
Citation: Hernández-Parada, N.;

González-Ríos, O.; Suárez-Quiroz,

M.L.; Hernández-Estrada, Z.J.;

Figueroa-Hernández, C.Y.;

Figueroa-Cárdenas, J.d.D.;

Rayas-Duarte, P.; Figueroa-Espinoza,

M.C. Exploiting the Native

Microorganisms from Different Food

Matrices to Formulate Starter

Cultures for Sourdough Bread

Production. Microorganisms 2023, 11,

109. https://doi.org/10.3390/

microorganisms11010109

Academic Editor: João

Miguel F. Rocha

Received: 15 November 2022

Revised: 24 December 2022

Accepted: 28 December 2022

Published: 31 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Exploiting the Native Microorganisms from Different Food
Matrices to Formulate Starter Cultures for Sourdough
Bread Production
Natali Hernández-Parada 1, Oscar González-Ríos 1 , Mirna Leonor Suárez-Quiroz 1 ,
Zorba Josué Hernández-Estrada 1 , Claudia Yuritzi Figueroa-Hernández 2, Juan de Dios Figueroa-Cárdenas 3 ,
Patricia Rayas-Duarte 4,* and María Cruz Figueroa-Espinoza 5,*

1 Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando
Hogar, Veracruz C.P. 91897, Mexico

2 CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y
Desarrollo en Alimentos, M.A. de Quevedo 2779, Veracruz C.P. 91897, Mexico

3 Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV Unidad Querétaro), Libramiento
Norponiente 2000, Fracc. Real de Juriquilla, Querétaro C.P. 76230, Mexico

4 Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC,
Stillwater, OK 74078-6055, USA

5 Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion,
F-34398 Montpellier, France

* Correspondence: pat.rayas_duarte@okstate.edu (P.R.-D.); maria.figueroa@supagro.fr (M.C.F.-E.)

Abstract: The use of sourdough for bread production involves fermentation, which is dominated by
lactic acid bacteria (LAB) and yeast. Sourdough can be inoculated with a starter culture or through
a food matrix containing microorganisms to initiate sourdough fermentation. Sourdough is used
as leavening agent for bread making, and metabolites produced by LAB and yeast confer a specific
aroma and flavor profile to bread, thus improving its sensory attributes. However, few publications
report the effect of microorganisms from different food products and by-products on sourdough
fermentation. This review focuses on using different starter cultures from various food sources, from
wheat flour to starter cultures. Additionally, included are the types of sourdough, the sourdough
fermentation process, and the biochemical transformations that take place during the sourdough
fermentation process.

Keywords: sourdough; starter cultures; food microorganisms; lactic acid bacteria (LAB); yeast

1. Introduction

Sourdough has been used traditionally in the bakery industry as a leavening agent
since ancient times; this is achieved via a sourdough starter made with a mixture of flour
and water naturally fermented by lactic acid bacteria (LAB) and yeasts [1–5].

During sourdough fermentation, LAB, and yeasts, along with endogenous enzymes,
are responsible for heterogeneous microbial metabolism and enzymatic reactions of carbo-
hydrates, phenolic compounds, lipids, and proteins. Carbohydrate metabolism influences
the texture, water-holding capacity, shelf life, nutritional factors, and overall flavor of the
bread. Phenolic compounds possess antioxidant activity and lipid metabolism can con-
tribute to the production of volatile compounds. Proteolysis increases gluten solubility and
its susceptibility to enzymatic degradation, liberating peptides and amino acids with poten-
tial physiological properties such as antioxidant, anticancer, and antihypertensive properties [6,7].

Abundant evidence in literature reports support that sourdough fermentation im-
proves the sensory and rheological properties of bread dough, increases bread quality
in terms of texture, volume, flavor, and shelf life, delays aging, protects bread against
microbial contamination as well as produces pleasant aroma compounds [8,9]. Similarly,
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it has been shown that the application of sourdough in bread making improves the nutri-
tional value of foods by decreasing the glycemic index and sodium content, increasing the
bioavailability of minerals, and promoting the production of bioactive compounds [10,11].

On the other hand, it has been demonstrated that the use of fermentative consortia
in sourdough fermentation processes influences its sensory, nutritional, and functional
properties [11]. Starter culture for sourdough refers to the microorganisms used to conduct
fermentation to increase the yield or to obtain specific dough attributes [12]. However, the
ability to adapt to the sourdough ecosystem seems to be one of the essential characteristics
for selecting microbial strains [13]. Several studies report the use of autochthonous isolates
as starter cultures; however, microbial strains isolated from other food systems, such as
yogurt, kefir, and other food sources, are also commonly used [9,14–18]. This review aims
to overview sourdough fermentation, focusing on the use of different starter cultures from
several food matrices.

2. Bread

Bread is a staple food consumed worldwide. Traditional yeast-bread is made from
wheat flour; however, it is possible to use other cereals to obtain different kinds of flour
for bread making. Wheat flour proteins form a viscoelastic dough during mixing water
and flour, that during fermentation and baking, produce bread with a spongy texture. The
bread characteristics are due to physicochemical and biochemical transformations that
occur during the kneading and fermentation of dough and to the chemical reactions that
take place during the bread baking [19,20].

2.1. Types of Bread

Bread can be classified according to the fermentation method used for its production,
which can be fermented using Saccharomyces cerevisiae commercial yeast (instant, active dry,
or fresh) or naturally with a starter dough, commonly known as sourdough [21,22].

2.1.1. Commercial Bread

Industrially produced bread is made with baker’s yeast Saccharomyces cerevisiae. Bread
formulation includes wheat flour, salt, yeast, and water; sometimes, adjuvants are added
to improve their characteristics. The fermentation of baker’s yeast produces aroma com-
pounds, CO2, and alcohol by consuming the carbohydrates from the starch in wheat flour.
In commercial bread fermentation takes approximately 1 to 2 h to obtain the leavened
products with pleasant sensory characteristics. For example, crusty or artisan fresh bread
usually has an attractive brown, crisp crust, a pleasing aroma, acceptable slicing characteris-
tics, and a soft, elastic crumb texture; while soft crust breads, the most abundant worldwide
have a foamy delicate texture [20,21].

2.1.2. Sourdough Bread

Sourdough is a natural starter for bread fermentation. It is one of the oldest fermen-
tation processes used for bread production in different world regions [6]. The sourdough
bread making process can take up to two weeks for the starter to mature. Therefore,
commercial yeast has replaced the sourdough preparation technique to avoid its labori-
ous preparation and reduce the fermentation time. Although the fermentation time is
reduced to 2 h, in the case of commercial baking, more complex aroma and flavor precur-
sor compounds are obtained during the long fermentation process of sourdough bread.
For this reason, there is interest in recovering the aromatic and sensory properties of a
well-formulated sourdough and its positive effect on the technological, nutritional, and
rheological properties of bakery products made with sourdough [12].

3. Wheat Flour

Wheat flour is obtained from the industrial milling process of wheat grain. Its structure
is shown in Figure 1. Milling removes the protective outer layers of the grain know as wheat
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bran, representing approximately 14% of the weight of the grain. The bran has high content
of fiber and minerals (ash). The germ or the embryo of the wheat grain, makes up only 3%
of wheat and contains most of the essential lipids and nutrients. Finally, the endosperm
is about 83% of the wheat grain and has a high starch content. It also contains proteins
such as gliadin and glutenin, which constitute gluten, after hydration and kneading. The
starchy endosperm is reduced to white flour. It is not homogeneous because a protein
gradient is present within the starchy endosperm, with the outer layer richer in proteins
compared to the inner layers. In addition to being the major component of wheat, the
endosperm provides energy and protein for the development of the new plant and is the
main constituent of wheat flour. Cells in the outer layer of the endosperm form a barrier
between the endosperm and the wheat bran; this layer, called aleurone, is about 6.5% of the
grain. It is more biologically active than the endosperm due to its high enzyme content. In
addition, the aleurone can affect wheat flour’s functionality and quality; however, during
milling operations, this layer is removed, so it is part of the wheat bran [22–24].

Microorganisms 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

reason, there is interest in recovering the aromatic and sensory properties of a well-for-
mulated sourdough and its positive effect on the technological, nutritional, and rheologi-
cal properties of bakery products made with sourdough [12]. 

3. Wheat Flour 
Wheat flour is obtained from the industrial milling process of wheat grain. Its struc-

ture is shown in Figure 1. Milling removes the protective outer layers of the grain know 
as wheat bran, representing approximately 14% of the weight of the grain. The bran has 
high content of fiber and minerals (ash). The germ or the embryo of the wheat grain, 
makes up only 3% of wheat and contains most of the essential lipids and nutrients. Finally, 
the endosperm is about 83% of the wheat grain and has a high starch content. It also con-
tains proteins such as gliadin and glutenin, which constitute gluten, after hydration and 
kneading. The starchy endosperm is reduced to white flour. It is not homogeneous be-
cause a protein gradient is present within the starchy endosperm, with the outer layer 
richer in proteins compared to the inner layers. In addition to being the major component 
of wheat, the endosperm provides energy and protein for the development of the new 
plant and is the main constituent of wheat flour. Cells in the outer layer of the endosperm 
form a barrier between the endosperm and the wheat bran; this layer, called aleurone, is 
about 6.5% of the grain. It is more biologically active than the endosperm due to its high 
enzyme content. In addition, the aleurone can affect wheat flour’s functionality and qual-
ity; however, during milling operations, this layer is removed, so it is part of the wheat 
bran [22–24]. 

 
Figure 1. Cartoon depicting the whole-grain wheat structure. Adapted from [25]. Created with 
BioRender.com 

Wheat flour has a pH between 6.2–6.5 and is composed of water (14%), starch (70–
75%), protein (10–12%), non-starch polysaccharides (2–3%), and lipids (2%) [26]. Starch is 
composed of two glucose polymers, amylose and amylopectin. Amylose is composed of 
linear chains of glucose linked by α-(1,4) bonds with a helical structure. Amylopectin is a 
branched molecule constituted of linear chains of α-(1,4)-linked glucoses and branched 
through α-(1,6) bonds [26–28]. Amylose and amylopectin accounts, respectively, for 20–
30% and 80–70% of the starch fraction [24,29]. This polysaccharide contributes to different 
characteristics of wheat-based foods, such as moisture retention, viscosity, texture, flavor, 
and shelf life [30]. 

The lipid content in the wheat endosperm is about 2%, most of which comes from 
cell membranes and the starchy endosperm. Lipids are essential in baking because they 
influence bread volume and crumb by stabilizing the carbon dioxide gas produced during 
fermentation and oven spring expansion during baking. However, lipids in the dough can 
degrade to fatty acids and then oxidize, producing unpleasant aromas. In wheat flour, 
there are three lipid types: free, bound, and starch lipids. Most free lipids are non-polar, 
but when the flour is hydrated during dough preparation, they are partially bound. On 

Figure 1. Cartoon depicting the whole-grain wheat structure. Adapted from [25]. Created with
BioRender.com.

Wheat flour has a pH between 6.2–6.5 and is composed of water (14%), starch (70–75%),
protein (10–12%), non-starch polysaccharides (2–3%), and lipids (2%) [26]. Starch is com-
posed of two glucose polymers, amylose and amylopectin. Amylose is composed of
linear chains of glucose linked by α-(1,4) bonds with a helical structure. Amylopectin is
a branched molecule constituted of linear chains of α-(1,4)-linked glucoses and branched
through α-(1,6) bonds [26–28]. Amylose and amylopectin accounts, respectively, for 20–30%
and 80–70% of the starch fraction [24,29]. This polysaccharide contributes to different char-
acteristics of wheat-based foods, such as moisture retention, viscosity, texture, flavor, and
shelf life [30].

The lipid content in the wheat endosperm is about 2%, most of which comes from
cell membranes and the starchy endosperm. Lipids are essential in baking because they
influence bread volume and crumb by stabilizing the carbon dioxide gas produced during
fermentation and oven spring expansion during baking. However, lipids in the dough
can degrade to fatty acids and then oxidize, producing unpleasant aromas. In wheat flour,
there are three lipid types: free, bound, and starch lipids. Most free lipids are non-polar,
but when the flour is hydrated during dough preparation, they are partially bound. On the
other hand, free and bound lipids are called surface lipids since they are outside the starch
granule and have an essential role in the functions of the gluten network and the rheological
characteristics. Starch lipids are bound to amylose (forming inclusions inside the helical
structure of amylose of starch granules), so they cannot react with proteins during dough
mixing. However, they can affect the technological properties of starch [24,31,32].

Wheat flour proteins are grouped based on their solubility in different solvents as
described by the Osborne’s system; albumins are water-soluble proteins, globulins are
soluble in saline solution, prolamins are soluble in an alcohol solution, and glutelins are acid
or alkali-soluble. Table 1 shows the range of protein composition of wheat flour [33–35].
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Table 1. Wheat flour protein composition.

Protein Percentage (% w/w)

Albumins 5–15
Globulins 5–10

Prolamins (gliadins) 40–50
Glutelins (glutenins) 30–40

Gluten is formed during the hydration of the complex mixture of wheat storage
proteins (about 80–85% protein) consisting mainly in gliadins and glutenins. The gluten
network determines the viscoelastic properties of dough. Glutamine, proline, and cysteine
are the predominant amino acids in gluten proteins. The sulfur side group of cysteine
residues on gluten protein structures have a sulfur-containing side group that helps to
initiate thiol-disulfide exchange reactions allowing building the three-dimensional gluten
network during mixing [36,37].

The elasticity and strength of the gluten protein network is provided by glutenin
subunits crosslinked together by intramolecular disulfide bonds that entangle with gliadins
to form a viscoelastic network [38,39]. The gluten structures are stabilized by forming
hydrogen bridges, whereby, when stress is applied, the hydrogen bridges break, making
the molecule unstable. Once the stress is removed, the molecule returns to its stable
conformation; this ability to restructure itself under stress explains the elastic nature of
glutenin [24,37]. On the other hand, gliadins contribute to flow properties conferring
extensibility to the dough. Gliadins are a family of proteins with similar amino acid
sequences classified into α, β, γ, and ω according to their electrophoretic mobility. α-,
β-, and γ- gliadins contain 3 to 4 disulfide bonds from 6 to 8 cysteine residues which
moderately disrupt the disulfide bonds between glutenins conferring extensibility to the
dough [37,39–41]. For their part, albumins and globulins content in wheat proteins accounts
for 10–25% and are commonly found in the embryo and aleurone layer. These proteins
may act as a nutrient reserve for embryo germination, influence grain hardness, and are
enzymes and enzyme inhibitors. The most common albumins and globulin proteins are
α-amylase/trypsin, serpins, and purothionins (for a review see reference [42]) [24,42].

Non-starch polysaccharides present in flour are commonly arabinoxylans and β-
glucans. Arabinoxylans are formed by arabinose and xylose molecules linked with α-(1,4)
bonds. The alcohol moiety of some arabinose residues can be esterified by ferulic acid.
Arabinoxylans solubility is related directly related to its molecular size and inversely
proportional to the number of arabinose side chains [24]. For their part, β-glucans are
composed only of glucose molecules linked with β-(1,3) and β-(1,4) bonds without branch-
ing. Both polysaccharides are found in the starchy endosperm and aleurone cell walls and
influence the flour hydration by altering starch adhesiveness characteristics; this is because
1/3 of the water in the dough is bound to these polymers [23,24,43].

4. Sourdough

Sourdough is a mixture of flour and water fermented by a complex microbiota that
includes lactic acid bacteria (LAB) and yeasts [2,3,26]. From a microbiological perspective,
sourdough is a stressful ecosystem for microorganisms whose metabolites cause dough
acidification and leavening in addition to aroma and flavor compounds [26]. Sourdough
acts as a leavening agent in bread making; it yields a more aromatic bread with better
texture and flavor, extended shelf life, and nutritional benefits due to the presence of
nutrients such as amino acids, vitamins, minerals, and dietary fiber [26,44,45].

Fresh starter sourdoughs are characterized by their high availability of carbohydrates
that initiate the fermentative process, where the microorganisms are not yet well established.
For this reason, fresh starter is generally not used as a leavening agent for bread and lacks
complex flavors. It possesses a floury, bland, and flat taste, with a floury and inactive
smell. As the fermentative process progresses, active starter sourdoughs are obtained, with
large CO2 bubbles and a fermented, sweet, sour, and not floury taste, accompanied of a
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slightly sour and milky sweet smell, resulting from sequential step fermentation [3,32].
Mature starter sourdoughs are obtained, which are rich in CO2 but deficient in nutrients
for microorganisms and are characterized by an excess of sour and strong vinegary taste,
and a strong, vinegary, pungent, and fermented smell, tiny gas bubbles, and a collapsed
structure, as shown in Figure 2 [3].
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4.1. Sourdough Fermentation

Sourdough fermentation usually occurs under limited aerobic conditions and involves
a succession of LAB and yeasts. Cereals with pH values between 5.0–6.2 and high concen-
trations of fermentable carbohydrates are suitable sources for the growth of LAB strains
until the dough pH reaches an approximate value of 4.0. After that, acid-tolerant yeasts are
the predominant microorganisms in the fermentation process [3,46–48].

4.1.1. Lactic Acid Bacteria (LAB)

Lactic acid bacteria (LAB) are the predominant microorganisms in sourdough fer-
mentation with a cell concentration of 108–109 CFU/g and are responsible for sourdough
acidification [49]. LAB species contribute to the dough acidification process; however,
heterofermentative species also contribute partially to the leavening process and are of
greater importance in sourdough than homofermentative LAB species (commonly used
in other fermented food products). The metabolism of heterofermentative LAB produces
lactic acid, CO2, acetic acid, and ethanol by heterolactic fermentation using glucose as a
carbon source. These metabolites decrease dough pH at values lower than 4.5 [50,51]. The
relationship between the lactic acid and acetic acid produced during sourdough fermen-
tation is an important parameter known as fermentation quotient (FQ). It indicates the
molar ratio of lactic acid/acetic acid and is calculated as FQ = (g of lactic acid in 100 g
of dough/molecular weight of lactic acid):(g of acetic acid in 100 g of dough/molecular
weight of acetic acid). The FQ should be between 2.0 and 2.7 to achieve a good bread
flavor. This parameter is related to the type of LAB (homo and hetero-fermentative) that
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dominates in the fermentation, and its value influences the sensory properties of sourdough
breads [52–54].

During sourdough fermentation, LAB moderately hydrolyzes starch, performs pro-
teolysis, and acidifies the dough, obtaining soft and pleasant tasting crumb, increasing
mineral bioavailability through phytate degradation, and preventing the growth of spoilage
microorganisms. The proteolytic activity of LAB releases amino acids and peptides,
which stimulate their growth and synthesis of B-complex vitamins and volatile fatty acids,
which provide better nutritional conditions for increasing yeast counts [55]. LAB species
found naturally in sourdoughs are commonly from the genera Lactobacillus (L. crispatus),
Lactiplantibacillus (Lpb. plantarum), Fructobacillus (F. sanfranciscensis formerly L. sanfranciscen-
sis), Levilactobacillus (Lev. brevis), and Limosibacillus (Lim. pontis). Furthermore, other species
of the genera Leuconostoc, Weissella, Pediococcus, Lactococcus, Enterococcus, and Streptococcus
were isolated from the sourdough [50,51,56].

4.1.2. Yeast

Yeasts are present in sourdough fermentation in cell concentrations between 106–107 CFU/g
and are responsible for the leavening action of sourdough. The ratio of LAB and yeast is
generally 100:1. Furthermore, yeasts produce various aromatic compounds that contribute
to harmonious flavors in bread in combination with acids. On the other hand, yeasts
present in sourdough show adaptation to stress environments created by low pH values,
high carbohydrate concentrations, and high LAB cell density [57,58]. Yeasts improve the
bread flavor by producing metabolites that confer flavors, such as esters, aldehydes, and
acetoin. Other compounds produced by yeasts, like glutathione, glycerol, and pyruvic
acid, contribute to the textural structure of bread by enhancing the gluten network [59].
The most reported yeast species in sourdough belong to the genera Saccharomyces, Candida,
Pichia, Torulaspura, and Rhodotorula, as shown in Table 2 [60–62].

Table 2. Overview of LAB and yeast found in sourdough elaborated with wheat flour.

Country/
Region Sourdough Type * Lactic Acid Bacteria (LAB) Yeast References

Japan
/Asia Type II

Lc. citreum, L. lactis, W. confusa,
W. cibaria, Lpb. plantarum,

Lpb. paraplantarum, Lvb. brevis

W. anomalus, Ks. unispora,
S. cerevisiae [63]

China
/Asia Type II

Lat. curvatus, Ped. pentosaceus,
Lvb. brevis, Lpb. plantarum,

Lc. mesenteroides, Flb. rossiae
S. cerevisiae [64]

China
/Asia Type I F. sanfranciscensis, Lim. pontis S. cerevisiae, C. humilis [65]

Italy
/Europe Type I Lvb. brevis, Lpb. plantarum,

Lcb. rhamnosus

W. anomalus, S. cerevisiae,
T. delbruekii, P. kluyveri,
C. boidinii, C. diddensiae

[62]

Japan
/Asia Type I Lvb. brevis, Co. alimentarius,

Lpb. pentosus S. cerevisiae, C. humilis [66]

France
/Europe Type I

F. sanfranciscensis, Lpb.
plantarum, Co. kimchi, Lat. sakei,

Lev. hamesii, Lpb. pentosus

K. bulderi, C. humilis,
K. unispora, T. delbruekii, R.
mucilaginosa, C. carpophila,

S. cerevisiae,
H. pseudoburtonii

[67]
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Table 2. Cont.

Country/
Region Sourdough Type * Lactic Acid Bacteria (LAB) Yeast References

Turkey
/Asia Type I

Lpb. plantarum,
F. sanfranciscensis, Lev. spicheri,

Flb. rossiae, Lev. namurensis,
Lev. zymae, Lcb. casei,

Co. mindensis, Lb. acetotolerans,
Co. farciminis,

Co. paralimentarius,
Ped. pentosaceus, E. durans,

E. faecium, Lc. mesenteroides,
W. confusa

S. cerevisiae, P. guillermondii,
T. delbrueckii, C. parapsilosis,

C. pararugosa
[68]

China
/Asia Type I

F. sanfranciscensis, W. cibaria,
Lim. fermentum, Lpb. plantarum,
Lim. pontis, Co. paralimentarius

S. cerevisiae, C. humilis,
W. anomalus [69]

Turkey
/Asia Type I

W. viridescens, Ped. pentosaceus,
Ped. acidilactici, Lvb. brevis,

Len. parabuchneri

S. cerevisiae,
P. membranifaciens [70]

Italy
/Europe Type I

Ped. pentosaceus, Lat. curvatus,
Lvb. brevis, Lim. fermentum,

Lpb. plantarum, Ped. acidilactici

W. anomalus, P. fermentans,
C. lusitaniae, S. cerevisiae [71]

France
/Europe Type I F. sanfranciscensis, Co.

paralimentarius, Lvb. brevis
S. cerevisiae, K. humilis,

K. bulderi [72]

Italy/Europe Type I

Lat. curvatus, F. sanfranciscensis,
Lc. citreum, Lc. mesenteroides,

Lc. pseudomesenteroides,
Ped. pentosaceus,
Lev. acidifarinae

C. humilis, T. delbrueckii,
S. cerevisiae, K. marxianus [8]

Italy/Europe Type I F. sanfranciscensis C. milleri, S. cerevisiae [73]

Belgium/Europe Type II
Lim. fermentum, Lpb. plantarum,

Lvb. brevis, W. confusa, Ped.
pentosaceus

S. cerevisiae [74]

Belgium/Europe

Type I
F. fructivorans, Lpb. plantarum,

Lim. reuteri, Lb. delbrueckii,
Lc. spp., Weisella

C. humilis, S. cerevisiae,
K. sp, P. kudriavzevii

[75]

Type II Lpb. plantarum, Lc. spp.,
Lim. reuteri, Lb. delbrueckii

S. cerevisiae, W. anomalus, S.
bayanus, T. delbrueckii

Italy/Europe Type I
F. sanfranciscensis, W. cibaria,
Lpb. plantarum, Lim. reuteri,

Lim. pontis
S. cerevisiae, K. exigua [76]

LAB: Lc.: Leuconostoc, L.: Lactococcus, W.: Weisella, Lpb.: Lactiplantibacillus, Lvb.: Levilactobacillus, Lat.: Latilactobacillus,
Ped.: Pediococcus, Flb.: Furfulactobacillus, F.: Fructolactobacillus, Lim.: Limosibacillus, Lcb.: Lacticaseibacillus, Co.:
Companilactobacillus, Lev.: Levilactobacillus, E.: Enteroccoccus, Len.: Lentilactobacillus. Yeasts: W.: Wickerhamomyces, K.:
Kasachstania, S.: Saccharomyces, C.: Candida, T.: Torulaspora, P.: Pichia, R.: Rhodotorula, H.: Hyphopichia. * Sourdough
Type I and II are explained in Section 4.2.

Sourdough microorganisms must present compatible interactions between them,
which may promote their growth (and sometimes a symbiotic effect) to remain metabol-
ically active during fermentation. Bacteria and sourdough yeasts partially compete for
nitrogen sources. However, yeasts have been shown to produce essential amino acids to
facilitate LAB growth in co-cultures [77]. Finally, the most limiting factor for fermentative
activity is the lack of substrate, which is solved by sourdough feeding [26,78].
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4.1.3. Biochemical Transformations during Sourdough Fermentation

Sourdough fermentation has different biochemical effects on the major compounds of
dough as shown in Figure 3.
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Fermentable carbohydrates such as maltose, glucose, and maltodextrins are released
from the starch degradation by endogenous enzymes such as amylases that release mal-
todextrins [76,79]. Amylases cannot degrade native starch granules in flour, but when
granules are damaged (during the milling process), the partial degradation of starch takes
place [75]. Lactic acid bacteria with amylolytic capacity (ALAB) have been reported in
different types of foods, mainly starchy [80,81]. The ALAB can produce extracellular amy-
lolytic enzymes for the degradation of starchy substrates. Therefore, these bacteria can
directly utilize starch to produce mainly lactic acid [82,83]. The amylolytic enzymes mostly
produced by ALAB strains are amylases, amylopullalanases, and pullulanases [84]. The
production of these enzymes has been studied with Lb. amylovorus NRRL B-4540 [85,86],
Lpb. plantarum A6 [87], and Lcb. manihotivorans LMG18010 [88]. Recently, maltose-forming
amylase from Lpb. plantarum strain S21 has been characterized [83].

Cereal flour and its microbiota contain proteases and peptidases that hydrolyze pro-
teins during sourdough fermentation [76,89]. The primary proteolysis during sourdough
fermentation is due to indigenous flour aspartic proteases, aminopeptidase, endopeptidase,
and carboxypeptidase activation is promoted by the drop in pH. Moreover, this acidifica-
tion increases the solubility of gluten proteins, making them more susceptible to enzymatic
degradation [90]. In the second proteolysis, free amino acids are released by the peptidase
system of the microorganism [91]. LAB strains contribute to protein degradation; for ex-
ample, the proteolytic system of F. sanfranciscencis contains aminopeptidase, dipeptidase,
and a cell wall-associated serine proteinase [92,93]. On the other hand, the adaptation and
growth of some sourdough LAB strains depend on flour amino acids, flour proteases, and
their proteolytic system to satisfy the nitrogen metabolic requirements. This dependence
is because these bacteria lack proteinase in their cell envelope. Therefore, the availability
of oligopeptides and amino acids depends on the action of cereal-active proteases under
acidic conditions. Similarly, yeasts require amino acids as a nitrogen source fermentation;
however, their enzymatic activities allow them to provide glucose and fructose (invertase)
and amino acids (protease) to LAB strains [89,94].

Phenolic compounds (phenolic acids, flavonoids, and tannins) in wheat flour are
commonly found in bound forms. During sourdough fermentation, the cereal and LAB
enzymes release the phenolic compounds [93]. In wheat, the major phenolic acid is ferulic
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acid (FA), accounting for almost 90% of total phenolic compounds. The remaining 10%
corresponds to caffeic acid, dihydrobenzoic acid, and sinapic acids. In sourdough fermen-
tation, FA is transformed into 4-vinilguaiacol (natural aroma of buckwheat), ethyl-guaiacol
(smokey flavor), and dihydroferulic acid (antioxidant) by the enzymatic activity of LAB
and yeast [95].

Sourdough addition increases the aromatic profile of bread due to LAB and yeast pro-
duction of diverse volatile organic compounds (VOCs) such as alcohols, aldehydes, acids,
ketones, and esters that benefit the flavor and aroma of the final product. LAB produces
compounds such as acetaldehyde (buttery), hexanoic acid (fatty), 1-hexanol (ethereal),
1-pentanol (oil), 2-pentylfuran (fruity), and 2-methyl butyl acetate (overripe fruit). For
yeast, it has been reported that they mainly produce ethanol (alcohol), 2-methyl-1-propanol
(ethereal), 3-methylbutanol (alcohol), 2-phenylethanol (rose), 2-methylbutanol (roasted),
aldehyde (acetaldehyde, hexanal), 3-hydroxy-2-butanone (sweet), benzyl alcohol (floral),
benzaldehyde (almond-like), 2-phenylethanol (rose), and 2,3-butanedione (buttery) [94].
Recently, Xu et al. [96] selected yeast strains to mix with F. sanfranciscensis as mixed starter
culture according to the volatile organic compounds produced. M. guillermondii EH1 y
P. kudriavzevii EP1 were the selected strains. When compared to the culture of F. sanfran-
ciscencis, both mixed cultures present specific compounds such as ethyl-acetate (sweet,
floral), ethyl-hexanoate (fruity, liqueur), isoamyl acetate (banana), propyl lactate (fruity,
liqueur), phenyl ethyl acetate (floral). However, with P. kudriavzevii EP1, the isoamyl lactate
(cream and walnut) was obtained, and with M. guilliermondii EH1, the compounds (E,
Z)-2,6-nonadienal (cucumber) and ethyl decanoate (fruity).

Furthermore, the release of reducing sugars and amino acids during fermentation
also contributes to the formation of aromas and bread crust color through the Mail-
lard reaction during baking [26,97,98]. The presence of the dominant microorganisms
in sourdough is influenced by fermentation parameters, such as dough yield, salt, quality,
and quantity of starter used, as well as the number of propagation steps, fermentation
time, and oxygen availability determine the presence of the dominant microorganisms in
the sourdough [3,99].

4.1.4. Fermentation Parameters

Fermentation parameters are essential factors for sourdough maintenance and can
affect the initial composition and performance of the starter. The most influential are flour
type, hydration, temperature, time, refeeding practices, and sourdough environment [3,100].

• Wheat Flour Type

Wheat flour provides different nutrients, mainly carbohydrates and amino acids.
Therefore, its composition can influence the growth of microorganisms present during sour-
dough fermentation [8,101]. Likewise, the ability of the microorganisms to metabolize the
carbohydrates present in the dough also affects their development. However, the preference
for carbon sources is not the only factor that influences the microorganisms present in dough.
The availability of carbohydrates also impacts the organisms present and this is related
to the action of amylases in each type of flour. Amylases contribute to the production of
fermentable carbohydrates through the degradation of complex carbohydrates; this favors
bacterial growth and causes the development of acid-tolerant microorganisms [54,102].

• Dough Yield

The dough yield (DY) refers to the amount of water mixed with the flour, i.e., the
ratio of flour to water when 100 g of flour are used. If the DY value is between 150–160,
the sourdough is considered firm; with DY values between 200–300, the sourdough is
semi-liquid, and when the DY is more than 300, the sourdough is liquid [99]. The dough
yield index is obtained using the following expression:

DY =
( f lour mass(g) + water volume (mL))

f lour mass (g)
∗ 100 (1)
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The presence of water in the sourdough is relevant for the metabolic activity of
microorganisms to remain active since water activates proteolytic enzymes [3].

• Temperature

The temperature of sourdough fermentation and storage affects the physical, chemical,
biochemical, and sensory characteristics of sourdough bread due to the impact on the
microbial diversity in the dough. Temperature influences the predominance of bacteria
and yeasts, their growth and metabolic activity [103,104]. It is essential to consider the
temperature of sourdough fermentation, refeeding and at which the sourdough is added
during the baking process. However, the sourdough fermentation temperature includes
incubation and cooling temperature during a daily sourdough feeding cycle. The most
used temperature for sourdough fermentation is 30 ◦C [19,71,105].

• Fermentation Time

During sourdough fermentation, it is necessary to consider the starter maturity since it
determines the species of microorganisms present. In addition, there is a dynamic maturity
of sourdough at which a maximum leavening power is obtained followed by a declined as
it continues aging [20,87]. The frequency of refeeding is also essential because the diversity
of microorganisms in sourdough varies depending on this frequency. There is a range
in the feeding frequency that can optimize the fermentative capacity of sourdough since,
with the correct frequency, the growth of undesirable microorganisms such as fungi can
be suppressed. In addition, if the fermentation time is short (more frequent feedings), the
culture will be selective with the species present in the sourdough [3]. The sourdough fer-
mentation time influences the acidification, leavening power, and cell density of the yeasts
and LAB in the starter. Longer fermentation times of sourdough with added by-products is
attributed to adaptation of microorganisms to the environment of sourdough [80]. Calvert
et al. [3] reported an ideal fermentation time at which the sourdough reaches an equilibrium
between acidity and microorganisms’ growth; this fermentation time allows for optimizing
bread’s leavening and sensory properties. However, the ideal fermentation time is relative
because it depends on the microbial strains and the baker’s preference.

• Backslopping

Sourdough backslopping is the number of sourdough propagation (refreshing) steps
where an amount of the starter is discarded by adding water and flour to the remain-
ing sourdough. There are two types of replenishment: the amount of starter used to
refresh the sourdough during fermentation, which is commonly 20% of inoculum, and the
amount of sourdough used in baking which influences the aromatic profile and acidity
of the bread [3,99].

• Environment

The environment (also called “house microbiota”) in which sourdough is elaborated
influences its microbial diversity since different species of microorganisms have been
reported in sourdough depending on the geographical region and the environment where
they develop [3]. However, a recent study of how the microbial diversity of sourdough
starters varies across and between continents demonstrates which species of bacteria and
yeast are commonly found in sourdough starters and suggests the geographical location
has a relatively small influence on the microbial diversity of these cultures [1]. Instead,
microbial diversity depends more on starter obtention and maintenance practices [1]. This
information coincided with the report by Comasio et al. [106]. This research showed
that the microbial sourdough diversity was influenced by the environment microbiota of
the producer and the process parameters applied. Despite the artisan producer’s use of
different flours, the sourdoughs contained a similar microbial population, independent of
the flour used.

Thus, more studies about the geographical dispersion of microorganisms in sourdough
along continents are needed to establish if there a relationship between the geographical
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place of sourdough development and the yeast and LAB dominance during fermentation.
Additionally, it remains unclear if an ideal environment for sourdough production exists
due to the differences of the house microbiota caused by the artisan practices.

4.2. Classification of Sourdough

Four sourdough types are classified concerning the technology used for sourdough pro-
duction, as shown in Figure 4 [26,94]. The fermentation of each kind of sourdough is charac-
terized by different fermentative microbiota which depends on the maintenance factors [103].
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Sourdough Types

• Type I

Type I sourdough forms a firm dough with a DY between 150–160. This type of
sourdough is obtained by fermenting a mixture of wheat flour and water indigenously
with the LAB and yeasts present in the flour, the environment, or any food matrix used
to initiate fermentation [94,101]. It is characterized by feeding the dough to continuously
spread and keep the microorganisms metabolically active [3]. Generally, bakers apply a
backslopping step based on three batches fed for 24 h, thus obtaining the dough for baking.
In the last stage, sourdough is used as a leavening agent; it can be considered a natural
starter culture with different microbial strains [104,107].

• Type II

This type of sourdough has a fermentation time of 2 to 5 days at a temperature higher
than 30 ◦C; it has a DY between 200 and 300, so its water content increases compared to type
I sourdough, making it a semi-fluid dough. This sourdough involves the inoculation of LAB
and yeast in the dough. Because of the high fermentation temperatures, the production of
organic acids is favored, which results in a decrease of pH to values below 3.5. This type of
sourdough is mainly used for acidification and leavening. This sourdough can be stored for
up to one week. Its consistency and formulation allow specific flavor profiles with different
bread textures and volumes [94,108].

• Type III

Type III sourdough is obtained by dehydrating sourdoughs obtained by traditional
fermentation or by adding starter cultures. The drying process can be performed by freeze-
drying, spray drying, or drying in a fluidized bed reactor. It is essential to keep in mind
that the microorganisms present in the dough must be resistant to drying [105,109,110].
This type of dough has advantages over the other types since it has a longer shelf life,
occupies less volume, and is easier to handle transport and store. In addition, with Type III
sourdough final products are standardize with consistent bread flavor and aroma [3,111].
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• Type IV

In this case, the sourdough is initiated with a starter culture (yeast, LAB, or LAB-yeast-
starter) that is propagated with traditional backslopping until obtain a mature sourdough.
The dough can be firm or semiliquid [12,104]. The growth of the consortium of LAB and
yeasts added to this sourdough depends on the type and quality of flour used, fermentation
conditions, and interactions with the indigenous microbiota. On the other hand, this
sourdough can also be dehydrated [3,99,103].

5. Starter Cultures Used for Sourdough

Although the flavor, aroma, and sensory quality of sourdough bread are unique,
the use of the sourdough fermentation technique to produce various bakery products
represents several challenges for the bakery industry. These are due to the complexity
and hand labor needed for the production and maintenance of sourdough through daily
refreshments and the long fermentation times. Therefore, the application of starter cul-
tures that simplify and shorten the fermentation process at the commercial level has been
proposed [54,112–115]. Medina-Pradas et al. [116] defined a starter culture as a preparation
of live microorganisms used deliberately to accelerate the fermentation, triggering specific
changes in the food substrate’s composition and sensory properties to get a more homoge-
neous product. Suitable selection of the microorganisms to be used as starter cultures is of
utmost importance for sourdough application, considering that it significantly influences
the final dough’s characteristics, pH, and fermentation temperature.

Furthermore, several studies have shown that using autochthonous LAB for sour-
dough fermentation represents a biotechnology tool for exploiting the potential of non-
wheat cereals in bread making [115,117–119]. In recent years, sorghum has gained increas-
ing attention worldwide, especially in Western countries, due to its valuable nutritional
quality and health-promoting components. Furthermore, sorghum is gluten-free, making it
an alternative food for patients with celiac disease [6,115,118,120]. On the other hand, it
has also been reported that the use of new starter cultures, including different Weissella
species, to produce sourdough bread [120,121] improves the rheological properties of the
dough due to the production of exopolysaccharides (EPS) [115,122].

During sourdough production, starter cultures are used for elaborating sourdough
types II, III, and IV. Type II sourdough is made by a process known as an industrial method,
which consists of a single-stage fermentation with LAB culture or mixed culture (LAB with
yeast) for 15–24 h and then backslopped stages [104,123]. The LAB and yeasts commonly
used in sourdough Type II belong to species S. cerevisiae, Lb. amylovorus, Lim. panis, Lim.
fermentum, Lev. brevis, Lim. pontis, and Lim. reuteri. These bacteria are characterized by their
thermotolerance and acid tolerance [104,124–126]. It was reported that type II sourdough
has several advantages over type I, such as a single fermentation stage, improved control
of fermentation parameters (pH, temperature, acidity), and easier nutrient addition, which
results in enhanced performance and control of microbial metabolism [86]. Therefore, the
risk of mold contamination during fermentation is reduced by accelerating the process.
In addition, sensory properties are increased, and final products are standardized due to
the selection of the starter culture and the further production of important metabolites.
All these characteristics make type II sourdoughs suitable for use in industrial processes.
Nevertheless, due to the complex microbiota of sourdough, a critical step is the selection of
the strains to be used for the starter culture [104]. Gaggiano et al. [127] proposed a protocol
for producing and using a defined, multi-specific, semi-liquid sourdough starter culture to
meet industrial requirements.

For the case of type III sourdough, produced by dehydrating the stabilized form of type
II sourdough, it is essential to ensure the selection of the starter culture based on its ability
to rapidly acidify the flour-water mixture and/or its ability to produce specific flavors [123].
Since some companies commercializing type III sourdough do not verify the viability of the
sourdough microbiota and only consider the texture and aroma enhancement of the final
products, it is necessary the addition of commercial yeast to allow leavening. In this respect,
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to ensure a stable starter culture for this type of sourdough, there is a need to consider the
stability of the starter culture during the drying process. Some examples of LAB strains
resistant to drying are Lactiplantibacillus plantarum Ls71, Pediococcus acidilactici Ls72, and
Lentilactobacillus buchneri Ls141 [128].

The sourdough type IV is typically used in laboratory studies and some artisanal
bakeries. Starter cultures or another inoculum such as fruits or honey can be added, and
fermentation takes longer than Type II because of the backslopping techniques. Competi-
tion between the added starters and the autochthonous strains species can exist. The more
competitive or well-adapted strains may establish their dominance, and a natural selection
will occur [104,125]. Therefore, selecting strains that dominate the environmental condi-
tions and drive sourdough fermentation is essential to a set of desired characteristics [94].
Commonly the LAB and yeasts species whose use has been reported as starter cultures
for this type of sourdough belong to Lim. fermentum, Lpb. plantarum, F. sanfranciscensis, Lc.
mesenteroides, W. confusa, S. cerevisiae, C. humilis, and Wickerhamomyces anomalous [103].

5.1. Traditional Starter Cultures

As mentioned before, the main source of the microorganisms used for traditional
sourdough production is flour and water mixture used for fermentation [14].

Paramithiotis et al. [129] studied the metabolic interactions between the dominant
species of traditional Greek wheat sourdough starter F. sanfranciscensis and S. cerevisiae
and the accompanying microbiota Lvb. brevis, Co. paralimentarius, Ped. pentosaceus and
W. cibaria. In this study, F. sanfranciscensis and S. cerevisiae were used as starter cultures,
alone or in combination with Lvb. brevis, Co. paralimentarius, Ped. pentosaceus and W.
cibaria. Metabolic products were determined in the sourdough samples by HPLC analysis.
The results showed that Lvb. brevis, W. cibaria and Ped. pentosaceus had basically no
effect on the growth of the main microorganisms or on total metabolite production. In
contrast, Co. paralimentarius showed a negative effect on the growth of F. sanfranciscensis.
All sourdough breads produced had suitable sensory properties. The bread made with S.
cerevisiae, F. sanfranciscensis and Lvb. brevis ranked first in the sensory evaluation.

In recent years, the role of these autochthonous microorganisms, mainly yeasts and
LAB, in functional and technological properties has been evaluated, some of these studies
are mentioned below.

Sidari et al. [130] evaluated a mixed starter culture for sourdough bread production.
This culture consisted of F. sanfranciscensis B450, Lc. citreum B435 and C. milleri L999.
The researchers assessed the viability of the strains during sourdough production in the
laboratory until production in the bakery plant, as well as the effect of the starter culture
on the antioxidant and rheological properties of the sourdoughs and the resulting bread.
In this work, the viability of F. sanfranciscensis B450 and C. milleri L999 was demonstrated.
One of the sourdoughs inoculated with this starter culture (PF7 M) had a higher phenolic
content and antioxidant activity (measured by DPPH) than the artisan bakery sourdough.
The other sourdough (PF9M) was shown to have an increase in texture parameters.

Fekri et al. [131] isolated and selected yeasts and LAB from traditional Irani sourdough.
The selection criteria used were phytate degradation ability, tolerance to acidity, and bile
salts. The selected microbial strains were used to produce sourdough bread and were
compared with a yeast-bread (inoculated with S. cerevisiae). Several nutritional parameters
(such as antioxidant activity, EPS production, phytic acid content, and in vitro starch
digestibility) and technological parameters (bread quality and sensory test) were evaluated
during the study. The microorganisms used as starters for sourdough fermentation were
Kluyveromyces marxianus, K. lactis, K. aestuarii, E. faecium, Ped. pentosaceus, and Lc. citreum. It
was found that the sourdough bread inoculated with Kluyveromyces aestuarii had the highest
sourdough porosity (70.4%), the lowest hardness (508.7 g), the highest concentration of
EPS, and favorable sensory attributes.

Boyaci-Gunduz et al. [132] identified LAB strains from sourdough samples of different
cities in Turkey with culture-independent and culture-dependent molecular methods.
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Thirteen LAB species were identified, mainly F. sanfranciscensis and Lpb. plantarum. In
monoculture and double culture, these species were studied as starters for sourdough
production. The chemical and microbiological properties, as well as the VOC profile
of the sourdoughs, were evaluated. It was found that the sourdoughs inoculated with
monoculture and double culture of F. sanfranciscensis RL976 were characterized by higher
microbial growth, titratable acidity, lactic acid concentration, and a more significant number
of VOCs than other analyzed samples. These characteristics may be essential to ensure
the reproducibility and stability of industrial sourdough bread production. Furthermore,
the authors highlight that the results of this study corroborate the hypothesis that strains
isolated from the sourdough environment are the most promising candidates for developing
starter cultures. Therefore, L. plantarum and F. sanfranciscensis could be applied as dual
starter cultures in industrial sourdough production to reach the desired level of acidification
and aroma in a short time.

5.2. Starter Cultures Formulated with Other Food Matrices Microorganisms

As previously mentioned, native microorganisms from food matrices different from
sourdough could be used as starter cultures for this process (Table 3). They could provide
the sourdough with interesting metabolic properties and, therefore, modify the physico-
chemical and sensory properties of the bread produced with such dough. Moreover,
this selection of sourdough starter cultures needs not be limited to LAB and yeast. Still,
other microorganisms, such as acetic acid bacteria (AAB) or even some coagulase-negative
staphylococci (CNS) could also be used [14].

Table 3. Starter cultures for sourdough from different food matrices.

Food Matrix Used Microorganisms Inoculum Size Main Results References

Yogurt
S. thermophilus and Lb.

delbrueckii subsp.
bulgaricus

40% (w/w)

Enhanced bread has bread crumb
softness,

retarded staling, and
increased antioxidant activity

compared with yeast-sourdough

[16]

Corn bran

Two consortia:
(1) K. unispora + W.

cibaria+ Ped. pentosaceus
and

(2) S. cerevisiae
(commercial) + W. cibaria

+ Ped. pentosaceus

6 log UFC/mL for all
microorganisms except

for W. cibaria

Spelt-sourdough bread obtained
with the consortium (2) had a

superior crumb texture that was
maintained during five days of

storage and has better consumer
acceptation.

Both consortia improved shelf life
by preventing the growth of

common
cereal-contaminating fungi

[71]

Coconut water kefir

Lim. fermentum with
and without yeast

Lpb. plantarum with and
without yeast

4.90 and 8.30 log
UFC/mL

5.00 and 9.69 log
UFC/mL

Sourdough bread inoculated with
Lpb. plantarum at 9.60 log CFU/mL

without yeast and fermented
during 24 h showed a higher

concentration of organic acids and
amino acid, and better quality in

terms of taste, shelf life,
and texture

[133]
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Table 3. Cont.

Food Matrix Used Microorganisms Inoculum Size Main Results References

Cocoa bean
fermentation,

fermented sausage
and water kefir

Lim. fermentum IMDO
222 (cocoa bean

fermentation) Lat. sakei
CTC 494 (fermented

sausage)
Acetobacter pasteurianus

IMDO 386B and
Gluconobacter oxydans

IMDO A845

6–7 log UFC/mL of
wheat flour-water

mixture

Lim. fermentum IMDO 222 from
cocoa bean fermentation and Lat.

sakei CTC 494 from fermented
sausage were potential starters for
sourdough, as well AAB strains (A.

pasteurianus IMDO 386B and
Gluconobacter oxydans IMDO A845),

both strains from cocoa bean
fermentation), due to their

competitiveness in the dough.

[14]

Water (WKG1,
WKG2) and milk

(MKG) kefir grains

Len. kefiri and P.
acidilactici strains

isolated from
MKG

0.20% (w/w)

Using WKG2 as starter for
sourdough in liquid and solid
fermentation was exhibited a

higher concentration of organic
acids, flavonoids, and

polyphenolic compounds with
antioxidant and

antifungal properties.

[18]

Pear and orange
Lvb. brevis, Lpb.

plantarum, Flb. rossiae,
and S. cerevisiae

200 g of fruit

The use of pear and orange as
sourdough starters significantly

decreased bread’s pH, acidity, and
gas production, and increased free
amino acids (FAA) content and gas

holding capacity. Moreover,
compared to the use of orange as

starter, pear can achieve acidic
conditions that are more suitable
for the good performance of LAB

and yeast during fermentation,
resulting in a bread with a higher

specific volume and a
softer crumb.

[64]

Kimchi Lc. citreum and W.
koreensis 6 log CFU/g dough

The bread prepared with
sourdough inoculated with kimchi
LAB strains had significant effect
on texture and could lead to an
extended shelf life, by delaying

bread staling and
microbial spoilage.

[134]

Graça et al. [16] investigated the effect of incorporating yogurt as a starter in sour-
dough wheat bread on technological and nutritional properties. In this study, two bread
dough matrices were made: endosperm wheat flour (white flour) and blended with whole-
grain flour. In addition, two fermentation methods were performed, two-stage sourdough
bread and yeast bread fermentation. It was observed that yogurt-sourdough, compared
to yeast-sourdough, promoted significant changes in chemical composition, such as a
higher degree of protein proteolysis, increased peptide, and free amino acid content (FAA),
solubilization of phenolic compounds (46–53%), increased DPPH (2,2-diphenyl-1-picryl-
hydrazyl-hydrate) radical scavenging (54–65%) and ferric reducing power (85–88%), espe-
cially when whole wheat flour was combined with white wheat flour. Adding yogurt as a
baking ingredient for sourdough enhanced bread crumb softness (15–12%) and retarded
staling (40–35%). Furthermore, the glycemic index was decreased (18–32%), while there
was an enhancement in protein digestibility (6–12%) and bioavailability of free amino acids
(50–100%). For these reasons, adding yogurt to sourdough fermentation is a promising
alternative to improve wheat bread’s technological and functional properties.
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Korcari et al. [71] studied the use of previously selected starter cultures to obtain spelt-
based sourdough bread with improved technological, sensory, and preservation properties.
They established two consortia, containing one yeast strain (a commercial S. cerevisiae strain
or a maltose-negative Kazachstania unispora strain) and two LAB strains, Weissella cibaria
and Pediococcus pentosaceus. These microorganisms, except for S. cerevisiae, were previously
isolated in the spontaneous fermentation of corn bran by Decimo et al. [135]. The ability to
grow in co-culture, without inhibition between LAB and yeasts, was investigated, which
grew in proportions considered suitable for sourdoughs. The performance of the two
consortia was evaluated in a spelt-based sourdough bread, and the leavening behavior,
crumb softness, bread volume, shelf life, and consumer preference were assessed. The
product obtained with the consortium containing S. cerevisiae had a superior crumb texture
that was maintained during five days of storage and was well accepted by consumers.
In addition, both consortia improved shelf life by preventing the growth of common
cereal-contaminating fungi. The results indicated that the selected starter cultures have a
promising potential to improve the baking quality of products obtained with flours with
poor technological performance but interesting nutritional properties [71].

Limbad et al. [133] investigated coconut water kefir (CWK) as a starter culture for
wheat-sourdough fermentation. These inoculums consisted of Lim. fermentum (at 8.30 log
CFU/mL or 4.90 log CFU/mL) and Lpb. plantarum (9.60 log CFU/mL), and baker’s yeast
can be added. CWK-sourdough fermentations were conducted for 18 or 24 h. Subsequently,
they performed physicochemical analyses (shelf life, texture, carboxylic and amino acids
profile, and proximate composition of CWK-sourdough bread). The sample of bread
inoculated with Lpb. plantarum at 9.60 log CFU/mL without yeast and fermented during
24 h produced a higher concentration of organic acids (lactic, succinic, acetic, and pyruvic
acids) and amino acid and improved overall bread quality in terms of flavor, shelf life,
and texture.

Comasio et al. [106] used several microorganisms derived from different food matrices,
such as cocoa bean fermentation, fermented sausage, and water kefir, as starter cultures
for sourdough fermentation. The microorganisms studied for Type II wheat sourdough
included LAB, AAB, and CNS strains. They studied the microorganisms prevalence in
the sourdough ecosystem during 72-h fermentations. Lim. fermentum IMDO 222 (cocoa
bean fermentation) and Lat. sakei CTC 494 (fermented sausage) were able to survive during
Type II sourdough productions and seem to be promising candidates as sourdough starter
culture strains.

Păcularu-Burada et al. [18] used milk (MKG) and water (WKG) kefir grains as starter
cultures for gluten-free sourdoughs (quinoa, chickpea, okara, and buckwheat). They for-
mulated three artisanal starter cultures, two from water (WKG1, WKG2) and one from milk
(MKG) kefir grains. The authors studied the combined effects of ingredients, sterilization,
gelatinization, and type of fermentation (liquid and solid fermentation) on the biochemical
performance of the microbial consortium and its antifungal, antioxidant, and acidification
potential. Results demonstrated the potential of WKG as starter cultures to produce gluten-
free sourdough. Mainly, inoculation with WKG2 (0.20% by weight) using liquid and solid
fermentation was shown to have a higher composition of organic acids, flavonoids, and
polyphenolic compounds with antioxidant and antifungal properties.

Yu et al. [64] investigated the effect of using pear and orange as starters for sourdough
fermentation on white pan breads, focusing on their acidification capacity, fermentability,
free amino acid (FAA) concentration, and bread properties. This work demonstrated that
adding sourdough improved bread’s technological and nutritional properties and that dif-
ferent sourdough substrates used as starters resulted in differences in bread characteristics.
Breads made with sourdoughs that started with fruit (pear or orange) had lower pH and
acidity than control breads. Gas production decreased with the addition of sourdough, but
gas holding capacity increased significantly. Sourdough fermentation offered a suitable
acidic environment to improve the metabolic activity of some endogenous enzymes, which
resulted in an increase in specific volume and FAA concentration. The authors reported
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isolating 15 yeasts and 26 LAB from the pear-initiated sourdough and 21 yeasts and 18 LAB
from the orange-initiated sourdoughs. LAB found in these doughs were identified as Lvb.
brevis, Lpb. plantarum, and Flb. rossiae, while yeasts were identified as S. cerevisiae.

Choi et al. [134] evaluated two LAB isolated from kimchi, Leuconostoc citreum HO12 and
Weissella koreensis HO20, as starter cultures for the production of whole wheat sourdough
bread. These LAB strains isolated from kimchi were evaluated as starter cultures in whole
wheat sourdough bread making. After 24 h of fermentation at 25 ◦C, both bacteria reached
a total count of 9 log CFU/g dough, and the two doughs showed similar pH and total
acidity. Sourdoughs and bread with 50% (w/w) sourdough produced with the starter
cultures showed a steady capacity to retard the growth of fungi and bread spoilage bacteria
such as Penicillium roqueforti, Aspergillus niger and Bacillus subtilis. It appears that both LAB
strains possess the potential to improve the shelf life of wheat bread.

6. Conclusions

Different plant or animal origin food matrices, fermented or not, have great potential
to be used as starter cultures for the sourdough bread process. Their native microorganisms
mainly constituted by lactic acid bacteria, yeasts, and even acetic acid bacteria, positively
impacts sourdough fermentation and the overall sourdough bread quality. The field of
sourdough fermentation gains interest every day. The use of different food matrices as
starter cultures for sourdough fermentation opens a multitude of possibilities to diversity
bread making practices and to improve physicochemical, sensory, and nutritional properties
of sourdough bread.
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