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Abstract: The class II hydrophobin group (HFBII) is an extracellular group of proteins that contain
the HFBII domain and eight conserved cysteine residues. These proteins are exclusively secreted
by fungi and have multiple functions with a probable role as effectors. In the present study, a total
of 45 amino acid sequences of hydrophobin class II proteins from different phytopathogenic fungi
were retrieved from the NCBI database. We used the integration of well-designed bioinformatic
tools to characterize and predict their physicochemical parameters, novel motifs, 3D structures,
multiple sequence alignment (MSA), evolution, and functions as effector proteins through molecular
docking. The results revealed new features for these protein members. The ProtParam tool detected
the hydrophobicity properties of all proteins except for one hydrophilic protein (KAI3335996.1). Out
of 45 proteins, six of them were detected as GPI-anchored proteins by the PredGPI server. Different
3D structure templates with high pTM scores were designed by Multifold v1, AlphaFold2, and
trRosetta. Most of the studied proteins were anticipated as apoplastic effectors and matched with
the ghyd5 gene of Fusarium graminearum as virulence factors. A protein–protein interaction (PPI)
analysis unraveled the molecular function of this group as GTP-binding proteins, while a molecular
docking analysis detected a chitin-binding effector role. From the MSA analysis, it was observed that
the HFBII sequences shared conserved 2 Pro (P) and 2 Gly (G) amino acids besides the known eight
conserved cysteine residues. The evolutionary analysis and phylogenetic tree provided evidence of
episodic diversifying selection at the branch level using the aBSREL tool. A detailed in silico analysis
of this family and the present findings will provide a better understanding of the HFBII characters
and evolutionary relationships, which could be very useful in future studies.

Keywords: computational annotation; effectors; evolution; homology modeling; hydrophobins

1. Introduction

Hydrophobins (HFBs) are a family of remarkable surfactant proteins produced only
by filamentous fungi [1]. They are small (≤20 kDa) secreted cysteine-rich proteins (SSCPs)
that play pivotal roles in the fungal life cycle, helping with processes such as the formation
of aerial structures by reducing the surface tension of the medium on which fungi grow,
interactions with the surrounding environment, the adhesion of pathogenic fungi to plants,
and the covering of spores to facilitate their dispersal in the air [2–4]. These unique
proteins possess eight strictly conserved cysteine residues, forming four disulfide bridges
to stabilize their tertiary protein structure [5]. HFBs can spontaneously self-assemble into
an amphipathic monolayer at hydrophilic/hydrophobic interfaces that allows interactions
between the fungi and their ecosystem [6,7].

Based on their hydropathy patterns and solubility characteristics, two classes of HFBs
are described: class I and class II [8]. Class I hydrophobins (i) can be dissolved only by
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strong solvents, (ii) have been identified in Ascomycetes (class IA) and Basidiomycetes
(class IB), (iii) form monolayers with rodlets (fibrillar amyloid-like substructures), and
(iv) vary in their amino acid sequences [9,10]. In contrast, class II hydrophobins (i) can
be dissociated in diluted organic solvents, (ii) are produced exclusively in Ascomycetes,
(iii) are smaller than 10 kDa, and (iv) have higher conserved amino acid sequences than
class I hydrophobins [11]. Recently, an intermediate class has been defined in Aspergillus
and Trichoderma species [12,13].

Class II hydrophobins include cerato-ulmin [14], cryparin [15], and trihydrophobin [16].
Cerato-ulmin (CU) is a 7.6 KDa secreted hydrophobin toxin discovered from Ophiostoma
ulmi and Ophiostoma novo-ulmi, the Dutch elm disease pathogens. It acts as a parasitic
fitness factor that has been implicated in many aspects of development, including patho-
genesis, adhesion, and the formation of reproductive structures [17–19]. Cryparin (CRP)
is an abundant cell-surface-associated hydrophobin secreted by the chestnut blight fun-
gus, Cryphonectria parasitica. It has lectin-like properties and binds to the cell wall of the
fungus as well as being secreted into the media. CRP plays an essential role in the suit-
ability of phytopathogenic fungi by facilitating the eruption of the fruiting bodies through
the bark of the plant host [15,20]. Trihydrophobin (TH) is secreted from the ergot Clavi-
ceps fusiformis, which contains three domains of class II hydrophobins, each preceded by
glycine/asparagine (GN)-rich regions [16]. Class II hydrophobins are usually between
80 and 125 amino acids in length, although they can be over 400 amino acids in length
when including trihydrophobins [21].

In general, many SSCPs have been reported to function as fungal effectors [22]. Effec-
tors are the most important class of proteins for interactions between a fungal pathogen
and a plant host [23]. They enable the fungus to defeat PAMP-triggered immunity (PTI), a
plant defense response that is raised by a pathogen-associated molecular pattern (PAMP).
According to their localization inside the host plant, effectors are classified into apoplas-
tic (cysteine-rich and secreted outside the host cell) and cytoplasmic (positively charged
residues and secreted inside the host cell) [24,25]. Due to the similar properties between
hydrophobins (especially those of class II) and effector proteins, many researchers have
discussed the possible prominent role of class II hydrophobins in fungus–plant interac-
tions [26,27]. Despite information on the function of hydrophobins for fungal pathogenesis,
the role of these proteins in acting as plant defense elicitors and, further, the molecular
mechanism of protein–ligand interactions remain unclear to date [19].

The elucidation of the tertiary protein structure is one of the key features for under-
standing biological processes at a molecular level, besides facilitating molecular docking
studies [28]. The protein data bank (https://www.rcsb.org/, accessed on 7 July 2023)
holds very limited structures under the keyword “hydrophobin class II”. For example,
Ren et al. [29] reported the 3D structure of the class II hydrophobin NC2 (Neurospora crassa
OR74A, PDB accession 4AOG) using the NMR method. In addition, Hakanpaa et al. [30]
reported the 3D structure of the class II hydrophobin HFBII (Trichoderma reesei, PDB acces-
sion 2B97) using the X-ray diffraction method. The analysis and identification of the 3D
structure of a certain protein using the X-ray crystallography or NMR spectroscopy meth-
ods are time-consuming and not successful with all proteins [31,32]. In silico bioinformatic
approaches are an alternative tool developed to predict the 3D structure of proteins based
on homology modeling using an unknown protein sequence [33]. The present study aimed
to predict the functional domain and motif annotations of class II hydrophobins, character-
ize their physicochemical characteristics, explore high-template modeling for this group,
study the conserved sites and evolutionary relationships of this family between fungal
phytopathogens, and test their abilities to act as effectors using a variety of conventional
computational tools.

https://www.rcsb.org/


Microorganisms 2023, 11, 2632 3 of 19

2. Materials and Methods
2.1. Retrieval of Target Sequences

From the NCBI database, the amino acid sequences under the keywords “hydrophobin
class II”, “cerato-ulmin”, and “cryprin” were filtered using HHfilter v3.3.0 (default pa-
rameters) to remove redundant proteins, and then the partial sequences and sequences
related to non-pathogenic fungi were excluded. Finally, a total of 45 class II hydrophobin
(HFBII) amino acid sequences of various fungal phytopathogen species were retrieved in
the FASTA format from the NCBI database (https://www.ncbi.nlm.nih.gov/, accessed on
3 July 2023). The number of respective proteins with accession numbers and fungal sources
is provided in Supplementary Table S1.

2.2. Analysis of Physicochemical Properties of the Proteins

The physicochemical parameters of the HFBII proteins were characterized using
the ProtParam tool (http://web.expasy.org/protparam, accessed on 16 July 2023) of the
ExPASy server [34]. The output data from this server included the molecular weight (MW),
theoretical isoelectric point (PI), amino acid composition, atomic composition, estimated
half-life, extinction coefficients (ECs), instability index (II), aliphatic index (AI), and grand
average of hydropathicity (GRAVY). The hydropathy plot was analyzed and designed
using the NovoPro server (https://novoprolabs.com/tools/protein-hydropathy, accessed
on 17 July 2023).

2.3. Signal Peptide Prediction and Subcellular Localization Identification

Secreted proteins from the sequences that carry a signal peptide were predicted using
SignalP 6.0 [35]. The DeepTMHMM V1.0.24 server was used to detect alpha and beta
transmembrane proteins [36]. PredGPI was used to predict glycophosphatidylinositol (GPI)
anchor motifs [37]. Anticipation of the subcellular localization and protein features was
applied with the Bologna Unified Subcellular Component Annotator (BUSCA) server [38].

2.4. Modeling of 3D Protein Structures and its Evaluation

The 3D structures of all candidate HFBII proteins were designed by Alphafold2,
trRosetta, and Multifold v1 [39–41]. The signal peptides were removed before homology
modeling and a TM score > 0.50 was used as the threshold for reliably predicted folds [42].
The high pTM score models were verified and validated using Modfold v8.0 and the
ProSA web server [43,44]. The Ramachandran plot was constructed using MolProbity and
PDBsum [45,46]. The structural superpositions of the high-ranked predicted proteins and
their experimental structures (PDB accession 4AOG) were performed using US-align [47].
All 3D structures and TM-align were visualized using UCSF Chimera 1.17.1 [48].

2.5. Functional and Structural Annotations of HBFII Proteins

The functional annotations were performed using InterPro 95.0 [49], Argot2.5 [50], and
COFACTOR [51]. STRING v12 was used to determine the hydrophobin interactions with
other related proteins, while Cytoscape v3.10 was used for the visualization of protein
interactions [52,53]. EffectorP 3.0 and PHI-base were applied to search for HFBII effectors
and virulence factors with their homologs in other pathogens [54,55]. The secondary struc-
tures were predicted using Quick2D (https://toolkit.tuebingen.mpg.de/tools/quick2d,
accessed on 2 August 2023) with an e-value cut-off of 10−3, the UniRef90 database was used
for MSA generation, and the maximal No. of MSA generation steps was 3. We used 2dss
for the visualization of the 2D structure results from the Quick2D output [56]. Disordered
residues were predicted using the ODiNPred server with a cut-off of 0.5 [57]. Rupee was
used for determining the structural similarity against SCOPe v2.08, CATH v4.3, and the
PDB chain databases, downloaded on 16 July 2022 [58,59]. MEME suite 5.5.3 was used for
motif discovery, with a maximum number of 15 motifs and an e-value of less than 0.05 [60].

https://www.ncbi.nlm.nih.gov/
http://web.expasy.org/protparam
https://novoprolabs.com/tools/protein-hydropathy
https://toolkit.tuebingen.mpg.de/tools/quick2d


Microorganisms 2023, 11, 2632 4 of 19

2.6. Sequence Alignment and Evolutionary Analysis

The 45 HFBII amino acid sequences were aligned using the MUSCLE tool of the
MEGA 11 software [61]. Alignment sequences were applied to detect conserved residues
of the HBFII proteins, which were visualized using Jalview 2.11.2.7 [62]. In addition,
the entropy plot for the detected conserved amino acid residues was estimated using the
Sequence Database Entropy-one web server (https://www.hiv.lanl.gov/content/sequence/
ENTROPY/entropy_one.html, accessed on 10 August 2023), where the cut-off for conserved
residues was a Shannon’s entropy of <1 and a proportion of gap < 0.1. The phylogenetic tree
was constructed with the MEGA 11 software using the maximum likelihood method and
was displayed and visualized via iTOl V6 [63]. A selection pressure analysis was performed
using HyPhy via the Datamonkey web server [64,65]. A branch-level test for episodic
diversification selection was detected with aBSREL v2.3 by testing all branches [66]. A site-
level test for pervasive purifying or diversifying selection was inferred with FUBAR v2.2
by testing all branches [67]. In addition, the Selecton server was used for the identification
of site-specific diversifying and purifying selections [68]. The ConSurf web server with
the default parameters was assigned for detecting the functional and conserved regions in
selected proteins [69].

2.7. Active Site and Protein Docking Analysis

The active site of the selected HFBII was identified using the scfbio server (https://www.
scfbio-iitd.res.in/dock/ActiveSite.jsp, accessed on 15 August 2023) and CASTp 3.0 [70]. A
molecular docking analysis was performed using CB-Dock2 [71] between the selected HFBII
receptor protein and ligand (chitin). This helped the study and predicted the role of the
HFBII proteins as effector proteins against plant chitinases. The ligand was retrieved from
the ZINC database (ZINC 24425833) (https://zinc.docking.org/, accessed on 25 July 2023)
in sdf format. The active site locations were visualized using UCSF ChimeraX v1.6.1 [72].

3. Results and Discussion
3.1. Detection of Physicochemical Characters of HFBII Proteins

From the NCBI database, 45 class II hydrophobin proteins were retrieved with dissim-
ilar amino acid sequences. The output data of the physicochemical properties for these
proteins, including the molecular weight, theoretical PI, instability index, aliphatic index,
and GRAVY, were analyzed using the Expasy ProtParam tool (Table S2). Physical and
chemical parameters can determine the behavior and stability of proteins under several
in vitro conditions [73]. In this study, the length of the hydrophobin proteins ranged from
85 to 140 amino acids, but the majority were around 100 amino acids (Figure 1a). Moreover,
the molecular weight (MW) ranged from 8.6 kDa to 13.46 kDa with an average of 10 kDa,
which agreed with several works [9,30]. For the theoretical PI values, most proteins (77.7%)
tended to be acidic below a PI of 5.0 (Figure 1b), where the theoretical PI of a protein is
the pH at which the net charge carried by its surface equals zero [74]. Only two proteins
(XP_003002035.1 and AAY89101.1) belonging to the genus Verticillium (V. alfalfa and V.
dahlia, respectively) tended to be alkaline, with a PI of about 0.8, showing different features
than the other HFBII proteins. Sixteen (35.3%) proteins were considered unstable according
to their instability index (II), with cut-off values of <40 and >40 (Table S2). The instability
index (II) of proteins lower than 40 was predicted to be stable [75]. The aliphatic index (AI)
is an indicator of the thermal stability of proteins: an increase in the AI increases the stability
of proteins at high temperatures [76]. The AI values of the studied proteins reflected the
high thermostability of most hydrophobin proteins (53.93–110.95) over wide temperature
ranges (Table S2). GRAVY is one of the important parameters studied that determines the
hydrophilic or hydrophobic nature of proteins [77]. All proteins showed positive GRAVY
scores except one protein (KAI3335996.1), which showed a negative GRAVY score (−0.119)
(Figure 1a). The positive GRAVY score values indicated the hydrophobicity of the proteins,
while the negative score value indicated hydrophilicity. Xu et al. [78] reported similar
results about PI values, but we disagreed about the GRAVY score, where all the proteins

https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_one.html
https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_one.html
https://www.scfbio-iitd.res.in/dock/ActiveSite.jsp
https://www.scfbio-iitd.res.in/dock/ActiveSite.jsp
https://zinc.docking.org/
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of their work were hydrophobic, with GRAVY scores ranging from 0.333 to 0.967. In ad-
dition, we noticed that 41 proteins contained eight cysteine residues as described for the
hydrophobin family, while only 4 proteins contained nine cysteine residues (Table S2).
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Figure 1. Physicochemical characteristics of the hydrophobin proteins: (a) protein length vs. GRAVY
scores, where the negative values were categorized as globular (hydrophilic) proteins while the
positive values were categorized as membrane (hydrophobic) proteins; (b) theoretical isoelectric
point (PI) of hydrophobin proteins; and (c) hydropathy plot of Ustulina deusta cerato-ulmin HFBII.

3.2. Signal Peptide Prediction and Subcellular Localization Identification

Hydrophobin class II proteins were analyzed for the presence of signal peptides,
transmembrane domains, and GPI anchors as described in the Section 2. The results showed
that all the proteins carried signal peptides, but there was no evidence for the presence of
alpha helices or beta proteins across the membrane. Huang et al. [79] and Neuhof et al. [80]
also reported that there is a signal peptidase in the N-terminal region of HFBII proteins
without a transmembrane helix. Out of 45 HBFII proteins, only 6 (13.3%) proteins were
attached to the membrane by a GPI anchor (Figure 2, Table S3). The six proteins were
AAB41284.1, KAB2579811.1, KAH8763703.1, KKY33170.1, KUI69349.1, and XP_047765241.1.
The presence of GPI-anchored HFBII proteins is considered exclusive data about this family.
GPI anchoring is a post-translational modification in the ER of eukaryotes, including
fungi, and is important for development and pathogenicity [81]. Chun et al. [82] reported
that the GPI-anchoring proteins of Cryphonectria parasitica are essential for virulence and
phytotoxicity through an antioxidant barrier against host defenses, are active phytotoxic
factors for pathogenicity, and are antiviral factors. In addition, Timmermans et al. [83]
demonstrated the involvement of GPI-anchored proteins in cell wall remodeling, virulence,
and the adhesion function of Candida glabrata to host cells. According to the previous
information, the subcellular localization prediction of all proteins is termed “extracellular
space” (GO:0005576).
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Figure 2. The number of GPI-anchored and non-GPI-anchored HFBII proteins with illustrated
schematic diagram about GPI-anchoring localization outside the membrane.

3.3. Modeling of 3D Protein Structures and Model Evaluation

The prediction of the 3D structures of HFBII proteins is crucial due to the limited
experimental data and their paucity in scientific papers. The structures of these proteins
were predicted using different computational servers (Alphafold2, trRosseta, and Multifold)
and the predicted models were superposed against the experimental ones with an accepted
TM-align score > 0.5 (Figure 3a,b) [84]. Multifold v1 showed higher modeling precision than
the other tools, at the level of both pTM and pLDDT (Figures 3 and 4). The HFBII protein
with the accession number “XP_009650899.1” gave the highest values in comparison to
the other proteins, with the confidence and p-value “CERT: 1.04 × 10−4” according to the
ModFold8 server (Figure 5a,b). The accuracy of the HFBII protein model was measured
using a Ramachandran plot [85] and the result (97.5%) was satisfactory (Figure S1). The
PROSA web server was used to analyze the protein structure by matching the predicted
with the experimental structures using the statistics of the Cα of the mean force to evaluate
the quality of the predicted proteins [86]. The output Z-score plots from the PROSA server
revealed that the predicted protein models were within the range of the experimentally
determined structures using the NMR method (Figure S2).
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Figure 3. Homology modeling of representative HFBII protein: (a) three-dimensional models of Verti-
cillium dahlia protein (XP_009650899.1) were generated using MultiFold, AlphaFold2, and trRosetta,
showing TM-scores and pLDDT values; (b) structural superposition between the experimental (PDB:
4AOG) and predicted structures for the selected HFBII protein.
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proteins, with different pTM scores in Multifold v1.
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Figure 5. Model validation of protein (XP_009650899.1) and two-dimensional structure prediction:
(a) B-factor coloring, indicating the protein residue quality; (b) protein model evaluation using
ModFOLD8, representing the confidence and p-value; (c) schematic and topology diagram showing
the secondary structural elements in the protein; and (d) comparative method, including five tools for
predicting the 2D structure of HFBII proteins using the Quick2D server and visualization with 2dSS.

3.4. Functional and Structural Annotations of HBFII Proteins

InterPro 95.0 and Argot2.5 were used for the functional annotation of the studied HFBII
proteins according to the sequences, while the COFACTOR tool predicted the functional
annotation of the proteins according to their structures [87]. The most annotated GO terms
based on the biological processes were termed “pathogenesis” (GO:0009405), while the
extracellular region (GO:0005615) encountered the dominant GO term (cellular component)
for all proteins. There are no data about the molecular function of these proteins that
could be detected by the annotation tools. The pathogenesis GO term indicates the role
of these proteins in inducing an abnormal state inside their hosts [88]. The prediction of
effectors among the HFBII proteins of phytopathogens is an essential criterion, although
their prediction is a challenging task [89]. Therefore, we used EffectorP 3.0, a machine
learning program, to construct the model depending on a variety of amino acid features [90].
From the forty-five HFBII proteins, forty-two proteins were classified as apoplastic effectors
and two putative proteins were classified as apoplastic/cytoplasmic effectors that belonged
to Verticillium spp., while one protein (CDK12896.1, Geosmithia langdonii) was found with
no effector prediction (Figure 6a, Table S4). PHI-based data were used to compare the
putative effectors with virulence genes that showed homology with other phytopathogens
and classify the proteins into different categories [91,92]. According to the PHI annotation,
all the effector proteins were categorized as having a reduced virulence that was encoded
by the Fghyd5 [3] (PHI:9245) of Fusarium graminearum with different scores (Table S5),
which helps the fungal hyphae to penetrate through the water–air interface and likely helps
conidia adhere to the plant host [3].
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Figure 6. (a) Bar graph illustrating the effector and non-effector HFBII proteins; (b) STRING PPI
network analysis between representative query HFBII (XP_009650899.1) and GTP-binding proteins.
The average node degree is 5.6, the average local clustering coefficient is 0.778, and the PPI enrichment
p-value is 5.28 × 10−5.

The protein–protein interaction (PPI) between candidate effectors was analyzed using
STRING v12.0. The results revealed that most effectors interacted with GTP-binding
(GO:0005525) Rho proteins as a molecular function role (Figure 6b). Rho proteins regulate
secretion and transcriptional activation, in addition to playing a role in cell transformation
and signaling as effectors between cells [93]. The prediction of 2D structures for these
proteins depended on the comparison between more than one tool using Quick2D. One
alpha helix and two beta sheets were detected from the used tools (Figure 5c,d), and these
findings matched with the 3D structure predictions. In addition, the 45 protein structures
were assigned to SCOPe v2.08 and CATH v4.3 categories using RUPEE with a TM score
cut-off of >0.5, but no aligned results were reported. The domain analysis of HFBII proteins
ensured the presence of only one domain (hydrophobin II) in all the sequences stored in the
InterPro database (IPR036686). Only one protein (KAI3335996.1, Ustulina deusta) possessed
two domains: I) a pentapeptide repeats domain (IPR002989) from 30 to 60 residues and II) a
hydrophobin II domain (Figure 7a). Pentapeptide repeats are found in many mycobacterial
proteins involved in bacterial virulence [94]. This mutated region appeared more highly
disordered than other proteins (Figure 7b–d) and the highly variable region (Figure 7c), so
this region answered the question “why is this protein hydrophilic?” (Figure 1c).
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Figure 7. Domain and intrinsic disorder protein analysis: (a) domain profile of 8 selected HFBII pro-
teins, illustrating a mutant bacterial domain in the KAI3335996.1 protein; (b) the prediction of the dis-
ordered regions for the hydrophobin II fusion protein with a pentapeptide domain; (c) conservation
patterns for the KAI3335996.1 protein across several phytopathogen HFBII proteins that show a highly
variable, disordered middle region (pentapeptide domain); and (d) the prediction of the disordered
regions for the hydrophobin II representative protein without the pentapeptide fusion part.

3.5. Sequence Alignment and Evolutionary Analysis

The alignment of all the selected HFBII sequences was analyzed using the MUSCLE
tool of the MEGA 11 program. From this alignment, a conserved pattern of amino acid
residues was obtained for all the groups of protein sequences (Figure 8). The results of
this profile illustrated four new conserved residues (two prolines and two glycines) other
than the eight known conserved cysteines [95] of class I and II hydrophobin proteins
(Figure 8). Shannon’s entropy in the residue analysis refers to the detection of the variation
in characters in MSA [96], which also confirms the same conserved residue sites of the
amino sequences (Figure S3). To better elucidate the evolutionary relationships among
HFBII proteins, a phylogenetic tree and motif analysis were built based on the similarity of
their amino acid sequences [97].

According to the phylogeny analysis, the HFBII sequences were subdivided into four
groups (clades), as shown in Figure 9. Moreover, among the four clades, group 4 had the
largest number of HFBII members (25) with a high sequence and motif similarity. Group 3
was characterized by the presence of motif 7, while group 2 was characterized by the
presence of motif 5. A further motif analysis showed that all the HFBII sequences shared
motif 4 (signal peptide). Motif 1, motif 2, and motif 3 were present in most hydrophobin
proteins and may have constituted the HFBII domain (Figure 9). Novel motifs were
discovered between HFBII proteins such as motif 15 (KAF7195398.1 and EMR84211.1),
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motif 12 (XP_037187260.1 and AHL20218.1), motif 8 (specific to Verticillium species), motif
9 (specific to Microdochium species), motif 10 (specific to Geosmithia species), and motif 13,
which were present only in Fulvia fulva (XP_047765241.1). All the motif symbols and the
consensus are available and shown in Figure S4.
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Figure 8. The conserved profile from alignment sequences of the selected HFBII proteins showed the
twelve conserved residues (8 Cys, 2 Pro, and 2 Gly). The yellow color at the conservation bar below
the figure indicates the 100% conservation residues.

HFBII proteins have undergone an intricate process of evolution at the site level us-
ing the Selecton server and the FUBAR tool, while the branch level was analyzed using
the aBSREL tool [98]. According to site-level evolution, there is no evidence for positive
selection between the amino acid residues of the HFBII family (Figures 10 and 11a). Based
on a branch-level evolutionary analysis, an aBSREL discovered evidence of episodic di-
versifying selection on 2 out of 85 branches in the phylogeny analysis (Figure S5). A total
of 85 branches were tested for diversifying selection. Significance was assessed using
the likelihood ratio test (LRT) at a threshold of p ≤ 0.05, after correcting for multiple
testing. The first branch (node 38) included AHL20218.1, CDK12887.1, and CDK12896.1
(Figures S5 and 11a), which are represented as clade 1 on the phylogenetic tree (Figure 9).
The first branch included only XP_046013164.1 (Microdochium trichocladiopsis), one of the
group 4 members (Figure 11b).

3.6. Active Site and Protein Docking Analysis

The active site of proteins is the surface region that facilitates binding with a specific
substrate, which then undergoes catalysis [99]. The scfbio server demonstrated that eight
cavities were present in the active site of the model protein (Figure 12a), while the CASTp
server demonstrated eight amino acid residues (Figure 12b). As described previously, the
most selected hydrophobins were predicted as apoplastic effectors by EffectorP 3.0. The
widespread class of apoplastic effectors are chitin-oligomer-binding proteins that protect
the fungal chitin layer from plant chitinases [100,101]. The predicted and experimental hy-
drophobins were evaluated for interactions against the chitin oligomer C24H41N3O16 (ZINC
24425833), while beta-N-acetylglucosaminidase (PDB 3wo8) was used as a control. The esti-
mated free energy (∆G) of binding between the beta-N-acetylglucosaminidase (control) and
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chitin was −7.8 Kcal/mol (Figure 13a) and the free energy (∆G) between the experimental
hydrophobin and chitin was −7.5 Kcal/mol (Figure 13b), while about −6.8 Kcal/mol
was estimated between the predicted hydrophobin and chitin (Figure 13c). These results
highlight the role of class II hydrophobins as apoplastic effectors. Frischmann et al. [102]
and Baccelli et al. [103] reported that several cerato-platanin class-II-family hydrophobins
were detected in the apoplast, but also remained bound to the chitin in the fungal cell wall
and may have altered cell wall properties to protect the fungi from plant chitinases.
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Figure 9. Construction of phylogenetic tree by MEGA 11 and visualization via iTol v6. Motif locations
were identified using the MEME server.
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Figure 10. Positive selection analysis of the HFBII proteins using the Selecton server.
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Figure 11. FUBAR and aBSREL evolutionary analyses: (a) FUBAR analysis of a coding sequence
alignment to determine whether some sites have been subject to pervasive purifying or diversify-
ing selection; (b) omega (ω) distribution over node 38 from the phylogenetic analysis using the
aBSREL web server; and (c) omega (ω) distribution over a Microdochium trichocladiopsis node from
the phylogenetic analysis using the aBSREL web server.
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Figure 12. Active site information of an HFBII protein (XP_009650899.1): (a) eight cavities, detected
by the scfbio server in the active site; (b) the amino acid residues (blue color) in the active site of the
studied protein that were detected by the CASTp server.
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Figure 13. Molecular docking modeling between chitin oligomer (ligand) and (a) beta-N-
acetylglucosaminidase (receptor); (b) experimental hydrophobin (receptor); and (c) predicted hy-
drophobin (receptor).
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4. Conclusions

The class II (HFBII) hydrophobin family includes HFBII-domain-containing proteins
that carry signal peptidase sequences. In this work, we retrieved and characterized HFBII
proteins from 45 different phytopathogenic fungi. The evaluation of these proteins revealed
that they were extracellular and acidic with a low molecular weight, a thermostable mem-
brane (hydrophobic), and ranges of residues from 85 to 140. The MSA of the proteins
ensured the presence of conserved proline (2) and glycine (2) plus the known cysteine (8),
which provided rigidity and stability to the protein structure. The secondary structure
analysis indicated the presence of one helix and two beta sheets located in the region of
the HFBII domain. The functional annotation and the protein–protein interaction analysis
illustrated that HFBII proteins may have protein-binding molecular functions (GTP-binding
protein) and pathogenesis (GO:0009405), suggesting the possibility of their role as effectors,
which was analyzed and predicted using molecular docking. The sequence and phylo-
genetic analysis confirmed the evolutionary conservation (site-level) of this member and
discovered new motifs within the alignment sequences. The branch-level evolutionary
analysis revealed the possibility of the episodic diversification of clade 1 from the other
groups. The preliminary findings from this research will be useful in the future to encour-
age a deeper elucidation of this group’s mode of action and further provide a basis for
exploring the function of HFBII in other processes.
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ergies with Z-scores of representative 3D HFBII protein models generated by PROSA web; Figure S3:
Shannon entropy plot and sequence position in the multiple sequence alignment between 45 HFBII
proteins for detecting the conserved residues; Figure S4: Fifteen motif symbols and consensus bits
that were discovered using the MEME web server; Figure S5: The aBSREL method is a statistical
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