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Abstract: Environmental and economic costs demand a rapid transition to more sustainable farming
systems, which are still heavily dependent on chemicals for crop protection. Despite their widespread
application, powdery mildew (PM) and downy mildew (DM) continue to generate serious economic
penalties for grape and wine production. To reduce these losses and minimize environmental impacts,
it is important to predict infections with high confidence and accuracy, allowing timely and efficient
intervention. This review provides an appraisal of the predictive tools for PM and DM in a vineyard,
a specialized farming system characterized by high crop protection cost and increasing adoption of
precision agriculture techniques. Different methodological approaches, from traditional mechanistic
or statistic models to machine and deep learning, are outlined with their main features, potential, and
constraints. Our analysis indicated that strategies are being continuously developed to achieve the
required goals of ease of monitoring and timely prediction of diseases. We also discuss that scientific
and technological advances (e.g., in weather data, omics, digital solutions, sensing devices, data
science) still need to be fully harnessed, not only for modelling plant–pathogen interaction but also
to develop novel, integrated, and robust predictive systems and related applied technologies. We
conclude by identifying key challenges and perspectives for predictive modelling of phytopathogenic
disease in vineyards.

Keywords: disease modelling; infection forecast; powdery mildew; downy mildew; precision agri-
culture

1. Introduction

The ambitious need of rapid agro-ecological transition towards more sustainable and
resilient agriculture necessitates a strong increase in the use efficiency of plant protection
products (PPPs). Tools that can enhance our capacity to control plant infections are also
much needed because of the increasing cost of pesticides and the more stringent regulations
on use and registration of PPPs. There is a longstanding consensus that the ability to predict
the conditions that justify chemical intervention in agriculture is crucial to prevent, restrict,
and manage plant pathogens.

A predictive model is any formal representation able to forecast future events or
outcomes based on available information (e.g., input data and previous patterns). For plant–
pathogen interaction and many other fields, this broad definition embraces several systems,
which can be built exploiting an array of approaches and datasets. Nonetheless, while
it is generally accepted that predictive systems in agriculture can provide wide-ranging
economic, environmental, social, and health benefits, their adoption can be considered, with
few exceptions, unsatisfactory [1]. There are several factors that influence the percentage
and duration of adoption of predictive systems, but it is undeniable that their implemen-
tation in agriculture cannot be disjoined by an improved ability to deliver appropriate
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management decisions with minimum risk [1]. In the last few decades, development of
“omics” technologies has expanded our understanding of the fundamental biological and
environmental factors that govern the molecular interaction between plants and microbial
pathogens. Similarly, advancements in information technology, computational power,
and data science have increased the affordability and reliability of digital solutions. The
potential impact of these developments is multifold. They are valuable to study microbial
community dynamics, understand plant molecular and cellular responses, identify key risk
factors, discover patterns, and formalize algorithms, ultimately increasing the possibility
of predicting disease outbreaks timely, robustly, and with a high degree of accuracy and
sensitivity.

The aim of this review is to critically examine the trends in predictive models for
disease progression in agriculture. We also briefly describe their assumptions and main
properties. This paper focuses on grapevine and downy and powdery mildews because
this plant species is the most important fruit shrub crop globally [2] and, historically, one
of the most employed models to build predictive tools in plant pathology. Moreover, the
vineyard is a highly specialized plantation, with a crop protection cost in the EU probably
second only to commercial horticulture outdoors. We first introduce the grapevine and the
two pathogens to highlight the characteristics that influence their growth and are, therefore,
relevant for the model design. We then examine trends from a systematic literature review
and outline some of the main models used as predictors of phytopathogenic diseases in
vineyards. Finally, we discuss current limitations and highlight that integration of expertise
of plant molecular genetics and physiology, botany, physics, data science, and engineering
is today a well-timed step to develop novel and more robust predictive systems.

1.1. Grapevine and Its Main Phytopathogens

Grape production is an important business worldwide [3]. In the 1982–2022 period,
Europe has been the main grape producer (48.4%), followed by Asia (24.9%), America
(19%), Africa (5.3%), and Oceania (2.3%). It is notable that, in the last five years, Asia has
become the main vine producer, mainly because of the contribution of PR of mainland
China (36.8% of world’s total) [2]. Given the historical, economic, and cultural importance
of grapevine, it is understandable that, over the years, a plethora of studies have been
conducted to anticipate or mitigate crop damage caused by microbial phytopathogens.
Different characteristics of the grape farming system include presence of large areas of
monoculture, favor emergence of pathogens, and, even in the presence of chemical control
methods, they can cause catastrophic results in terms of productivity [4,5].

Downy mildew (DM) and powdery mildew (PM) are, along with gray mold (caused
by Botrytis cinerea), the most devastating microbial diseases of grapevine [6], reducing yield
by an estimated 12% [7]. Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni 1888, is
the causal agent of DM and arguably the main disease of grapevines [8,9]. This oomycete
is probably native to the northeastern USA. DM impacts production through reduction
in photosynthetic activity of the affected green tissues, also promoting premature leaf fall
and, consequently, reduction in grape quality [8–10]. DM control is currently based on
containment of oospore germination, the resistance structures of this pathogen between
vegetative seasons [11]. Uncinula necator (Schwein.) Burrill 1892 is the causal agent of PM,
and it also originated in North America. This ascomycete infects green tissues, including
berries, causing large yield loss and decreased wine quality. U. necator survives in the soil
or in the basal part of the bark as cleistothecium (chasmothecium), a completely closed,
globose fruit body [12]. The most important and widely cultivated Vitis vinifera (L.) varieties
are of Eurasian origin and are susceptible because they have only been recently exposed to
these pathogens [13–15].

From an evolutionary perspective, P. viticola and U. necator are highly successful
despite their relative ability to naturally spread. They have quicky adapted to different
host varieties, continents, micro-climates, and farming systems. These two pathogens are
typically controlled with recurrent use of fungicide, yet their occurrence has increased in
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the last decade [15,16]. Agronomic strategies, including use of host plant resistance, have
not proved to be effective also because of vegetative propagation of the grapevine varieties
and their strong link with specific territories and winemaking, which imposes a constraint
on genetic intervention. Regardless of the production system (e.g., conventional or organic),
many growers apply fungicides in advance starting from early spring (when the first shoots
have not yet appeared) at intervals of 7 to 14 days [9]. The economic problems caused by
these phytopathogens, the limitation of use of fungicides when the disease is already in
advanced stages of infection, and the environmental and economic costs of their heavy
use have prompted development of a series of disease warning systems (WS) or decision
support systems (DSS). Although they rely on different mathematical models, they have the
common goal to predict disease occurrence and manage application of fungicides [17,18].

1.2. Main Stages of the Life Cycle of the Phytopathogens and Their Relationship to Environmental
Conditions
1.2.1. Plasmopara viticola

P. viticola is nowadays a cosmopolitan plant pathogen. It thrives in humid conditions,
and it is an obligate biotrophic endoparasite of the green organs of the vine. During the
winter cold, P. viticola remains inactive as oospore in fallen infected leaves, using plant
debris as shelter (Figure 1). Oospore maturation starts with mild and rainy days in spring,
usually with prolonged rainfall (e.g., at least 6 mm), temperature between 6 and 26 ◦C,
and a relative humidity above 90% (Table 1). The germinated oospores form sporangia
that, with the help of rain splashes and wind, reach the potential host tissue, normally wet
young leaves near the soil. Sporangia releases motile biflagellate zoospores that encyst
when in contact with the host plant tissue. The germinated encysted zoospore infects young
green tissues through open stomata, and it will produce a mycelium that, by colonizing
the intercellular spaces, will cause the appearance of “oil spots”, typically visible on the
upper side of the leaves. P. viticola will draw nutrients from plant cells through globose
haustoria. Asexual reproduction occurs when the mycelium will produce sporangiophores
emerging through the stomata of leaves, shoots, or the lenticels of young fruits. Sporangia
are released from the tip of the sporangiophores’ branches, and the released zoospores will
start a secondary infection cycle. The initial oil spot lesions usually appear at this stage as
a brownish area spreading on the infected tissue. The whole cycle (up to production of
sporangiophores) typically lasts from less than one week to 18 days [14,17,19,20]. Under
favorable conditions (e.g., rain and wind speed stronger than 9 m s−1), the infection cycle
occurs repeatedly during the growing season [21]. With lowering temperatures, the fungal
sexual reproduction inside the infected tissues (mainly leaves) will produce numerous
oospores, the thick-walled resting structures that can last years in leaf litter on the vineyard
floor. In some instances, the pathogen overwinters as mycelium in infected thin branches
(twigs).

Table 1. A summary of the main factors that favor growth and dispersion of P. viticola and U. necator
diseases on grapevine and range of time to infection.

Disease Rainfall
(mm) Temperature (◦C) Relative

Humidity (%)
Windspeed

(m s−1)
Time to Infection

1 (Days)

Downy mildew 6–10 6–26 >90% >9.0 7–18
Powdery mildew 2–10 15–25 >40% >2.3 5–7

1 From opening of resistance structures to completion of primary infection.
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Figure 1. Schematic diagram of the disease cycle of downy mildew caused by Plasmopara viticola. Red
arrows refer to the sexual cycle. Blue arrows refer to the asexual cycle.

1.2.2. Uncinula necator

U. necator, an ectoparasitic ascomycete, is the causal agent of grapevine powdery
mildew. This obligate biotrophic fungus can attack all photosynthetically active organs
of the plant, such as buds, flowers, young berries, shoots, and stalks. This pathogen
is mostly feared because it causes grapes to rot by acquiring nutrients through globose
haustoria formed by the mycelium in epidermal cells. The disease associates to a white
to grayish ashy powdery spot of a mealy consistency, which can later extend to cover an
entire organ. The fungus overwinters as dark spherical cleistothecium (also defined as
chasmothecium), the survival fruiting body usually present at the base of the vine barks
or on fallen leaves [12]. The attack starts in spring on the young organs of the vine, when
cleistothecia absorb water and crack, releasing mature ascospores (Figure 2). The infecting
ascospores will produce a mycelium that, under suitable conditions, will grow on the
epidermis of leaves (from 15 to 25 ◦C, minimum 2 mm of rainfall, 40% relative humidity,
and 12 h of darkness) (Table 1). Basal leaves are infected first due to their proximity to the
overwintered cleistothecia. Following infection, the mycelium can rapidly spread on green
tissues, forming a pale white weft of hyphae.

When the mycelium reaches maturity (under favorable conditions, colonies begin
sporulating after five days), asexual reproduction begins with formation of chained egg-
shaped conidia on short erect conidiophores. Conidia are diffused by the wind (e.g., with a
speed of at least 2.3 m s−1) and do not require leaf wetness as long as the moisture conditions
of the atmosphere are relatively high [12,22,23]. With cooling weather, cleistothecia are
produced mainly on wood following combination of the antheridium and oogonium of
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different mating types. Cleistothecia are partially buried in the mycelium weft on plant
tissue and, when detached, retain myceloid appendages. Some cleistothecia may release
ascospores in autumn, and, in some cases, the fungus can overwinter as mycelium in
infected dormant buds, which will give rise in the next growing season to so-called flag-
shoots, a source of secondary infection.
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Figure 2. Schematic diagram of the disease cycle of powdery mildew caused by Uncinula necator. Red
arrows refer to the sexual cycle. Blue arrows refer to the asexual cycle.

2. Analysis of the Literature

The literature search was performed on the Science Citation Index Expanded/Core
Collection Database of Web of Science (WoS), and in Scopus. The SCIE is made available
online through various platforms, and we queried the Thomson Reuters Web of Science
(https://clarivate.com/products/web-of-science/, accessed on 24 November 2022). Sco-
pus was accessed at https://www.scopus.com (accessed on 24 November 2022). The
search statements (i.e., the queries that identify the information to be searched in the biblio-
graphic database) were obtained by combining different terms with the Boolean operator
“AND”. Specifically, we employed 19 terms divided into three item sets (G), G1 (Vitis
vinifera, grape), G2 (downy mildew, powdery mildew, Uncinula necator, Plasmopara viticola,
Erysiphe necator, Oidium tuckeri), and G3 (model, forecast, modelling, modeling, prediction,
simulation, fungicide scheduling, forecasting, DSS, disease support system) for a total of
240 combinations (one term for G1, G2, and G3).

3. Results and Discussion
3.1. Quantitatve Descriptors of the Selected Documents

The database search provided a total of 466 documents. After removing duplicated
entries and documents off topic (e.g., they did not focus on pathogen modelling, or referred
to other pathogens), we obtained 199 documents. We also excluded non-English material,
errata, and documents prior to 1981 or indexed as “conference paper”, for a final number
of 110 documents (Table 2).

https://clarivate.com/products/web-of-science/
https://www.scopus.com
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Table 2. Main descriptors of the retrieved documents employed for this review.

Descriptor

Documents 110
Sources 53

Year of the first document 1991
Annual Growth Rate (%) 7.35

Document Average Age (years) 9.44
Average citations per document 25.1

Authors 378
International co-authorships (%) 18.18

The number of documents, from 53 different journals and books, has an annual growth
rate above 7%. The literature showed a significant increase since 2000, with a second rise
evident in the last few years (Figure 3). The recent growth was also implied by the average
age of the documents (9.44 years). The normalized number of citations per document (i.e.,
the average number of citations divided by the number of citable years) also indicated an
increasing interest in the sector, and its trend mirrored the number of publications.
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Analysis of the most relevant sources well indicated the interdisciplinarity of the
scientific area, with journals dealing with fundamental and applied plant pathology as well
as development and application of electronics for solving problems in agriculture or plant
science (Figure 4A). The most relevant cited sources were predominantly related to the
field of plant pathology, underlying that the theoretical assumptions and the conceptual
framework for modelling development mainly derived from information related to the
study of plant diseases and pathogens (Figure 4B).
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documents are omitted.

The geographic distribution of the research, measured as the number of author appear-
ances by country affiliation, indicated strong overlap between the countries involved in
grapevine cultivation and vine production, with Italy and France being the most productive
nations for the scientific field (Figure 5).

Collaboration among countries was measured in terms of co-authorship of the authors
in the selected bibliographic documents and was graphically represented as a network
(Supplementary Figure S1). As expected, the countries with a long history and larger pro-
duction (i.e., Italy and France) were those with higher degrees of international collaboration.
Moreover, the network illustrated that cultural and geographical affinities have clearly
influenced collaborations.
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Screening of the literature indicated that there are different kinds of data used for
model development. For instance, among the climate data, the air temperature was widely
used, probably because it is easy to measure and interpret in a biological context, being
highly correlated with development of PM and DM in vineyards. Moreover, warning sys-
tem models have grown to use different meteorological features, such as precipitation [24],
humidity [25], leaf wetness with an hourly frequency [25–27], plant water stress [28], and
others [10,29]. Field data and on-site measurements have also been employed to describe
pathogen dynamics and modelling. They also explicitly consider the relationship between
consecutive growing seasons. For instance, Rumbolz and Gubler [30] developed a model
to determine primary infection of DM based on inoculation of shoots of grapevine in vitro
and in fields in California, indicating that the incidence of infection on the outer bud scales
strongly correlated to the flag shoot incidence in the subsequent season. The historical vine-
yard information for DM/PM disease modelling is also among the kind of data employed
for model development. They often require accurate data on occurrence, incidence, and
severity over long time series. However, this information is not frequently available while
being critical in the model validation process [31]. Because of these issues, models based
on historical information are more difficult to generalize and are expected to be useful
particularly for a specific area. Regrettably, data gaps, inconsistent estimation techniques,
and a lack of data quality assurance represent common limitations of databases and mod-
els [32]. Studies regarding disease recognition from visual data sources were limited. For
instance, two studies employed RGB imagery to identify the beginning of DM symptoms
and provide early warnings for their treatment [33,34]. Moreover, an approach based on
algorithms for pattern recognition of grape leaf diseases (including DM) was described [35].
While some models specifically refer to the biological properties of the pathogen, others
focus mainly on statistical assumptions. Among the latter, those based on generalized
linear (mixed) models (GLM and GLMMs) and hypothesis testing are prevalent [9,36].
Among the models specifically developed for a pathogen, the most frequently considered
were the mechanistic models described by Rossi, Caffi, and collaborators [10,37–39], as
indicated by the number of publications and citations. Specifically, among our literature
search, Rossi V. authored 22 documents, followed by Caffi T (15). Similarly, the most-cited
authors were Rossi V. (26 citing documents) and Caffi T. (23).

Without having the aim and ambition to present all the models developed so far, in
the following section, we describe the principles of selection of popular and/or representa-
tive models and some examples of their performance in terms of disease prediction and
detection.
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3.2. Main Models Present in the Scientific Literature

The Etat potentiel d’infection (EPI) is a widely employed, simple pathogen-specific
model developed in France in 1983 for DM [40]. EPI predicts the potential impact of
the pathogen and its ability to cause a primary infection, and it is based on two sets of
equations [40,41]. The first part of the model focuses on the conditions that determine
oospore maturation. It evaluates over a 10-day period the ‘potential energy’ (PE) of the
pathogen using climatic data from 1 November to 31 March. The calculation is based on
the difference between the air temperature and rainfall of the current growing seasons
and historical reference values over a 30-year period. The second equation evaluates
the infective capability of the pathogen (kinetic energy, KE). This parameter is calculated
every day between 1 April and 31 August considering the monthly nocturnal average
of relative humidity, the monthly temperature, the average diurnal relative humidity
(between 10 am and 6 pm), and the average daily temperature. The sum of PE and KE
provides the EPI value. Unlike other models, the EPI does not include precipitation as a
factor in the kinetic equation, being mostly used to estimate risk at the end of winter [42].
Moreover, the dates to separate the calculations are fixed based on the empirical assumption
that the overwintering stage of the pathogens ends each year very close to April. The
EPI model is based on study of the conditions required for development of the disease
over several years, assuming that, as more historical data are used, the averages will
become closer to the average conditions required for development of the disease, thus
allowing more accurate predictions [21]. Some authors use the stage of potential fungal
growth to delay fungicide spray programs [43], although it is also possible to use it for
this purpose when disease development predicted by the kinetic phase model is below
average [21]. In a retrospective study conducted with historical meteorological data from
1970 to 1999 for the Portuguese Bairrada region, it was demonstrated that the EPI could
halve the number of fungicide treatments [44]. Vercesi et al. [45] modified the model
to extend the oospore maturation phase from March to June using meteorological data
from Italy from 1989 to 1995. They observed that the model was effective for early stages
of infection, although it missed low-risk alerts that later, through several cohorts, led
to severe field infections. In other studies, application of phytosanitary products was
reduced by up to an average 57%, with some cases where phytosanitary products were not
applied [46]. A shared problem of mechanistic and empirical models is that they are difficult
to generalize to environmental conditions different from those where they were developed.
Specifically, the EPI model has reliably predicted epidemics of downy mildew in the
Bordeaux region (France); however, it requires specific calibrations and modifications when
used under different climatic conditions [42,47–50]. Egger et al. [51] proposed addition of
leaf wetness to the EPI model as it could improve prediction for disease establishment and
subsequent disease development [19]. Even though the EPI model has a good trade-off
between complexity and performance, it requires collection of large amounts of historical
meteorological data, and some authors have reported that it generates false negatives [6],
while others have pointed out that the EPI model has a tendency to overestimate risk,
especially of secondary infections [52,53]. Another model developed in the Bordeaux
area (France) for DM is the Prévision de l’Optímum de Maturation model (POM) [41].
This model, like EPI, aims at predicting the ripening date of most oospores. The POM
model is based on daily rainfall (from September to March), average monthly rainfall,
and a standard daily rainfall threshold based on historical data, under the assumption
that disease severity in spring is related to rainfall prior to oospore germination: the
earlier the spore maturation is reached, the more severe the disease is expected to be in
the growing season [11]. For development of this model, historical weather data were
retrieved for the same area for at least the last 20 years (1965–1985). The ultimate purpose
of the model is to calculate dynamic oospore maturation (DOM), which is the date when
most of the oospores are mature [54]. Rouzet et al. [55] reported similar results to those
obtained by Sung et al. [54], referring to temperatures in autumn and winter as key factors
in suppressing oospore dormancy and concluding that less than 5–10 mm of rain over 3
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weeks and low temperatures in early spring stopped their maturation. These authors also
underlined the need to add modifications for daily use, and that oospore maturation after
winter cannot fully account for disease epidemics. Studies in the Portuguese Douro wine
region showed good results in some years, although, in other years, DM development
in the field did not occur as expected by the model [44]. According to Caffi et al. [39],
although both the POM and EPI models have been tested in a range of environmental
conditions, in Italy, they have neither been sufficiently accurate nor robust to effectively
manage fungicide application against DM. Growers traditionally follow the so-called 3–10
rule developed by Baldacci in 1947 for the Lombardia region [56]. According to this model,
the first treatment to control primary infection starts upon simultaneous occurrence of
three conditions: (i) air temperature not less than 10 ◦C; (ii) shoots not shorter than 10 cm
long; and (iii) a minimum of 10 mm rainfall within 24–48 h [29]. Subsequent treatments are
calendar-based. The Goidanich model [57] can be considered an extension of the “3–10”
rule that also considers weather data to guide treatments. The model is triggered by the
3–10 rule [58]. Once the risk alert is activated, the temperature and relative humidity
are monitored daily for calculation of the daily percentage development of the infection
incubation according to Goidanich’s tables [57] or later proposed mathematical models,
such as the PLASMO [59]. When the accumulated value is equal to or greater than 100%, it
is assumed that the zoospores have reached maturity and the first evidence of infection
is expected to be visible on the leaves. After this event, the model is reset, and, when the
environmental conditions described above are met again, the process will restart. The
model is based on daily analysis of climatological features, but, recently, it has been revised
to consider hourly progress of incubation and its confidence interval [6,10,60]. It has been
shown that length of incubation period also depends on the host target organ and its age, as
well as on ontogenetic resistance [61,62]. For instance, the length of the incubation period
of the phytopathogen on berries is longer than on leaves [61]. Successive modifications
from the original model proposed by Goidanich et al. [57] have improved the quality of
the output data, but not much attention has been paid to input data, which are provided
through weather stations. Regrettably, they usually present gaps in data submission and
issues related to their calibration. This is a general concern for all models relying on
meteorological conditions as data sources [63]. Finally, based on progressive oospore
maturation data, Pedrazzini et al. [64] indicated that the first fungicide treatment should
be applied when a rate of 80% was reached to reduce oospore development. To maintain
a rate below 80% throughout the cycle, it is estimated that 8–11 fungicide applications
will be needed [65]. The demographic growth (DG) model was developed by Chellemi
and Marois [66] to study the evolution of cohorts of PM in Napa Valley, California. This
model showed good results in Egypt [67]. The model focuses on the secondary infection
cycle of U. necator, from germination until the end of sporulation. The DG is an algorithm
that includes different factors, namely determination of the fungal germination rate (GR),
penetration rate (PR), reduction in germination rate due to the presence of liquid water on
the leaf surface (GRM), and reduction in the number of conidia produced per day due to
the presence of liquid water on the host surface (SRM). All these features are functions of
the average daily temperature [66,68]. Given an initial inoculum (density of spores), the
model allows calculation of the daily germination, penetration, and colonization rates. As
an example, the number of conidia produced per colony at day five is obtained considering
the number of colonies present at that day and the temperature. The product of the
conidia at that day (in the example, five) and the GR provide the number of conidia on
the following day (day six). The simulation also includes estimation of the role of water
on the host surface (SRM), and it is designed to follow fungal growth up to 35 days. A
required element of the model is that it is necessary to establish an initial inoculum and
the probability of deposition to calculate the GR [66]. The results from the California
trial showed an optimum temperature of 22–26 ◦C for the growth rate of the pathogen
populations, as well as a 49% reduction in population size because of liquid water on
the leaf surface [66]. Although rain is necessary for ascospore release [69], other factors,
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such as temperature, would determine the number of ascospores released and successful
subsequent infection [22,70,71]. Taking all this into account, simulations showed that
causing an 80% reduction in ascospore concentration, and a 10-day delay in ascospore
emergence due to early fungicide application (also in combination with other management
methods), significantly contribute to reduction in future fungicide applications. This is
important for medium- or late-maturing varieties as a delay in germination of ascospores
could coincide with the veraison stage of the vine [67,72]. The DMCAST model was
developed in Geneva (New York, NY, USA) for DM, and it is based on climatic data [73]
using the same parameters as the POM model [10]. The probability of oospore maturation
at a given date of the calendar year is calculated using the probability density function,
where mean and standard deviation refer to the number of days required by oospores
to mature, estimated based on the cumulative effect of rainfall from 21 September to 31
March. The latter is conditionally calculated considering the daily amount of rainfall, the
monthly average of rainfall over a 30-year period, the minimum threshold for daily rainfall,
and the number of rainy days in the current month. The model is triggered when the
cumulative proportion of mature oospores reaches 3%, a threshold that was empirically
determined considering the 1985–1992 interval. Then, the occurrence of primary infections
is predicted using the daily temperature and rainfall, also considering the time to complete
germination and sporangia survival. For the secondary infection cycle, the incubation
period is determined according to hourly data of temperature, relative humidity, and leaf
wetness, along with the hours of darkness during the growing season. The DMCAST
model is considered more accurate in predicting infections from the sexual stage rather
than secondary infection periods. In this respect, the model always correctly predicted
primary infection for nine consecutive years in NY state [73] yet correctly predicted just
above a fifth of the downy mildew infections using data from Italy, with an average of
42 days delay [47]. In a study developed by Kennelly et al. [74], they reported average
success in accuracy of predictions made for DM during the years 2001, 2002, and 2003 using
this model of 25%. A later study [75] reported that the model tended to overpredict spore
viability by 25% throughout the day and concluded that this could be an explanation for
failure to detect the disease in the field in earlier studies, while Pérez-Expósito et al. [6]
reported that this model, as well as the EPI model, tended to underestimate the risk
of infection, estimating that at least 30 years of climatological data would be needed to
provide accurate predictions. As with previous models, this one also requires validation and
calibration before the model can be used in different environments [47], although the model
optimized by Rossi et al. [10] in Piacenza (Italy) with a fully mechanistic approach requires
no calibration or correction and provides an accurate, detailed, and dynamic simulation
of the sexual phase of P. viticola [38,47,76]. Finally, the mechanistic model developed by
Rossi and collaborators [77] at the Università Cattolica del Sacro Cuore (UCSC; Piacenza,
Italy) estimates the whole infection process (from oospore maturation until appearance
of symptoms) by breaking it down into component pieces. It is based on air temperature,
relative humidity, leaf wetness, and rainfall. Briefly, the model calculates the time when
the first break of the oospore’s dormancy occurs (in reference to the 1st of January); the
infection progress of the (primary or secondary) oospore cohort; and the time of symptoms
onset. If the “3–10” rule can be considered the simplest empirical static model, most likely
the UCSC is the most complex dynamic mechanistic approach. While it is expected to
be flexible toward different agro-ecological zones, it requires advanced meteorological
monitoring, which includes not only hourly updates on RH, air temperature, and rainfall
but also timely and reliable data transmission, as well as measurement of leaf wetness [10].
Caffi et al. [39] reported in their study in Quebec that this model provided predictions of
disease risk ranging from 6 days before to 3 days after infection. This model does not need
calibration for uses in different environments as it has been successfully tested in different
environments [42] and provides accurate, detailed, and dynamic simulation of the sexual
stage. However, it has a higher degree of complexity than empirical models [6]. Aside
from the mentioned DG and PLASMO, models have been developed also to specifically
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follow progression of the secondary infections of DM [78–81], with the common aim to
guide fungicide treatment following a primary infection prediction (e.g., 3–10 rule; OiDiag-
System, etc.) [82], the phenological state of the plants, or appearance of the first symptoms.

Overall, mechanistic pathogen-specific models divide the pathogen cycle as a series of
interconnected biological states, whose parameters are initially set according to studies in
controlled conditions. Especially for P. viticola, there is general agreement on identifying
similar key stages for infection, which often concentrate on the weather requirements setting
the time of the first seasonal development of oospores and spore survival during dispersal.
In particular, the earliest models concentrated on the conditions that trigger germination
of overwintering oospores, and then models also aimed to include environmental factors
determining plant colonization. The conditions defining spore survival and dispersal
(along with inoculation and incubation) are mainly seen as factors controlling secondary
epidemics. This probably derives from the traditional view of a polycystic infection cycle
starting from primary oospore and causing epidemics because of secondary infections
deriving from exponential clonal propagation [83]. More recent pathogen-specific models
refer to both the sexual and asexual phase of the pathogen under growing experimental
evidence that epidemics involves different genotypes and that long-range migration of
secondary sporangia is more limited than anticipated [84], although a case-by-case epidemic
assessment is probably necessary to provide conclusive evidence for each agricultural
setting and annual weather conditions [50].

Statistical models can be broadly defined as those that specify mathematical relations
among features without an explicit attempt to consider the features of pathosystems. They
are simple to apply and can predict systems without previous knowledge on biological
or epidemiological mechanisms [9]. Mechanistic models differ from traditional statistical
models because the structure of the mechanistic ones makes explicit assumptions about
the biological mechanisms driving infection dynamics [85]. Regarding the most commonly
used traditional statistic models, generalized linear models (GLM) or generalized linear
mixed models (GLMM) have been employed to make comparisons between measures of
PM severity and incidence over time in Israel [4], to monitor sporulation dispersal and
disease incidence in Germany [19], and to determine the incidence and severity of DM on
leaves and bunches in the Bordeaux region (France). They can achieve an accuracy higher
than 75% in early prediction of severe disease and can reduce fungicide use by 50% [9].
Good prediction accuracy of disease incidence in leaves and bunches was obtained with
regularized regression models (LASSO) [9]. Other authors have used correspondence analy-
sis (CA) and principal components analysis (PCA) to study the maturation of DM oospores
as a function of climatic features in the Bordeaux region, finding a correlation between
rainfall in October and November and severity of infections the following summer [55].
Partial least-squares discriminant analysis (PLS-DA) for prediction of DM infections near
Rome using climatic, agronomic, and phytopathological data showed an accuracy of 80% in
the first year of analysis [86]. Calonnec et al. [87] used a spatio-temporal logistic model in
Bordeaux to analyze variation in disease intensity with time and distance from the source
of the initial inoculum by exploiting the sigmoidal growth trend typical of pathogens due
to constraints such as space or resources, while Patil and Thorat [88] developed a hidden
Markov model (HMM) supported by an IoT system on farms in India to identify and
anticipate DM and PM infection, achieving a 91% accuracy. Thanks to the rise in computa-
tional power and development of specific libraries in different programming languages,
several authors have tried to tackle plant disease detection through artificial intelligence
(AI) models, a broad group of tools or algorithms that select an output among possible
alternative options through acquisition of knowledge and manipulation of information.
According to the comparison by Baker et al. [89], AI models differ in various aspects from
mechanistic models. The latter seek to establish a mechanical relationship between inputs
and outputs, do not allow for an agile way to accurately incorporate information from
multiple spatial and temporal scales, are able to handle small datasets, and, once validated,
can be used as a predictive tool where experiments are difficult or costly to perform. AI
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models seek to establish mathematical relationships and correlations between input and
output, can address problems with multiple spatial and temporal scales, but require large
datasets to be trained and can only make predictions related to patterns within the supplied
data (unless they are provided with new data entries). Among the most widely used AI
models for classification of different disease levels of DM and PM in the field, there are
supervised learning classification algorithms, such as random forest (RF), gradient boosting
(GB), support vector machines (SVM), convolutional neural networks (CNN), probabilistic
neural network (PNN), or deep learning algorithms. The main models found in the vine-
yard literature are based on diagnosis based on RGB images, multispectral images, or radio
frequency signals. In a study by Sandika et al. [90] in India, it was observed that the model
that best classified the disease indices of both downy and powdery mildew was RF, with
82.9% accuracy over PNN, backpropagation neural network (BPNN), and SVM models.
These results were supported by the study of Knauer et al. [91], in which they obtained 87%
accuracy in detecting powdery mildew in Chardonnay grapevines from South Australia.
Shruthi et al. [92] used a wide variety of plant species in their study and observed average
accuracies for grapevine diseases of 88.9% for SVM and 96.3% for CNNs. Wang et al. [93]
showed accuracies above 90% using SVM, PNN, and neural networks together with other
techniques in vine diseases. However, acquiring disease data through image analysis is not
the only way in which it is possible to predict diseases. In their work in Bordeaux, Chen
et al. [9] collected data visually, recording incidence and severity rates on a weekly basis
and relating these observations to the environmental data to which the vines were subjected.
They concluded that both RF and GB models showed different accuracy in classifying the
incidence of the disease depending on the features introduced into the model. For instance,
the GB model obtained area under the curve (or AUC, ranging from 0 to 1) values of 0.86
using both date and meteorological data. However, using only meteorological data, the
AUC value dropped to 0.70 in the case of the RF model. Finally, there is a model derived
from the PNN that combines Bayesian statistics and neural networks to generate event
probabilities given certain conditions (Bayesian neural network). Although initially this
model could be applied to any pathogen, the equations on which the work developed by
Lu et al. [94] aims to calculate primary and secondary infection rates focus on the dynamics
of growth and dispersal of the PM. The model proposed by these authors is mainly based
on calculation of the progression of the different biological stages of the fungus [36,78] as a
function of temperature and on the assumption that the probability of occurrence of some
of them depends on the values of the previous ones. Thus, a network of interdependence
of the features is created so that it is possible to train a model based on the detected trends
and finally obtain a conditional probability of the last feature present in the network, which
totally depends on all the previous ones (in this case, the disease incidence (DI) obtaining
relatively low mean absolute error (MAE) values). Other works have been published using
Bayesian networks, but they have not yet been applied in grapevine [95–97].

4. Conclusions and Perspectives

The first conclusions that can be drawn from the literature screening are that the
years from the 1980s until the early 2000s were characterized by mechanistic and statistical
models, and AI models started to be more represented after 2010. Moreover, while the
earliest models were pathogen-specific, the literature was later populated also by more
generalist and easier-to-apply generalist models, which do not involve initial empirical
development. Another implication is that many authors mention in their manuscripts the
need for model validation in other regions of the world as the models have often been
trained and tested in one locality. While it is widely acknowledged that model accuracy
may decrease in other agro-climatic environments, the increasing number of models and
related publications indicated that there is more interest in developing alternative solutions
rather than refining existing ones, although this conclusion may be biased by our focus
on academic literature. Considering the rising economic importance of grape mildews, it
may be possible that diffusion of non-empirical approaches derives from the possibility
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of translating knowledge from herbaceous plants (such as tomato, cucumber, or rice) and
other stresses (e.g., water stress, bacteria, viruses). These new studies further extend the
type of algorithms used to include models, such as K-nearest neighbors (KNN), naïve Bayes
(NB), or classification and regression trees (CART). Considering the good accuracy metrics
of the AI models studied for grapevine and other plant species, it seems that this trend will
play an important role in the short term. However, the available literature does not allow to
firmly conclude whether research should point more towards individual pathogen-centered
solutions or the “one-model-fits-all” approach because they are both popular in the recent
literature.

This systematic analysis also allowed us to justify major challenges and perspectives
for grapevine farming. There is room to improve access for scientists, developers, and
growers regarding consistent weather data with appropriate spatial and temporal scale.
Considering the biology of the pathogens and plant response, our literature study confirmed
that this information has been and will be at the core for development and validation of
local, regional, or national models. Temperature and rainfall are the most used features, and
it is, therefore, worthwhile to recall that two main effects of climate change are increased
temperatures and variability in rainfall seasonality and intensity [98]. A first concern is
that computational predictions related to northern Italy already indicated that the number
of fungicide treatments to control DM will increase, with a possible boost in primary
infections up to June, implying the necessity of increased precision and capability of
forecast models [99]. In addition, it has been considered in different contexts that disease
prediction will greatly benefit from a large increase in the scale resolution of the weather
data in space (e.g., from in-field monitors) and time (up to the minute) [100].

Although significant progress has been achieved, the need for integrated multi-model
ensembles for disease predictions has not been fully met, especially to provide robust
decision-making and to be easily accessible and hopefully transferable to various agricul-
tural settings. Integrated pathogen prediction systems should also be aligned to climate
modelling and observational studies, but, so far, they have almost inexplicably insuffi-
ciently considered plant status and response to pathogens despite the archetypal knowledge
that disease development is ruled by the so-called triangular interaction between host,
pathogen, and environment. Under this perspective, an integrated predictive solution
should refer also to field studies spanning from molecular diagnostic screening to ‘multi-
omic’ approaches to disease [101], from quantification of the initial hallmarks of disease
to identification of a risk profile for grapevine genotypes [102,103]. Possible additional
factors for model development should also be able to identify elements that induce crop
damage (and not only pathogen epidemics) and ascertain the directionality of relevant
changes in pathogen population dynamics, also following treatments. Recent develop-
ments in computer science and hardware engineering provide solid hope of being able to
completely understand grapevine risk during the whole growing season. This could be
achieved exploiting analysis of data and information collected and transmitted through
advanced digital tools [104,105]. Additionally, it would be beneficial to integrate data
from portable molecular diagnostic tools to independently validate prediction models
and, therefore, reveal insights necessary to fine-tune timely intervention in vineyards (i.e.,
spore monitoring, pathogen detection, effects of treatments) [106]. Finally, it is also worthy
of consideration that international cooperation in the sector should be improved. While
collaboration between nations that have a long history of developing predictive systems
(Italy, France, and USA) is noteworthy, studies with emerging wine-countries wishing to
develop capacities are more limited.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11010073/s1, Figure S1: Collaboration network
among countries. The network was generated using the Fruchterman–Reingold layout algorithm
based on the co-authorship in the selected bibliography. The size of each vertex is proportional to its
degree of connection. The network was obtained with the igraph package in R 4.2.
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