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Abstract: Irritable bowel syndrome (IBS) is a common gastroenterological disorder with triggers
such as fructose. We showed that our IBS patients suffering from socioeconomic challenges have
a significantly high consumption of high-fructose corn syrup (HFCS). Here, we characterize gut
microbial dysbiosis and fatty acid changes, with respect to IBS, HFCS consumption, and socioeco-
nomic factors. Fecal samples from IBS patients and healthy controls were subjected to microbiome
and lipidome analyses. We assessed phylogenetic diversity and community composition of the
microbiomes, and used linear discriminant analysis effect size (LEfSe), analysis of compositions of
microbiomes (ANCOM) on highly co-occurring subcommunities (modules), least absolute shrink-
age and selection operator (LASSO) on phylogenetic isometric log-ratio transformed (PhILR) taxon
abundances to identify differentially abundant taxa. Based on a Procrustes randomization test, the
microbiome and lipidome datasets correlated significantly (p = 0.002). Alpha diversity correlated with
economic factors (p < 0.001). Multiple subsets of the phylogenetic tree were associated with HFCS
consumption (p < 0.001). In IBS patients, relative abundances of potentially beneficial bacteria such as
Monoglobaceae, Lachnospiraceae, and Ruminococcaceae were lower (p = 0.007), and Eisenbergiella,
associated with inflammatory disorders, was higher. In IBS patients, certain saturated fatty acids
were higher and unsaturated fatty acids were lower (p < 0.05). Our study aims first to underscore the
influence of HFCS consumption and socioeconomic factors on IBS pathophysiology, and provides
new insights that inform patient care.

Keywords: gut microbiome; lipidome; irritable bowel syndrome; dysbiosis; high-fructose corn syrup

1. Introduction

The gastrointestinal tract along with the microbiome that inhabits it is a complex organ
system that has functions beyond digestion and absorption such as immunological and
neurological functions [1]. The dysregulation of these functions leads to the development
of several digestive disorders [2]. One of the most common of these disorders is irritable
bowel syndrome (IBS) [3]. Common symptoms of IBS include abdominal pain, bloating,
and altered bowel habits. It is one of the most common gastroenterological disorders,
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affecting 10–15% of the global population with varied regional prevalence. Direct and
indirect costs of IBS in the United States result in healthcare costs of more than USD
30 billion/year [4,5]. IBS is considered a debilitating disorder as it significantly affects
the quality of life of patients. The precise etiology and pathophysiology of IBS are yet
to be resolved; however, altered gut motility, visceral hypersensitivity, inflammation,
altered gut microbiome, psychiatric disorders, and neurological disturbances are frequently
associated with IBS [6]. The complex etiology, multifactorial pathophysiology, involvement
of psychological comorbidities, heterogeneity of clinical manifestations, and lack of effective
diagnostic methods for IBS pose difficulty in the development of more efficacious treatment
strategies [7]. There are now increasing numbers of reports that the COVID-19 pandemic
has further worsened the gastrointestinal and psychological symptoms of IBS patients [8,9].

Food triggers have been reported for IBS. Among the possible associated causes of IBS
are fructose intolerance and an elevated consumption of fructose products. Up to one third
of patients with IBS may have dietary fructose intolerance or fructose malabsorption [10–12].
High-fructose corn syrup (HFCS) is a major source of fructose in American diets, repre-
senting up to 40% of caloric sweeteners added to foods and beverages [13]. Recently, we
reported a significantly high consumption of HFCS in our IBS patients. These patients
suffer from socioeconomic challenges [14]. Our hospital is located in Camden, New Jersey.
It is estimated that 37.4% of Camden residents live below the poverty line, with a median
household income of USD 26,105. This is less than half of the median household income in
the United States [15]. Other highlights of this community include high unemployment
rate, low education levels, and “food desert” status [16]. The lack of access to nutritious and
affordable food items leads to limited dietary choices for the residents. Readily available
HFCS-containing inexpensive food products thus become staple foods.

Studies have been carried out to elucidate the gut microbiome profile of IBS compared
to that of healthy control participants [17–19]. Kim et al. carried out a case-control study
and a cross-cohort analysis of gut dysbiosis in IBS [20]. A meta-analysis by Pittayanon
et al. reported a higher prevalence of Firmicutes and a lower prevalence of Bacteroidetes
in IBS patients [21]. Wang et al. carried out a systematic review and meta-analysis of
6333 case-control studies of gut microbiome dysbiosis in IBS [22]. Some studies have
focused on the brain–gut axis aspect of the disease (i.e., signaling from the brain to the
gut) [23–25]. As dietary modification is one of the major methods of management for IBS
patients, a few groups have also studied the effect of certain diets on IBS. A study showed
that interventions such as a low-FODMAP (fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols) diet for IBS patients altered their gut microbiome’s tax-
onomy and functional potential to more closely resemble healthy controls, and that IBS
patients with “pathogenic” baseline microbiomes had a greater reduction in symptoms
from the low-FODMAP diet than IBS patients with healthy-like microbiomes [26]. Another
study analyzed the gut microbiomes of IBS patients on exclusion (including gluten-free,
dairy-free, or low-FODMAP) diets. Vandeputte and Joossens discussed the effects of low-
and high-FODMAP diets on gut microbiome composition with respect to GI diseases [27].
Van Lanen et al. carried out a systematic review and meta-analysis of the efficacy of a
low-FODMAP diet in adult IBS [28].

This study was undertaken to characterize the gut microbiome and changes in fatty
acid concentrations with respect to IBS phenotypes. These changes were then evaluated
with respect to a high consumption of HFCS-containing foods in our IBS patient population
as well as other dietary, lifestyle, and socioeconomic factors such as alcohol consumption,
household income, persons per household, etc., that may influence the manifestation and
progression of IBS. To the best of our knowledge, this is the first study to underscore the
influence of HFCS consumption and socioeconomic factors in IBS pathophysiology based
on distinct microbiome and lipidome differences. These correlations are relevant from a
clinical standpoint, especially when helping underserved communities. This study aims to
help guide further research and improve IBS patient care regarding dietary interventions
to avoid the exacerbation of gastrointestinal and coexisting psychological comorbidities.
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2. Materials and Methods
2.1. Patients and Sample Collection

Our study included patients that presented to the Cooper University Hospital (CUH)
in Camden, New Jersey. IBS patients at least 18 years of age with ongoing care at CUH were
eligible for this study. Exclusion criteria included age <18 years, non-English-speaking
patients, pregnancy, and antibiotics in last three months. IBS patients are identified in our
electronic medical record system (EPIC) with ICD-10 codes of K58.0, K58.1, K58.2, K58.8,
and K58.9. ROME IV criteria were used to determine IBS subtypes as: (i) IBS with consti-
pation (IBS-C); (ii) IBS with diarrhea (IBS-D); (iii) mixed IBS (IBS-M), or (iv) unclassified
IBS [29,30]. Control participants were recruited from a healthy population from the same
area, who reported to CUH for wellness visits. Screening was carried out to confirm that
the control subjects did not have a previous history or current documentation of IBS. They
also did not have any GI-related symptoms before recruitment. Informed consent was
obtained as per the IRB guidelines. We reviewed the medical records of the participants
to confirm demographic and clinical details. Surveys were also collected from the partici-
pants regarding their demographic information and dietary history. We have described
these surveys previously [14]. In brief, the survey included questions about demographic
variables (sex, gender, ethnicity/race), lifestyle factors (residence, education level, mari-
tal status, household income, persons per household, alcohol, and tobacco use), dietary
factors (consumption of HFCS-rich foods), and clinical data (height, weight, type of IBS,
colonoscopy/endoscopy, medications, hypertension, diabetes, cholesterol, and psychologi-
cal comorbidities). A total of 398 food items listed as high in HFCS were included in the
surveys; these were identified using the United States Department of Agriculture (USDA)
database. Patients were asked to provide a stool sample. Samples were collected in Norgen
Stool Nucleic Acid Collection and Preservation Tubes (Norgen Biotek Corp., Thorold, ON,
Canada) and were frozen at −80 ◦C as described previously [31–33].

2.2. 16S rRNA Gene Sequencing

Genomic bacterial DNA collected from fecal samples was extracted using a Qia-
gen DNeasy PowerSoil HTP extraction kit (Qiagen, Redwood City, CA, USA). Manufac-
turer’s instructions were followed for the procedure. The marker genes in the extracted
DNA were amplified via PCR using GoTaq Master Mix (Promega, Fitchburg, WI, USA).
High-throughput sequencing was conducted using the Golay barcode primers 515 F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806 R (5′-GGACTACHVGGGTWTCTAAT-3′), re-
spectively. The Golay barcode primers target the V4 hypervariable region of the 16S rRNA
gene, which has been found to be highly conserved and useful for the taxonomic profiling
of the gut microbiome [34]. PCR amplification methods include heating at 94 ◦C for 3 min
followed by 35 × 94 ◦C for 45 s, 55 ◦C for 1 min, and 72 ◦C for 1.5 min, with the final
extension being carried out at 72 ◦C for 10 min. To purify and normalize the PCR products,
the SequelPrep Normalization Kit (Cat. No. A1051001, ThermoFisher, Waltham, MA, USA)
was used. Library preparation and gene sequencing for the 16S rRNA gene were carried
out using the V2 300-cycle Illumina MiSeq System.

2.3. Analysis of Lipids

Stool samples were homogenized, and aliquots (100 mg) were analyzed via gas
chromatography–mass spectrometry (GC-MS). Fatty acids were extracted through liq-
uid/liquid extraction, which also removes the nucleic acid preservative. An aliquot (250 µL)
of each extract was transferred to a fresh analysis tube. Removal of the solvent was carried
out through evaporation under a stream of nitrogen. Internal standard solution was added
to the tubes that contained dried sample extracts, quality controls (QCs), and calibration
standards. Evaporation under nitrogen was used to remove the solvent. Processing of the
dried samples and QCs by methylation/transmethylation with methanol/sulfuric acid
resulted in the formation of the corresponding fatty acid methyl esters (FAME) of free fatty
acids and conjugated fatty acids. The reaction mixture was neutralized and extracted with
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hexane, which was then analyzed using 7890A/5975C GC/MS in the single-ion monitoring
(SIM) positive mode with electron ionization. Linear and quadratic regression analyses
were generated from fortified calibration standards prepared immediately prior to each
run. Quantitation was performed using both these analyses. Agilent MassHunter GC/MS
Acquisition B.07.04.2260 and Agilent MassHunter Workstation Software Quantitative Anal-
ysis for GC/MS B.09.00/Build 9.0.647.0 were used for collection and processing of raw
data. The total fecal content of 30 fatty acids was measured after conversion into their
corresponding FAMEs. Concentrations are provided in weight-corrected µg/g of fecal dry
mass. Values below the lower limit of quantification were treated as a concentration of
0.001 µg/mL.

2.4. Microbiome Data Processing and Statistical Analysis

Data generated through 16S rRNA gene sequencing were analyzed using Quantita-
tive Insights Into Microbial Ecology (QIIME) 2 2020.11 as well as Python-based packages
(Python 3.6.12) with packages in accordance with the QIIME 2 2020.11 environment. Se-
quences were de-multiplexed, filtered, and clustered into amplicon sequence variants
(ASVs) using QIIME 2 DADA2 [35]. The phylogenetic tree was created using SATé-enabled
phylogenetic placement (SEPP) via QIIME 2 [36]. A naïve Bayes classifier trained on the
latest SILVA version 138 16S rRNA gene database (March 2021) was used to assign the
taxonomy via the QIIME 2 interface. Additional Python packages (SciPy, Statsmodels,
Scikit-bio) were used for statistical tests on QIIME 2-generated data. Diversity analyses
were performed in QIIME 2, rarefied to an even sampling depth of 54,000 reads per sam-
ple [37]. Faith’s phylogenetic diversity (Faith’s PD) was considered the primary metric for
microbiome richness, and unweighted UniFrac was considered the primary metric for beta
diversity. PERMANOVA was used to assess group-based differences in microbiome com-
munity composition (beta diversity). Stacked bar plots were created using the R package
microshades v1.10 [38].

2.5. Procrustes Randomization Test

Principal coordinate analysis (PCoA, using the Python package Scikit-learn) was per-
formed on Bray–Curtis distance matrices from both the fecal lipidome and fecal microbiome
datasets (using the Python package SciPy.distance), and a Procrustes test was performed on
the lipidome and microbiome PCoA coordinates. Following the protocol from Peres-Neto
and Jackson, a Procrustes randomization test (PROTEST) was performed by randomly per-
muting the PCoA coordinates and performing a Procrustes test on the permuted samples
10,000 times. The p value was calculated based on the portion of randomized Procrustes
tests with resulting m2 (Gower’s statistic) scores lower than the Procrustes m2 score for the
observed datasets [39].

2.6. Differential Abundance Testing

To identify differentially abundant taxa based on IBS status and subtype, we used
Analysis of Compositions of Microbiomes (ANCOM, via Scikit-bio) [40]. Further, we also
created a co-occurrence network of taxa and lipids, from which we grouped features into
highly correlated modules, which were summed for analysis to identify differential groups
of features. Specifically, we filtered rare taxa with total read counts <500 and average read
counts <3 [41]. Taxa were center log-ratio transformed to account for compositionality, while
lipids were untransformed. Pearson’s correlation coefficients were calculated pairwise
between all features. Edges were drawn only between features with a Pearson’s rho > 0.5
and p < 0.05. The Louvain modularity maximization algorithm was applied to identify
modules with many strong connections within modules and few connections between
modules [42]. Relative abundances of all features in each module were summed, and
IBS-based differences in module abundances were assessed via a Kruskal–Wallis test.

Next, we utilized a phylogenetic isometric log-ratio transformation (PhILR) to identify
taxa associated with HFCS consumption to test our assumption that HFCS consumption
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causes a phylogenetic shift in the gut microbiome. The PhILR transformation considers ra-
tios between subtrees of the phylogenetic tree to use phylogeny to transform compositional
microbiome data outside the simplex, such that each feature can change independently of
the others [43]. At each branching point in the tree, the isometric log-ratio of the summed
read counts in one subtree of the branch to the other subtree was calculated to create our
“balances”. Least absolute shrinkage and selection operator (LASSO) regression, with
lambda (penalty parameter) = 3000, was used to identify the top 5 balances associated with
HFCS consumption. In R, PhILR was performed using the philr package v1.24.0, LASSO
was performed using the glmnet package v4.7, and balances were visualized using ggtree
v3.6.2 [44,45].

2.7. Ethics Approval

This study received approval from the Cooper Health System Institutional Review
Board (IRB) (17-079EX), and all the steps were carried out as per the standards set by the
IRB. All procedures performed in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national research committee and with
the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

3. Results
3.1. Patient Demographics

The demographic data for the study participants, collected via surveys and confirmed
by chart review, are presented in Table 1. Consistent with the literature, refs. [10,46–48], a
majority of the IBS patients that participated in this study were females (78.8%), >40 years
of age (63.6%), and Caucasian (84.8%). Most IBS patients (96.7%) did not smoke. A majority
of the IBS patients did not have diabetes, high cholesterol, or hypertension. Psychological
comorbidities such as depression (12 patients; 36%) and anxiety (13 patients; 39%) were
noted in IBS patients. Control subjects did not have depression or anxiety. All participants
in this study were included for all analyses; no outliers were removed from any statistical
testing or figures.

Table 1. Patient demographics and clinical characteristics.

Characteristics Number of IBS Patients Number of Healthy Control Participants

n = 33(%) n = 12(%)

Gender

F 26(78.8) 6(50.0)

M 7(21.2) 6(50.0)

Age

18–39 12(36.4) 6(50.0)

40–80 21(63.6) 6(50.0)

Race

African American 2(6.1) 1(8.3)

Hispanic 1(3) 0(0)

Caucasian 28(84.8) 9(75%)

Asian 2(6.1) 2(16.7)

Marital Status

Widowed 2(6.1) 0(0)

Single 15(45.5) 10(83.3)

Separated/Divorced 2(6.1) 0(0)
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Table 1. Cont.

Characteristics Number of IBS Patients Number of Healthy Control Participants

n = 33(%) n = 12(%)

Married 14(42.4) 2(16.7)

IBS Subtype

IBS-Diarrhea 10(30.3) None

IBS-Constipation 10(30.3) None

IBS-Mixed 13(39.4) None

Hypertension

Yes 10(30.3) 1(8.33)

No 23(69.7) 11(91.7)

Diabetes

Yes 3(9.1) 0(0)

No 30(90.1) 12(100)

High cholesterol

Yes 6(18.2) 0(0)

No 27(81.8) 12(100)

Average BMI 27.5 23.14

Depression

Yes 12(36.4) 0(0)

No 21(63.6) 12(100)

Anxiety

Yes 13(39.4) 0(0)

No 20(60.6) 12(100)

PTSD

Yes 2(6.1) 0(0)

No 31(93.9) 12(100)

Bipolar

Yes 2(6.1) 0(0)

No 31(93.9) 12(100)

Psychosis

Yes 0(0) 0(0)

No 31(93.9) 12(100)

Smoking

Yes 1(3) 0(0)

No 32(97) 12(100)

Alcohol

Yes 18(54.5) 12(100)

No 15(45.5) 0(0)

3.2. Gut Microbiome Analysis

There were no differences in the richness of the gut microbiome between IBS patients
and controls or across IBS subtypes, as assessed via a Kruskal–Wallis test on the Faith’s
phylogenetic diversity of each sample (H(3) = 4.1, p = 0.25). IBS patients had a mean Faith’s
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phylogenetic diversity of 48.7 (95% confidence interval 44.9–52.5), whereas healthy control
participants had a mean of 47.8 (95% confidence interval 42.8–52.8).

3.2.1. Association of the Community Composition of the Gut Microbiome with IBS Group

Unweighted UniFrac principal coordinate analysis (PCoA) (Figure 1) shows the ordina-
tion of the healthy control participants and IBS patients. PCoA plots are shown comparing
healthy control participants and IBS patient samples (Figure 1A) and healthy control sub-
jects and IBS subtypes (Figure 1B). Each point represents the phylogenetic composition of
one sample, and shaded regions represent 95% confidence intervals of the first two PCoA
axes for each group. Points that are close together have similar phylogenetic composition,
and points that are far apart have dissimilar phylogenetic composition. The proportion of
variance explained by each principal coordinate axis is denoted in the corresponding axis
label; PC1 explains 14.8% of the variation and PC2 explains 7.6% of the variation across sam-
ples. IBS patients had significantly different overall community composition, compared
to control participants, based on unweighted UniFrac PERMANOVA (pseudo-F = 1.63,
p = 0.021; Figure 1A). Additionally, there were significant differences in microbiome com-
munity composition across healthy controls and IBS subtype (pseudo-F = 1.21, p = 0.020;
Figure 1B). A stacked bar plot in Figure 2 shows the taxonomic composition of the healthy
control and IBS subtype samples. Bacteroidota and Firmicutes were predominant in all
groups of samples.
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Figure 1. Microbiome beta diversity of healthy controls versus IBS and IBS subtypes. (A) Unweighted
UniFrac PCoA plots are shown comparing healthy control participants (green, n = 12) and IBS patient
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samples (purple, n = 33) and between (B) healthy control participants (green, n = 12) and IBS subtypes:
IBS-D (red, n = 10), IBS-M (purple, n = 13), and IBS-C (blue, n = 10). Percentages along each axis show
the portion of phylogenetic variance across samples captured by that axis. Each point represents the
phylogenetic composition of one sample. Ellipses represent 95% confidence intervals of the group’s
PCoA coordinates. Abbreviations: IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome–
diarrhea; IBS-M, irritable bowel syndrome-mixed; IBS-C, irritable bowel syndrome–constipation,
principal coordinates analysis axis (PC), principal coordinates analysis (PCoA).
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Figure 2. Taxa bar plot of healthy controls versus IBS and IBS subtypes. Taxa bar plot shows relative
abundances of phyla in each sample. Each vertical bar represents one sample, and the value on the
y-axis represents the relative abundance of each taxon (separated by color) in that sample. Names
of taxa corresponding to taxa are shown to the right of the plot, with bold headers indicating the
phylum-level and non-bold text indicating the genus-level taxonomic assignment. Abbreviations:
IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome–diarrhea; IBS-M, irritable bowel
syndrome–mixed; IBS-C, irritable bowel syndrome–constipation.

3.2.2. Association of Differentially Abundant Gut Microbiome Taxa with IBS Groups

Next, we assessed the differences in the specific taxa (ANCOM) and groups of taxa
(Kruskal–Wallis on summed network modules) in the microbiomes of the healthy control
participants versus the IBS patients. The relative abundance of Lachnospiraceae group
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ND3007, which ANCOM identified as differentially abundant (W = 42/254), was lower in
participants with IBS than healthy controls (Figure 3A). Additionally, the relative abundance
of Eisenbergiella, which ANCOM identified as differentially abundant (W = 150/254), was
higher in participants with IBS-C and IBS-M, relative to healthy controls and participants
with IBS-D (Figure 3B). ANCOM is a conservative but robust method using pairwise log-
ratios to account for the compositionality of the data; thus, the outcomes usually include
only few differentially abundant taxa.

Figure 3. Differentially abundant taxa in IBS and IBS subtypes versus healthy controls. Taxonomic
differences in the microbiomes of healthy control participants and IBS patients were analyzed via
ANCOM analysis (A,B) and module network analysis (C,D). ANCOM analyses of healthy control
participants versus IBS patients (A) and of healthy control participants versus IBS subtypes (IBS-
D, IBS-M, and IBS-C) (B) are shown. The summed relative abundances of modules (module 9;
(C) and module 11; (D) identified from co-occurrence networks within our dataset are shown in the
lower panel. Abbreviations: ANCOM, analysis of compositions of microbiomes; IBS, irritable bowel
syndrome; IBS-D, irritable bowel syndrome–diarrhea; IBS-M, irritable bowel syndrome–mixed; IBS-C,
irritable bowel syndrome–constipation.

The network module analysis (Louvain modularity maximization) identified eleven
modules, or highly co-occurring subcommunities, of bacteria; the detailed composition
of modules is presented in Supplementary Table S1. The summed relative abundances
of two modules within our dataset were different based on IBS status (Figure 3C,D).
The relative abundance of module 9, which contained members of the class Clostridia
(including the families Monoglobacea, Lachnospiraceae, and Ruminococcaceae), was lower
in participants with IBS, relative to healthy controls (H(1) = 7.1, p = 0.007) (Figure 3C). The
relative abundance of module 11, which contained different members of the class Clostridia,
was highest in participants with IBS-C (H(3) = 13.7, p = 0.003) (Figure 3D).



Microorganisms 2023, 11, 2503 10 of 23

Next, we carried out linear discriminant analysis effect size (LEfSe) analysis. LEfSe
scores for taxa enriched in healthy control participants or IBS patients are shown in
Figure 4A, whereas LEfSe scores for taxa enriched in IBS-C versus IBS-D subtypes are
shown in Figure 4B. As seen from Figure 4A, purportedly beneficial bacteria belonging to
Ruminococcaceae were highest in the healthy control participants, while the genera Butyrici-
monas and Parabacteroides and the family Tannerellaceae within the Bacteroidota phylum
were enriched in IBS patients as compared to healthy control participants (Figure 4A). The
relative abundances of the genus Alistipes and family Rikenellaceae within the Bacteroidota
phylum were higher in IBS-C patients than in IBS-D patients (Figure 4B).
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Figure 4. Linear discriminant analysis effect size (LEfSe) scores for taxa enriched in healthy control
participants or IBS patients (A) and IBS-C or IBS-D subtypes (B). Negative values in (A) represent taxa
that were enriched in healthy control participants, whereas positive values represent taxa that were
enriched in IBS patients. Negative values in (B) represent taxa that were enriched in IBS-D patients,
whereas positive values represent taxa that were enriched in IBS-C patients. Color represents the
phylum. Abbreviations: IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome–diarrhea;
IBS-M, irritable bowel syndrome–mixed; IBS-C, irritable bowel syndrome–constipation;LEfSe, linear
discriminant analysis effect size.

3.3. Monthly HFCS Consumption with Respect to IBS Groups

Previously, we observed a higher consumption of HFCS-containing food items in our
IBS patient population [14]. Consistent with that observation, a higher estimated consump-
tion of HFCS in all IBS subtypes relative to control participants was also observed in the
present study using ANOVA followed by Dunn’s post hoc tests (F(3,41) = 3.4, p = 0.026,
Figure 5A). The participants in the current study are different to those mentioned in the
previous study. All IBS subtypes had significantly higher estimated HFCS consumption
than the controls. No significant difference was observed among the IBS subtypes.
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Figure 5. HFCS consumption (g/per month) of healthy control participants and IBS subtypes
(A) and phylogenetic isometric log-ratio transformation (PhILR) analysis of taxa associated with
HFCS consumption (B,C). (A) Boxplots show estimated HFCS consumption, separated into IBS
subtypes. Horizontal lines represent the median. Boxes indicate the 1st through 3rd quartiles of
monthly HFCS consumption in each IBS subtype, and whiskers represent the range up to 1.5× the
interquartile range. Diamonds represent monthly consumption for an individual outside of 1.5×
the interquartile range. (B) A phylogenetic tree constructed using 16S amplicon sequence variants is
highlighted to show PhILR balances associated with HFCS consumption. Balances were constructed
at each branching point in the phylogenetic tree, using the isometric log-ratio of one subtree to
the other. As such, the numerator and denominator of each balance are signified using “num”
and “denom”. Balances shown were associated with HFCS consumption, per LASSO regression.
(C) The relationship between phylogenetic balances associated with HFCS consumption are shown
using a scatter plot, where each point depicts that balance’s value on the y-axis as a function of
HFCS consumption on the x-axis, and each point represents one participant’s sample, and samples
from all participants were included. Abbreviations: IBS, irritable bowel syndrome; IBS-D, irritable
bowel syndrome–diarrhea; IBS-M, irritable bowel syndrome–mixed; IBS-C, irritable bowel syndrome–
constipation; LASSO, least absolute squares shrinkage and selection operator; PhILR, phylogenetic
isometric log-ratio transformation.
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3.4. Phylogenetic Groups of Taxa in the Gut Microbiome with Respect to Monthly
HFCS Consumption

As diet can influence the growth of microorganisms, it can be hypothesized that
a higher consumption of HFCS will cause a phylogenetic shift in the gut microbiome.
Thus, we analyzed phylogenetic isometric log-ratio transformed (PhILR) abundances to
identify taxa associated with HFCS consumption (Figure 5B,C). LASSO regression on
PhILR-transformed microbiome data identified five phylogenetic balances of taxa that were
associated with estimated HFCS consumption (adjusted R2 = 0.388, F(5,39) = 6.6, p < 0.001).
One of the most strongly positively associated phylogenetic balances was the ratio of the
family Erysipelatoclostridiaceae to a broad section of the phylogenetic tree predominantly
including the classes Clostridia and Bacteroidia (balance n14). Additionally, HFCS was
negatively associated with a ratio between members of the family Lachnospiraceae (Eu-
bacterium ventriosum and an ASV within the genus Anaerosporobacter) and a broad section
of the phylogenetic tree predominantly including the classes Clostridia and Bacteroidia
(n55). Within the Erysipelatoclostridiaceae family, we identified a negative association
between estimated HFCS consumption and the ratio of the genera Coprobacillus to Cateni-
bacterium (balance n15). The ratio of taxa in the phylum Firmicutes and class Clostridia
was positively associated with estimated HFCS consumption (n119). Finally, we identified
a negative association between estimated HFCS consumption and a balance within the
order Burkholderiales, which was the ratio of two taxa (one Sutterella ASV and one within
the family Oxalobacteraceae) to another Sutterella ASV, supporting that within-genus (and
potentially strain-level) differences are associated with dietary patterns.

3.5. Association of Fecal Lipids with IBS Groups

To evaluate the impact of IBS on fatty acid composition, we performed a targeted
lipidomics analysis of a panel of 30 fatty acids. These fatty acids included long-chain fatty
acids (LCFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids
(PUFAs). The stacked bar plot in Figure 6 shows the concentrations of detected lipids in
fecal samples. Saturated fatty acids were predominant in all groups of samples. Please
note that saturated fatty acids typically exist in higher concentrations, but unsaturated
fatty acids can be highly bioactive in low concentrations. Concentrations of multiple lipids
were significantly different (per Kruskal–Wallis test) across healthy control participants
and various IBS subtypes (Figure 7A). A spider chart (also known as a radar plot) shows
these lipids in Figure 7A, where each lipid has its own axis; all axes are joined in the center
of the figure. Each lipid’s concentrations were Z-score transformed, and the mean Z-score
for each IBS subtype is plotted on each axis. Mean Z-scores of significantly different lipids
are shown for each group. Gamma linolenic acid (18:3n6) was significantly higher in the
control participants than in IBS patients. Palmitic acid (16:0) was highest in the IBS-C
patients, while margaric acid (17:0) was higher in the participants with IBS-M and IBS-C.
Lipids that were significantly different (per Mann–Whitney U test) between healthy control
participants and all IBS patients are presented in a volcano plot in Figure 7B. A positive
log-fold change indicates higher concentration in the IBS patient group. Gamma linolenic
acid (18:3n6) showed a level more than 2-fold higher in control participants than in IBS
patients. Based on uncorrected Mann–Whitney U tests (p value < 0.05), certain saturated
fatty acids (palmitic acid, 16:0; margaric acid, 17:0) were higher in IBS patients, while certain
unsaturated fatty acids (linoleic acid,18:2n6; gamma-linolenic acid, 18:3n6; alpha-linolenic
acid, 18:3n3) were lower in IBS patients. Gamma-linolenic acid (18:3n6) was the lipid with
the largest fold change between groups. Concentrations of significantly differing lipids,
separated by IBS status and IBS subtypes, respectively, are presented in boxplots with
overlaid scatterplots in Figure 7C,D, respectively.
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Figure 6. Stacked lipids bar plot of healthy controls versus IBS and IBS subtypes. Each bar represents
one sample, and the total height of the bar represents the total concentration of all detected lipids.
Colors representing each group (unsaturation position) of lipids are indicated as saturated (purple),
omega 9 (green), omega 6 (blue), omega 3 (orange), and other (gray). Abbreviations: IBS, irritable
bowel syndrome; IBS-D, irritable bowel syndrome–diarrhea; IBS-M, irritable bowel syndrome–mixed;
IBS-C, irritable bowel syndrome–constipation.

3.6. Link between the Gut Microbiome and the Fecal Lipidome Compositions via Procrustes
Randomization Test

A Procrustes randomization test was carried out to explore the multivariate asso-
ciation between each participant’s microbiome and lipidome. As seen from Figure 8A,
the microbiome and lipidome datasets associated much better than expected by random
chance (empirical p = 0.002). A histogram showing the distribution of Procrustes disparity
scores across 10,000 permutations of the dataset is presented in Figure 8B. The Procrustes
disparity score for our data (shown by the red line in Figure 8B) was lower than 99.8%
of disparity scores when we randomly sampled the data 10,000 times. This suggests that
the microbiome and lipidome datasets fit together better than randomly matching the
microbiome–lipidome samples 99.8% of the time.
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Figure 7. Lipidome analyses of healthy controls versus IBS and IBS subtypes. Transformed concen-
trations of lipids that were significantly different (per Kruskal–Wallis test) across healthy control
participants and various IBS subtypes are presented via a spider plot (A). Each lipid’s concentrations
were Z-score transformed, and the mean Z-score for each IBS subtype is plotted on each axis. Lipids
that were significantly different (per Mann–Whitney U test) between healthy control participants
and all IBS patients are presented in a volcano plot (B). Each point represents one lipid, the x-axis
represents log-fold change from healthy controls to participants with IBS, and the y-axis represents
the negative log of the p value. Points above the horizontal dashed line had a p < 0.05, and points
outside of the vertical dashed lines had greater than a 2-fold change. Concentrations of significantly
differing lipids, separated by IBS status and IBS subtype, respectively, are presented as boxplots with
overlaid scatterplots in (C,D), respectively. Individual points represent the concentration of the lipid
in one sample. Horizontal lines represent the median. Boxes indicate the 1st through 3rd quartiles of
the lipid’s concentration in its IBS/subtype group, and whiskers represent the range up to 1.5× the
interquartile range. Abbreviations: IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome–
diarrhea; IBS-M, irritable bowel syndrome–mixed; IBS-C, irritable bowel syndrome–constipation.
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Figure 8. Procrustes-transformed Bray–Curtis multi-dimensional scaling of microbiome and lipidome.
(A) Blue triangles indicate untransformed Bray–Curtis PCoA coordinates for the microbiome data,
and orange circles indicate Procrustes-transformed Bray–Curtis PCoA coordinates of the lipidome.
Each point indicates one participant’s sample, and lines are drawn between each participant’s
microbiome and lipidome. (B) Histogram shows distribution of Procrustes disparity scores across
10,000 permutations of the dataset, and the vertical red line indicates the Procrustes disparity of our
dataset. Abbreviations: PC, principal coordinates analysis axis; PCoA, principal coordinates analysis.
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3.7. Association of Socioeconomic Factors with Diversity and Community Composition of the
Gut Microbiome

As the manifestation of IBS symptomology is influenced by various socioeconomic
factors, we also explored the influence of (i) alcohol consumption, (ii) household income,
(iii) number of household occupants, and (iv) marital status using Faith’s phylogenetic
alpha diversity analysis. We observed that a higher alcohol consumption was associ-
ated with a higher alpha diversity (Figure 9A). A higher income was associated with a
higher alpha diversity, while a lower income corresponded to a lower alpha diversity
(Figure 9B). An increased number of occupants (Figure 9C) and married status (Figure 9D)
were associated with a higher alpha diversity. Additionally, household income (Figure 10A;
pseudo-F = 1.64, p < 0.001) and marital status (Figure 10B; pseudo-F = 1.32, p = 0.028) were
associated with differences in beta diversity (as measured using unweighted UniFrac).
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Figure 9. Faith’s phylogenetic alpha diversity of the microbiome as a function of socioeconomic
factors. Panels (A,C) show the relationship between phylogenetic diversity and (A) alcohol consump-
tion or (C) the number of household occupants. Each point represents one participant’s microbiome
sample, the line represents the line of best fit, and the shaded region indicates the 95% confidence
interval of a linear regression on Faith’s phylogenetic diversity as a function of alcohol consumption
or the number of household occupants, respectively. Boxplots with overlaid scatterplots in panels
(B,D) depict the relationship between phylogenetic diversity and (B) household income group or
(D) marital status. Individual points represent the phylogenetic diversity of one participant’s sample.
Horizontal lines represent the median. Boxes indicate the 1st through 3rd quartiles of the phylogenetic
diversity of each group, and whiskers represent the range up to 1.5× the interquartile range.
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Figure 10. Microbiome beta diversity as a function of socioeconomic factors. (A) Unweighted UniFrac
PCoA plots are shown comparing the phylogenetic composition of samples across household income
groups and (B) marital status. Percentages along each axis show the portion of phylogenetic variance
across samples captured by that axis. Each point represents the phylogenetic composition of one
sample. Ellipses represent 95% confidence intervals of each group’s PCoA coordinates. Abbreviations:
PC, principal coordinates analysis axis; PCoA, principal coordinates analysis.

4. Discussion

ANCOM, our network module method, and LEfSe all showed that the Lachnospiraceae
group ND3007 was lower in participants with IBS than in healthy controls. In many studies,
identified differentially abundant taxa are not robust across various differential abundance
methods, so this finding should be particularly considered robust due to the consensus
across differential abundance methods. Members of the Lachnospiraceae ND3007 group
are short-chain fatty acid (SCFA) producers and have been linked to decreases in the blood
glucose levels in rats with diabetes [49,50]. In general, bacteria belonging to the family
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Lachnospiraceae are considered important butyrate producers. Butyrate and other short-
chain fatty acids are shown to modify gut motility, maintain the integrity of the intestinal
barrier, and also play a role in the inhibition of intestinal inflammation [51]. SCFAs are
essential in maintaining a homeostatic immune environment, and butyrate particularly has
anti-inflammatory and immunoregulatory effects [52]. Additionally, butyrate stimulates
serotonin release via enterochromaffin cells, altering sensory neuron activity, which is
disrupted in individuals with IBS [53,54]. It has also been discussed that environmental
and psychological stressors reduce the proportion of Lachnospiraceae. This may, in turn,
lead to a reduction in mucus and SCFA production, as well as reductions in tight junction
protein expression resulting in intestinal inflammation [55]. Our observation that the
Lachnospiraceae group ND3007 was abundant in healthy control participants and was less
abundant in IBS, which has inflammatory pathophysiology in many cases, is consistent
with these findings.

It is likely that dietary differences in individuals with and without IBS may impact
the relative abundance of Lachnospiraceae. Ma et al. reported that there is an association
between diet quality and the relative abundance of Lachnospiraceae; specifically, persons
with a higher healthy eating index showed higher levels of Lachnospiraceae ND3007
and Ruminococcaceae [56]. Other studies also showed that the dietary inclusion of fiber,
antioxidants, and phytochemicals, for example, through the consumption of flaxseed and
grapes, led to higher relative abundances of Lachnospiraceae ND3007 [57,58]. Moreover, it
is evident that HFCS in the diet may alter the relative abundance of particular taxa [59–61].
A study showed a modest decrease in Ruminococcaceae with a high HFCS intake in an
adolescent mouse model [62]. The decrease in Ruminococcaceae observed in the IBS
patients in our study may, thus, at least partly be due to the high consumption of HFCS in
these patients.

ANCOM also showed that Eisenbergiella was higher in IBS patients, especially those
with IBS-C and, to a certain extent, IBS-M, relative to healthy controls. Species of the
genus Eisenbergiella have been associated with various disease conditions such as increased
risk of bacteremia, colorectal tumorigenesis, and multiple sclerosis [63–65]. To the best
of our knowledge, our study is the first report of an alteration of genus Eisenbergiella
in IBS patients, while higher levels of Eisenbergiella in the IBS group than in the control
group have been reported in a mice model in one study [66]. The exact mechanism
underlying these observations is not known, but it has been suggested that certain bacteria
including Eisenbergiella may be associated with inflammatory factors [63]. Higher levels
of Eisenbergiella spp. were also observed in persons following a high-saturated-fatty-acid
diet, which often co-occurs in foods with HFCS [67]. Consistent with the effects of dietary
saturated fatty acids on Eisenbergiella, our participants with IBS (particularly IBS-C) had high
fecal concentrations of saturated fatty acids, including palmitic and margaric acids. This is
also consistent with a recent study demonstrating that individuals with IBS have higher
fecal concentrations of palmitic and margaric acids [68]. Bhat et al. also reported that short-
term HFCS consumption in 6-week-old female mice increased circulating concentrations
of palmitic acid, despite constant dietary palmitic acid consumption [62]. This suggests
that though HFCS and saturated fatty acids often co-occur in foods, HFCS consumption
may alter lipid metabolism and could be another mechanism explaining the higher fecal
concentration of palmitic acid in IBS patients. Lipidome analysis of our fecal samples
showed lower concentrations of fecal gamma linolenic acid in all subtypes of IBS patients
than in healthy controls. Gamma linolenic acid has anti-inflammatory properties in multiple
human tissues, and there could be multiple reasons for its lower concentration in IBS
patients, including dietary differences, microbial metabolism of gamma linolenic acid/its
precursors, or changes in enterocyte absorption/metabolism [69–71].

A study using a rat model showed that ethanol consumption led to a significant
decline in the diversity of the gut microbiome. The authors compared their results to
human fecal microbiome data collected by the American Gut Project. In contrast to the rat
model data, human subjects who consumed alcohol had significantly higher gut microbial
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biodiversity than non-drinkers, ref. [72], consistent with other studies [73]. The authors
dedicated this difference to a lack of prior ethanol exposure in rats. A recent study showed
that the consumption of ethanol in the form of beer increased gut microbiome diversity,
suggesting that beer may exert effects on the gut microbiome through polyphenols, rather
than alcohol [74]. Thus, there is some contradicting evidence on the effects of alcohol on
the gut microbiome across murine models and observational studies in humans, related to
factors such as alcohol type and novelty of alcohol consumption. However, it is posited that
the effects of alcohol on diversity of the gut microbiome could be mediated by polyphenols
in drinks or by the sharing of microbes from social interactions during alcohol consumption.

Silvernale et al. showed that psychological comorbidities in IBS patients were as-
sociated with lower socioeconomic status and lower average per capita income [75]. A
study showed that the risk of IBS was increased among unmarried participants [76]. Dill-
McFarland observed that married individuals living together exhibited greater gut micro-
biome richness than individuals living alone [77]. These results support that sustained
human interactions influence the gut microbiome. Wilmes et al. highlighted the potential
for therapeutic targeting of the gut microbiome as a valuable strategy for the management
of comorbid psychiatric symptoms in IBS [78].

Our sample size for this pilot study is modest, which is a limitation. This limitation
was posed by the socioeconomic characteristics prominent in our patient community. Our
local community faces significant economic challenges, and over 25% of the adults have
not attained a high school diploma. Language is another barrier that was encountered
during recruitment. It is possible that all these factors influence their appreciation of
the relevance of the study, leading to less eagerness to participate. Logistic challenges
such as lack of transportation or not being able to take time off from work or domestic
responsibilities affected sample delivery to the clinic. Our recruitment was also hindered
due to the COVID-19 pandemic and its aftereffects. The recruitment and sample collection
started in 2019. Recruitment was stopped after the onset of the pandemic in March 2020 as
the hospital switched to the telemedicine mode of patient care for ~3 months, and that, too,
was used for emergency cases. Thus, patients that formed the basis of this study were not
coming in for in-person, routine check-in visits for quite some time. Secondly, we did not
recruit patients until COVID-19 tests were routinely used to rule out the presence of viral
infection. This precaution was taken to avoid the influence of compounding factors. The
stress created by the pandemic further diminished the enthusiasm among our participants
to participate in this study, resulting in the current sample size. As our sample size was
somewhat limited, we cannot rule out the possibility that certain conclusions will need
further confirmation using a larger sample size.

However, despite all these challenges, we did find a number of important and mean-
ingful observations, which led to new insights into IBS pathophysiology. Our robust
statistical analyses using a number of different approaches, the significant statistical differ-
ences observed in the IBS patient and healthy control cohorts, and the consistency of our
key observations with the reported literature from a number of different groups supported
the validity of the outcomes. As mentioned above, our study underscored the influence of
HFCS consumption and socioeconomic factors in IBS pathophysiology based on distinct
microbiome and lipidome differences. Observations from this study may thus inform IBS
patient care.
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