the interaction between plants and seed bacteria
should be assessed with respect to the genotype of host plants to evaluate the ecological
significance of seed bacteria. Given the diverse effects on plant performance [1,3,11], it is
questionable whether bacterial strains with adverse impacts on the plant performance in
dry conditions also have negative effects in different environmental conditions. Examining
plant-microbe interactions in diverse environmental conditions is required for a more
complete understanding of the role of seed bacteria in invasive success.

4.2. Effects of Bacterial Infection on Rhizosphere Characteristics

Isolates that were used to infect L. serriola seeds successfully colonized the rhizosphere,
as confirmed by the isolation of GFPuv-expressing colonies from root tissue and micro-
scopic observation. The confocal images showed that the isolates colonized both the root
surface and endosphere, indicating that the isolates also colonized the surrounding environ-
ments [38]. These bacteria can potentially manipulate the rhizosphere microenvironment.

In this study, the RDPI for soil water content was positively correlated with the RDPI
for plant biomass and RAS quantity across bacterial treatments and plant genotypes. Given
that a thick rhizosheath can ameliorate drought stress [16,17], the bacterial infection and
plant genotype might affect the RAS quantity together, consequently influencing soil water
content and biomass production under drought conditions.

The quantity of RAS is highly dependent on root hairs and adhesive mucilage, of
which polysaccharides constitute the major component [39]. Bacteria in the rhizosphere
can produce exopolysaccharides for their own protection in extreme environments [22]. As
a side effect, extracellular polysaccharides can aggregate soil particles, increase the amount
of RAS, and facilitate water retention under drought conditions [40]. P. ananatis GG19 and
K. cowanii YJ4 and SD1 strains can produce more exopolysaccharides when exposed to high
osmotic pressure [10]. When they colonized the rhizosphere of the P3 genotype plants,
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their exopolysaccharide production might have contributed to the formation of RAS and
induced higher drought tolerance.

Suppose that bacterial production of exopolysaccharides is a major mechanism for
promoting RAS formation. In that case, the degree of bacterial colonization on the root
surface is expected to correlate with the RAS quantity. Although the colonization ability
could not be measured quantitatively, the confocal microscopy suggested that K. cowanii
GG1 and P. ananatis GG19 seemed to colonize in the root surface of the P1 genotype more
than other testing strains (Figure 3). Notably, contrasting plastic responses of plants to those
two strains were observed. The P1 genotype rarely responded to the infection of P. ananatis
GG19, but it exhibited negative RDPI of the biomass production in response to K. cowanii
GG1, similar to plants infected by C. dublienesis MS26 (Figure 4). This result suggests that
factors other than exopolysaccharide production likely contribute to the RAS production.

Bacterial production of phytohormones can influence RAS quantity. All tested bacterial
strains, except K. cowanii GG1, can produce both indole acetic acid and 1-aminocyclopropane-
1-carboxylate (ACC) deaminase, which can modulate the levels of phytohormones [10].
Production of indole acetic acid by plant-associated bacteria can stimulate root hair devel-
opment [41], which possibly increases the RAS quantity. Furthermore, reduced ethylene
levels by ACC deaminase can promote the production of RAS [42].

In addition, the inoculated bacteria themselves might not be involved in the changes in
soil characteristics. Instead, inoculated bacteria might alter the microbial community in the
rhizosphere, which might stimulate the formation of RAS and increase soil water contents.
For instance, applying the Paenibacillus strain to lettuce plants induced the resistance to soil
pathogen not directly but indirectly by shifting microbial community in the rhizosphere [43].
In a similar way, inoculated bacteria might increase other bacteria in the rhizosphere that
have the ability to alleviate drought stress. Next-generation sequencing of root endosphere
and rhizosphere can provide information to test this hypothesis [43].

The colonization and functional traits of plant-associated rhizobacteria are widely
known to be affected by the composition of root exudates from the host plants [44–46].
Because the bacterial strains in this study colonized the rhizosphere (Figure 3 and Figure S1),
their genotype-specific effects might be due to the difference in root exudate compounds
among plant genotypes. Root exudates can regulate gene expression of plant-associated
bacteria related to diverse metabolic pathways and stress responses [47]. Variation in root
exudates might modulate the production of exopolysaccharides and phytohormones in
testing bacterial strains or other bacteria in the rhizosphere, which might induce genotype-
specific biomass production under drought conditions. Transcriptome analysis of the host
plant and isolates can provide more information about the stress ameliorating mechanism
of isolates [48,49].

In conclusion, bacteria isolated from the seeds of L. serriola can exert beneficial effects
on their origin under drought stress; however, the effects depend on the plant genotype.
Both plant genotype and bacterial strain influenced the quantity of root-adhering soil,
correlating with plant performance and soil water contents. These results imply that plant
genotype is a determining factor in the contribution of symbiotic seed bacteria to drought
tolerance, a critical attribute for the invasive success of L. serriola.
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