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Abstract: As a representative nematode-trapping fungus, Dactylellina haptotyla can capture and
kill nematodes by producing traps, known as adhesive knobs. In this paper, the strain of D. hap-
totyla YMF1.03409 was studied by means of medium screening, fermentation, and purification and
identification of crude extracts. Eighteen compounds were obtained from D. haptotyla YMF1.03409,
including two new metabolites, nosporins C (1) and D (2). The known metabolites were identified to
be 3-chloro-4-methoxybenzaldehyde (3), 3-chloro-4-methoxybenzoic acid (4), 2-chloro-1-methoxy-
4-(methoxymethyl)benzene (5), 3-hydroxy-3-methyloxindole (6), nicotinic acid (7), succinic acid
(8), 3,4-dihydroxybutanoic acid (9), 5′-O-methyladenosine (10), uridine (11), 2′-deoxyuridine (12),
thymidine (13), 3-(phenylmethyl)-2,5-morpholinedione (14), methyl-β-D-glucopyranoside (15), 1,2-
benzenedicarboxylic acid bis(2-methyl heptyl) ester (16), β-sitosterol (17), and 3β,6α-diol-stigmastane
(18). The bioactive assay showed that these compounds had no obvious nematicidal activity against
the nematodes Meloidogyne incognita and Panagrellus redivivus.

Keywords: nematode-trapping fungus; Dactylellina haptotyla YMF1.03409; traps; secondary metabolites;
nematicidal

1. Introduction

Plant pathogenic nematodes can wreak havoc on crop productivity [1]. Root-knot
nematodes are the most prominent pathogenic nematodes, which have numerous hosts
and a wide distribution. Their quick reproduction, environmental adaptability, and ease of
dissemination make them challenging to control. The current methods for controlling plant
pathogenic nematodes mainly include chemical control, agricultural control, and biological
control. Chemical control has the advantages of short cycle and quick effect, and plays
an important role in ensuring a high and stable yield of crops [2]. Despite their efficiency,
chemical pesticides can easily contaminate the environment. Pesticide residues that are
left on agricultural products have the potential to harm soil structure, create soil erosion,
and pose a concern to food safety [3]. Agricultural control conquers nematode infestation
mainly via crop rotation, flooding, and culturing anti-nematode plants. These methods
may be time-consuming and incomplete in their control of pathogenic nematodes [4].

Due to the aforementioned disadvantages, biological control has been widely em-
phasized in recent years. Research on the development of biological control agents using
nematophagous microbial resources, such as nematode-trapping fungi, has emerged as a
popular topic in the control of nematodes [3]. Nematode-trapping fungi constitute a special-
ized group of fungi that can catch and kill nematodes by producing traps [5]. Dactylellina
haptotyla is a canonical model of nematode-trapping fungi, and current research on the
species has mainly focused on the physiological mechanisms underlying how it controls
nematodes, but research on its secondary metabolites is rarely reported [6–8]. In the present
study, eighteen compounds were obtained from the strain D. haptotyla YMF1.03409, and
their structural types were found to mainly include polyketides, aromatics, and nucleosides.
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2. Materials and Methods
2.1. Experimental Strain and Culture

D. haptotyla YMF1.03409 was isolated from soil in Longquan Forest Garden of Yunnan
Yuxi Yimen County, which was preserved in the State Key Laboratory of Conservation
and Utilization of Biological Resources in Yunnan, China. D. haptotyla YMF1.03409 was
routinely cultured on potato dextrose agar (PDA) plates at 28 ◦C for 21 days.

The nematodes used in this study were Panagrellus redivivus and Meloidogyne incogntta.
P. redivivus was cultured in an oat medium at 25 ◦C. M. incognita was obtained from infected
tomato roots in Yunnan Yuanmou County.

The following two steps were involved in the acquisition of M. incognita: (1) nematode
egg masses were collected from the roots of infested plants and incubated in double-
distilled water at 25 ◦C for three days, and (2) the collection of nematodes was achieved by
centrifuging the sample at 3000 rpm for three minutes.

2.2. General Experimental Procedures

Precoated silica gel GF254 plates (Qingdao Marine Chemical Inc., Shandong, China)
with various solvent systems were used for thin-layer chromatography (TLC). Column chro-
matography was carried out utilizing Sephadex LH-20 (Amersham Biosciences, Uppsala,
Sweden) and silica gel (Qingdao Marine Chemical Inc., Shandong, China). The ultraviolet-
visible (UV) spectrum was recorded using a Shimadzu UV-2401PC spectrophotometer (Shi-
madzu, Tokyo, Japan), and the λmax (log ε) value was reported in nm. Nuclear magnetic
resonance (NMR) analysis was performed using a Bruker Avance III 600 NMR spectrometer
(Bruker, MA, USA) with tetramethylsilane (TMS) as an internal standard. High-resolution
electrospray ionization mass spectroscopy (HR-ESI-MS) and ESI-MS data were detected
and recorded using a VG Auto-Spec-3000 mass spectrometer (VG, Manchester, UK). A
Jasco DIP-370 digital polarimeter (JASCO, Tokyo, Japan) was used to determine and collect
the optical rotation data of the compounds.

2.3. Screening of Culture Conditions

D. haptotyla YMF1.03409 was inoculated in the nine media listed in Table 1. The
culture volume was 300 mL, and the solid-state culture conditions (#5, #6, #7, #8, and #9)
were 28 ◦C for 31 days. The liquid-state culture conditions (#1, #2, #3, and #4) were 28 ◦C
at 180 rpm for 14 days. After the completion of the culture, the fermentation products
were processed as follows: the liquid culture products were filtered through eight layers
of gauze to remove mycelia; equivalent amounts of ethyl acetate were used to extract
the fermentation broth; and the extracts were combined and evaporated under reduced
pressure on a rotary evaporator to obtain the crude extracts. The solid culture products
were pounded into small pieces and extracted using ethyl acetate/methanol/glacial acetic
acid (80:15:5, v/v/v) for three, two, and one days, respectively, and finally, the soaking
solutions were combined and evaporated under reduced pressure to obtain the crude
extracts. These crude extracts were then weighted.

2.4. Fermentation and Isolation of Compounds

Medium #9 was selected to culture D. haptotyla YMF1.03409 at 28 ◦C for 31 days
in a total volume of 40 L. The solid fermentation products were cut into small pieces
and extracted exhaustively using the mixture solution (ethyl acetate/methanol/acetic
acid = 80:15:5, v/v/v) six times. The filtrate was evaporated using a rotary evaporator
under reduced pressure to obtain the crude extracts (35.64 g).

The crude extract was eluted using a silica gel column (200–300 mesh) with petroleum
ether/ethyl acetate (20:1→7:3, v/v), chloroform/methanol (20:1→7:3, v/v), and methanol
to yield twelve fractions (Fr.1–12). Fr.3 (2.085 g) was further separated using a column of
silica gel (200–300 mesh) via elution with petroleum ether/ethyl acetate (50:1→8:2, v/v) to
obtain eleven fractions (Fr.3.1–11). Fr.3.1 (731 mg) was purified using a column of silica
gel (200–300 mesh) via elution with petroleum ether/acetone (50:1→8:2, v/v) to yield nine
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fractions (Fr.3.1.1–9). Fr.3.1.7 (20 mg) was further loaded on a Sephadex LH-20 and eluted
with acetone to obtain 5 (3 mg). Fr.3.2 (400 mg) was separated using a Sephadex LH-20 via
elution with acetone and further purified using a silica gel column to yield 3 (2 mg) and 4
(15 mg). Fr.3.5 (205 mg) was chromatographed over a silica gel column (200–300 mesh, 40 g)
using petroleum ether/ethyl acetate (50:1→8:2) to yield eight fractions (Fr.3.5.1–8). Fr.3.5.6
(190 mg) was loaded on a silica gel column (200–300 mesh, 40 g) and eluted with petroleum
ether/acetone (200:1→10:1) to produce three fractions (Fr.3.5.6.1–3). Fr.3.5.6.3 (172 mg) was
purified using a Sephadex LH-20 column via elution with acetone to yield 17 (22 mg).

Table 1. The formulation of screening media.

Media Number Media Formulation

#1 0.5 g KH2PO4, 0.3 g MgSO4, 3 g yeast extract, 10 g glucose, 10 g
sodium glutamate, 20 g malt extract, 20 g mannitol, 1 L H2O

#2 12.2 mg 5-azacytidine, 0.3 g MgSO4, 3 g yeast extract, 0.5 g KH2PO4, 10 g glucose, 10 g
sodium glutamate, 20 g malt extract, 20 g mannitol, 1 L H2O

#3 4 g yeast extract, 4 g glucose, 10 g malt extract, 1 L H2O
#4 12.2 mg 5-azacytidine, 4 g yeast extract, 4 g glucose, 10 g malt extract, 1 L H2O
#5 60 g rice, 50 mL H2O
#6 0.3 g tryptone, 60 g rice, 50 mL H2O
#7 0.3 g tryptone, 60 g rice, 50 mL H2O, 5 g pork liver
#8 0.3 g (NH4)2SO4, 60 g rice, 50 mL H2O
#9 0.3 g (NH4)2SO4, 60 g rice, 50 mL H2O, 5 g pork liver

Fr.8 (3.167 g) was purified using a chloroform/methanol (1:1, v/v) gel column to
yield thirteen fractions (Fr.8.1–13). Fr.8.4 (389 mg) was chromatographed over a silica
gel column (200–300 mesh) and eluted with petroleum ether/acetone (50:1→8:2, v/v) to
produce eleven fractions (Fr.8.4.1–11). Fr.8.4.2 (13 mg) was separated using a Sephadex
LH-20 via elution with methanol to produce 6 (2 mg). Fr.8.7 (796 mg) was separated
using a silica gel column (200–300 mesh) with chloroform/methanol (100:1→8:2, v/v)
to give twelve fractions (Fr.8.7.1–12). Fr.8.7.12 (157 mg) was purified using a Sephadex
LH-20 (methanol) to obtain 9 (2 mg). Fr.8.8 (147 mg) was separated using a silica gel
column (200–300 mesh) with petroleum ether/ethyl acetate (50:1→8:2, v/v) to give seven
fractions (Fr.8.8.1–7). Fr.8.8.6 (55 mg) was loaded on a silica gel column (200–300 mesh)
with chloroform/methanol (100:1→8:2, v/v) and then purified using a Sephadex LH-20
(methanol) to produce 8 (27 mg).

Fr.9 (428 mg) was purified using a Sephadex LH-20 via elution with methanol to obtain
seven fractions (Fr.9.1–7). Fr.9.3 (74 mg) was chromatographed over a silica gel column
(200–300 mesh) and eluted with chloroform/methanol (200:1→10:1, v/v) to produce nine
fractions (Fr.9.3.1–9). Fr.9.3.4 (4 mg) was further loaded on a Sephadex LH-20 and eluted
with methanol to obtain 18 (1 mg). Fr.9.5 (184 mg) was chromatographed over a silica gel
column (200–300 mesh) and eluted with chloroform/methanol (50:1→8:2, v/v) to produce
seven fractions (Fr.9.5.1–7). Fr.9.5.7 (40 mg) was further purified using a Sephadex LH-20
via elution with methanol to obtain 7 (1 mg).

Fr.10 (3 g) was purified using a Sephadex LH-20 via elution with methanol to obtain
five fractions (Fr.10.1–5). Fr.10.3 (380 mg) was chromatographed over a silica gel column
(200–300 mesh) and eluted with chloroform/acetone (50:1→8:2, v/v) to produce seven
fractions (Fr.10.3.1–7). Fr.10.3.5 (74 mg) was separated using a Sephadex LH-20 via elution
with methanol to yield 1 (1 mg) and 2 (4 mg). Fr.10.3.7 (113 mg) was separated using a
silica gel column (200–300 mesh) with chloroform/methanol (50:1→7:3, v/v) to give three
fractions (Fr.10.3.7.1–3). Fr.10.3.7.3 (6 mg) was separated using a Sephadex LH-20 (acetone)
to yield 13 (1 mg). Fr.10.4 (557 mg) was purified using a column of silica gel (200–300 mesh)
and eluted with chloroform/methanol (50:1→7:3, v/v) to obtain 14 (5 mg). Fr.10.3.4 (83 mg)
was purified using a Sephadex LH-20 via elution with methanol to yield 16 (1 mg).



Microorganisms 2023, 11, 2693 4 of 12

Fr.11 (1.431 g) was purified using a Sephadex LH-20 via elution with methanol to
obtain seven fractions (Fr.11.1–7). Fr.11.5 (729 mg) was chromatographed over a silica
gel column (200–300 mesh) and eluted with chloroform/methanol (50:1→8:2, v/v) to
produce 11 fractions (Fr.11.5.1–11). Fr.11.5.7 was separated using a Sephadex LH-20
(methanol) to yield 10 (2 mg). Fr.11.5.9 (30 mg) was chromatographed over a silica gel
column (200–300 mesh) and eluted with chloroform/methanol (100:1→8:2, v/v) to produce
four fractions (Fr.11.5.9.1.1–4). Fr.11.5.9.2 (5 mg) was purified using a Sephadex LH-20
(methanol) to obtain 12 (1 mg). Fr.11.5.11 (200 mg) was chromatographed over a silica
gel column (200–300 mesh) and eluted with ethyl acetate/methanol (100:1→8:2, v/v) to
produce three fractions (Fr.11.5.11.1–3). Fr.11.5.11.1 (132 mg) was chromatographed over a
Sephadex LH-20 (methanol) to yield 11 (2 mg) and 15 (18 mg).

2.5. Nematicidal Activity of Compounds

The nematicidal activity test consisted of the following steps: (1) the compounds were
dissolved in a methanol–water solution that contained 3% methanol, and the concentration
of the compounds was measured at 400 ppm. As a control, the methanol–water solution
that contained 3% methanol was used. (2) About 150 juveniles (J2) of M. incognita or P.
redivivus were transferred to 3.5 cm Petri dishes containing either the compound solution
or the control solution. (3) The assay was performed in triplicate, and each replicate was
performed with three Petri dishes. The numbers of dead and live nematodes were counted
after 12, 24, and 48 h using a light microscope (Olympus, Tokyo, Japan) [9].

3. Results
3.1. Culture and Fermentation of D. haptotyla YMF1.03409

D. haptotyla is one of the representative nematode-trapping fungi (Figure 1A), which
belongs to the genus Dactylellina of the family Orbiliaceae (Ascomycota). Its conidiospores
are fusiform or teardrop-shaped (Figure 1B,C). Its trap is an adhesive knob, which is ovoid
and grows on vegetative mycelia (Figure 1D,E).
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Figure 1. The characteristics of D. haptotyla YMF1.03409. (A) The colony status of D. haptotyla
YMF1.03409 grown on potato dextrose agar (PDA) for 21 days. (B,C) The conidiophores of D.
haptotyla YMF1.03409 (D,E) the adhesive knob of D. haptotyla YMF1.03409.

The optimal fermentation conditions were determined based on the mass of crude
extracts. Firstly, by comparing the mass of crude extracts under different conditions, it was
found that when rice was included in the media’s composition (#5, #6, #7, #8, and #9), the
mass of crude extracts under the corresponding culture conditions was significantly higher
than when rice was not included (#1, #2, #3, and #4). Detailed information on the mass of
crude extracts under the corresponding culture conditions is shown in Figure 2.
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Figure 2. Mass of crude extracts under nine culture conditions. The horizontal coordinates represent
the numbers of the nine culture conditions. **** represents p-value < 0.0001, which was calculated
using the Student’s t-test.

Among the media #5, #6, #7, #8, and #9, medium #9 showed the highest mass of crude
extracts; thus, medium #9 was finally determined as the amplified fermentation medium,
and the culture condition was 28 ◦C for 31 days of static incubation.

3.2. Structural Identification of Compounds

Medium #9 was selected to culture D. haptotyla YMF1.03409. Eighteen compounds
were isolated from the crude extracts. Their structures were identified based on the obtained
NMR and MS data.

Compound 1: This compound is a white solid, with ESI-MS: 251 [M + Na]+; HR-ESI-
MS: 251.0524 ([M + Na]+); [α]20

D = 11.5 (c = 0.10, MeOH); and UV (MeOH) λmax (log ε) nm:
202 (3.16), 221 (2.81), and 277 (2.79).

An analysis of the HR-ESI-MS data revealed a molecular formula of C10H12O6 based
on the [M + Na]+ ion signal at m/z 251.0524 (calcd. for C10H12O6Na, 251.0526). The
spectroscopic data (Table 2) of compound 1 are basically the same as those of nosporin A,
except that the methyl group at 9-OH is changed to a formate group in compound 1 [10].

Table 2. The NMR data of compounds nosporins C (1) and D (2) (δ in ppm, J in Hz).

Position
1 (in CDCl3) 2 (in CD3OD)

1H 13C HMBC 1H 13C HMBC

1 - 203.4, s - - 209.4, s -

2 5.35 (s) 105.1, d C-1, C-3,
C-4, C-5 5.41 (s) 106.1, d C-1, C-3,

C-4, C-5
3 - 187.8, s - - 191.4, s -

4 3.28 (brs) 56.9, d C-1, C-2,
C-3, C-9, C-8 3.24 (brs) 58.5, d C-1, C-2,

C-3, C-9, C-8
5 - 58.3, s - - 63.1, s -

6
3.92 (d, J = 9.2)

69.5, t
C-1, C-5, C-9 3.65 (d, J = 10.7)

70.0, t
C-1, C-9

4.06 (d, J = 9.2) C-1, C-8, C-9 3.92 (d, J = 10.7) C-1, C-9

8 5.59 (s) 98.4, d C-3, C-5, C-6,
3-OCH3

5.40 (brs) 99.3, d C-3, C-5,
C-6, 3-OCH3

9
4.34 (d, J = 11.0)

62.9, t
C-1, C-4, C-5,
C-6, 9-OCHO 3.76 (d, J = 9.0)

62.9, t
C-1, C-4, C-5

4.54 (d, J = 11.0) C-1, C-4, C-5,
C-6, 9-OCHO 3.81 (d, J = 9.0) C-1, C-4, C-5

3-OCH3 3.90 (s) 59.3, q C-3 3.93 (s) 60.2, q C-3
9-OCHO 8.03 (s) 160.3, d C-9 - - -
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This deduction was confirmed by the 2D-NMR experiment (Figure 3): H-2 (δH 5.35)
correlated with the carbons C-1 (δC 203.4), C-3 (δC 187.8), C-4 (δC 56.9), and C-5 (δC 58.3);
H-4 (δH 3.28) correlated with the carbons C-1 (δC 203.4), C-2 (δC 105.1), C-3 (δC 187.8), C-8
(δC 98.4), and C-9 (δC 62.9); H-6 (δH 3.92 and 4.06) correlated with the carbons C-1 (δC 203.4)
and C-9 (δC 62.9); H-8 (δH 5.59) correlated with the carbons C-6 (δC 69.5), C-3 (δC 187.8),
and C-5 (δC 58.3); H-9 (δH 4.34 and 4.54) correlated with the carbons C-1 (δC 203.4), C-6 (δC
69.5), C-5 (δC 58.3), and C-4 (δC 56.9); 9-OCHO (δH 8.03) correlated with the carbon C-9 (δC
62.9); and 3-OCH3 (δH 3.90) with the carbon C-3 (δC 187.8). The relative configuration of 1
was assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY) correlations
between H-4 and H-9 and H-8 (Figure 3). Based on the data presented above, compound 1
was identified as nosporin C (Figure 4).
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Compound 2: This compound is a white solid with ESI-MS: 223 [M + Na]+; HR-ESI-
MS: 223.0576 ([M + Na]+); [α]20

D = 6.2 (c = 0.10, MeOH); and UV (MeOH) λmax (log ε) nm:
200 (3.55), 221 (2.89), and 277 (2.61).
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An analysis of the HR-ESI-MS data revealed a molecular formula of C9H12O5 based
on the [M + Na]+ ion signal at m/z 223.0576 (calcd. for C9H12O5Na, 233.0577). An analysis
of the spectroscopic data (Table 2) revealed that compound 2 is similar to compound 1
and the methyl group at 9-OH is not replaced (Figure 4). A 2D-NMR experiment verified
this deduction (Figure 3). The relative configuration of 2 was determined via NOESY
correlations between H-4 and H-9 and H-8. Based on the data presented above, compound
2 was identified as nosporin D (Figure 4).

Compound 3: Colorless oil, the molecular formula of compound 3 is C8H7ClO2. ESI-
MS: 193 [M + Na]+; 1H-NMR (CDCl3, 600 MHz) δH: 4.00 (3H, s), 7.05 (1H, d, J = 8.5 Hz),
7.79 (1H, dd, J = 2.0, 8.5 Hz), 7.91 (1H, d, J = 2.0 Hz); 13C-NMR (CDCl3, 150 MHz) δC:
56.5 (q), 111.7 (d), 123.7 (s), 130.3 (s), 130.5 (d), 131.2 (d), 159.8 (s), 189.7 (d). It was identified
as 3-chloro-4-methoxybenzaldehyde based on the data of reference [11].

Compound 4: Colorless oil, the molecular formula of compound 4 is C8H7ClO3. ESI-
MS: 209 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 3.95 (3H, s), 7.15 (1H, d, J = 8.6 Hz),
7.97 (1H, dd, J = 1.9, 8.6 Hz), 7.90 (1H, d, J = 1.9 Hz); 13C-NMR (CD3OD, 150 MHz) δC:
56.9 (q), 112.8 (d), 123.4 (s), 125.2 (s), 131.3 (d), 132.5 (d), 160.2 (s), 168.7 (s). It was identified
as 3-chloro-4-methoxybenzoic acid based on the data of reference [11].

Compound 5: Colorless oil, the molecular formula of compound 5 is C9H11ClO2.
ESI-MS: 209 [M + Na]+; 1H-NMR (CDCl3, 600 MHz) δH: 3.49 (3H, s), 3.90 (3H, s), 5.01 (2H,
s), 6.91 (1H, d, J = 8.5 Hz), 7.25 (1H, dd, J = 2.0, 8.5 Hz), 7.39 (1H, d, J = 2.0 Hz); 13C-NMR
(CDCl3, 150 MHz) δC: 50.9 (q), 56.2 (q), 65.3 (t), 111.9 (d), 128.1 (d), 1129.1 (s), 130.5 (d),
159.8 (s). It was identified as 2-chloro-1-methoxy-4-(methoxymethyl)benzene (Figure 4)
based on the data of reference [12].

Compound 6: Colorless oil, the molecular formula of compound 6 is C9H9NO2. ESI-
MS: 164 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 1.48 (3H, s), 6.88 (1H, d, J = 7.7 Hz),
7.04 (1H, t, J = 7.6 Hz), 7.24 (1H, t, J = 7.7 Hz), 7.34 (1H, d, J = 7.4 Hz); 13C-NMR (CD3OD,
150 MHz) δC: 24.7 (q), 74.7 (s), 111.2 (d), 123.7 (d), 124.5 (d), 130.4 (d), 134.4 (s), 142.1 (s),
182.6 (s). It was identified as 3-hydroxy-3-methyloxindole (Figure 4) based on the data of
reference [13].

Compound 7: Colorless oil, the molecular formula of compound 7 is C6H5NO2. ESI-
MS: 124 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 7.55 (1H, dd, J = 7.6, 5.0 Hz), 8.40
(1H, d, J = 8.0 Hz), 8.71 (1H, d, J = 5.9 Hz), 9.11 (1H, s); 13C-NMR (CD3OD, 150 MHz) δC:
125.2 (d), 129.0 (s), 139.2 (d), 151.3 (d), 153.5 (d), 168.0 (s). It was identified as nicotinic acid
(Figure 4) based on the data of reference [14].

Compound 8: Colorless oil, the molecular formula of compound 8 is C4H6O4. ESI-MS:
119 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 2.67 (4H, s); 13C-NMR (CD3OD, 150 MHz)
δC: 30.6 (t), 181.6 (s). It was identified as succinic acid (Figure 4) based on the data of
reference [15].

Compound 9: Colorless oil, the molecular formula of compound 9 is C4H8O4. ESI-MS:
121 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 2.36 (1H, d, J = 17.7 Hz), 2.82 (1H, dd,
5.9, J = 17.7 Hz), 4.21 (1H, d, J = 10.0 Hz), 4.42 (1H, dd, J = 4.4, 10.0 Hz), 4.55 (1H, m);
13C-NMR (CD3OD, 150 MHz) δC: 38.5 (t), 68.4 (d), 77.7 (d), 179.1 (s). It was identified as
3,4-dihydroxybutanoic acid (Figure 4) based on the data of reference [16].

Compound 10: White solid, the molecular formula of compound 10 is C10H13N5O4.
ESI-MS: 282 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 3.19 (3H, s, 5′-OCH3), 3.65 (1H,
dd, J = 2.4, 12.5 Hz, H-5a′), 3.78 (1H, dd, J = 2.6, 12.5 Hz, H-5b′), 4.05 (1H, m, H-4′), 4.232
(1H, m, H-3′), 4.38 (1H, m, H-2′), 5.95 (1H, d, J = 5.8 Hz, H-1′), 8.07 (1H, s, H-2′), 8.21 (1H, s,
H-8); 13C-NMR (CD3OD, 150 MHz) δC: 89.2 (d, C-1′), 84.6 (d, C-2′), 70.8 (d, C-3′), 88.4 (d,
C-4′), 63.2 (t, C-5′), 58.8 (q, 5′-OCH3), 153.6 (d, C-2), 150.0 (s, C-4), 120.9 (s, C-5), 157.6 (s,
C-6), 141.9 (d, C-8). It was identified as 5′-O-methyladenosine (Figure 4) based on the data
of reference [17].

Compound 11: White solid, the molecular formula of compound 11 is C9H12N2O6.
ESI-MS: 267 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 8.01 (1H, d, J = 8.1 Hz, H-6),
5.89 (1H, d, J = 4.7 Hz, H-1′), 5.69 (1H, d, J = 8.1 Hz, H-5′), 4.18 (1H, m, H-2′), 4.16 (1H, m,
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H-3′), 4.00 (1H, m, H-4′), 3.84 (1H, dd, J = 2.6, 12.2 Hz, H-5a′), 3.73 (1H, dd, J = 3.1, 12.2
Hz, H-5b′). 13C-NMR (CD3OD, 150 MHz) δC: 166.2 (C-4), 152.5 (C-2), 142.7 (C-6), 102.6
(C-5), 90.7 (C-1′), 86.4 (C-4′), 75.7 (C-3′), 71.3 (C-2′), 62.3 (C-5′). It was identified as uridine
(Figure 4) based on the data of reference [18].

Compound 12: White solid, the molecular formula of compound 12 is C9H12N2O5.
ESI-MS: 251 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 7.98 (1H, d, J = 8.1 Hz), 6.27 (1H,
t, J = 6.7 Hz, H-1′), 5.69 (1H, d, J = 8.1 Hz), 4.38 (1H, m, H-4′), 3.91 (1H, m, H-3′), 3.77 (1H,
dd, J = 3.2, 12.0 Hz, H-5a′), 3.72 (1H, dd, J = 3.7, 12.0 Hz, H-5b′), 2.27 (1H, m, H-2a′), 2.22
(1H, m, H-2b′); 13C-NMR (CD3OD, 150 MHz) δC: 166.0 (s, C-4), 152.2 (s, C-2), 142.5 (d, C-6),
102.6 (d, C-5), 89.0 (d, C-1′), 86.6 (d, C-4′), 72.3 (d, C-3′), 62.8 (t, C-5′), 41.4 (t, C-2′). It was
identified as 2′-deoxyuridine (Figure 4) based on the data of reference [19].

Compound 13: Colorless oil, the molecular formula of compound 13 is C10H13N2O5.
ESI-MS: 265 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 7.81 (1H, brs, H-6), 6.28 (1H, t,
J = 6.9 Hz, H-7), 4.40 (1H, t, J = 2.9 Hz, H-10), 3.90 (1H, brs, H-9), 3.80 (2H, m, H-12), 2.23
(2H, m, H-8), 1.87 (3H, s, 5-CH3); 13C-NMR (CD3OD, 150 MHz) δC: 166.4 (s, C-4), 152.4 (s,
C-2), 138.2 (d, C-6), 111.5 (s, C-5), 88.8 (d, C-7), 86.2 (d, C-10), 72.2 (d, C-9), 62.8 (t, C-12),
41.2 (t, C-8), 12.4 (q, 5-CH3). It was identified as thymidine (Figure 4) based on the data of
reference [20].

Compound 14: Colorless oil, the molecular formula of compound 14 is C11H11NO3.
ESI-MS: 206 [M + H]+; 1H-NMR (CD3OD, 600 MHz) δH: 7.46 (2H, m), 7.29–7.34 (3H, m),
4.55 (1H, brs), 4.41 (1H, d, J = 10.0 Hz), 4.21 (1H, d, J = 10.0 Hz), 2.82 (1H, dd, J = 17.7,
5.8 Hz), 2.36 (1H, d, J = 17.7 Hz); 13C-NMR (CD3OD, 150 MHz) δC: 179.1 (s), 176.8 (s),
141.2 (s), 129.4 (d), 129.4 (d), 129.1 (d), 128.0 (d), 77.7 (t), 68.4 (d), 38.5 (t). It was identified
as 3-(phenylmethyl)-2,5-morpholinedione (Figure 4) based on the data of reference [21].

Compound 15: Colorless oil, the molecular formula of compound 15 is C7H14O6. ESI-
MS: 217 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 3.16 (1H, m), 3.26 (1H, m), 3.30 (1H,
m), 3.37 (1H, m), 3.52 (3H, s), 3.67 (1H, dd, J = 12.1, 4.6 Hz), 3.87 (1H, dd, J = 12.4, 2.5 Hz),
4.16 (1H, d, J = 7.8 Hz); 13C-NMR (CD3OD, 150 MHz) δC: 105.4 (d), 78.0 (s), 77.9 (d), 75.0 (d),
71.6 (d), 62.7 (t), 57.3 (q). It was identified as methyl-β-D-glucopyranoside (Figure 4) based
on the data of reference [22].

Compound 16: Colorless oil, the molecular formula of compound 16 is C20H30O4.
ESI-MS: 413 [M + Na]+; 1H-NMR (CD3OD, 600 MHz) δH: 7.55 (1H, dd, J = 7.6, 5.0 Hz),
8.40 (1H, d, J = 8.0 Hz), 8.71 (1H, d, J = 5.9 Hz), 9.11 (1H, s); 13C-NMR (CD3OD, 150 MHz)
δC: 169.3 (s), 133.6 (s), 132.4 (d), 129.9 (d), 69.1 (t), 40.2 (d), 31.6 (t), 30.1 (t), 25.0 (t), 24.0
(t), 14.0 (q), 11.4 (q). It was identified as 1,2-benzenedicarboxylic acid bis(2-methyl heptyl)
ester (Figure 4) based on the data of reference [23].

Compound 17: Colorless oil, the molecular formula of compound 17 is C29H50O.
ESI-MS: 437 [M + Na]+; 1H-NMR (CDCl3, 600 MHz) δH: 5.30 (d, J = 5.5 Hz, H-6), 3.51 (1H,
brm, H-3α), 1.00 (3H, brs, H-19), 0.86 (3H, d, J = 6.0 Hz, H-29), 0.85 (3H, d, J = 6.5 Hz, H-27),
0.82 (3H, d, J = 6.2 Hz, H-26), 0.67 (3H, brs, H-18); 13C-NMR (CDCl3, 150 MHz) δC: 37.33
(C-1), 31.63 (C-2), 69.51 (C-3), 41.98 (C-4), 141.17 (C-5), 119.94 (C-6), 31.15 (C-7), 31.81 (C-8),
49.57 (C-9), 36.74 (C-10), 21.66 (C-11), 39.80 (C-12), 41.98 (C-13), 55.41 (C-14), 24.19 (C-15),
28.60 (C-16), 56.04 (C-17), 11.36 (C-18), 19.30 (C-19), 36.74 (C-20), 18.75 (C-21), 33.30 (C-22),
25.73 (C-23), 45.14 (C-24), 29.15 (C-25), 20.37 (C-26), 19.30 (C-27), 23.56 (C-28), 11.03 (C-29).
It was identified as β-sitosterol (Figure 4) based on the data of reference [24].

Compound 18: Colorless oil, the molecular formula of compound 18 is C29H52O2.
ESI-MS: 455 [M + Na]+; 1H-NMR (CDCl3, 600 MHz) δH: 3.56 (1H, brs, H-3), 3.40 (1H,
brs, H-6), 0.63 (3H, s, H-18), 0.79 (3H, s, H-19), 0.88 (3H, d, J = 6.4 Hz, H-21), 0.81 (6H,
d, J = 6.6 Hz, H-26/H-27), 0.80 (3H, t, J = 7.8 Hz, H-29); 13C-NMR (CDCl3, 150 MHz) δC:
37.3 (C-1), 31.0 (C-2), 71.3 (C-3), 32.2 (C-4), 51.7 (C-5), 69.5 (C-6), 41.7 (C-7), 34.3 (C-8), 53.8
(C-9), 36.1 (C-10), 21.1 (C-11), 39.8 (C-12), 42.5 (C-13), 56.1 (C-14), 24.2 (C-15), 28.2 (C-16),
56.1 (C-17), 12.0 (C-18), 13.4 (C-19), 36.1 (C-20), 18.7 (C-21), 33.9 (C-22), 26.0 (C-23), 45.8
(C-24), 29.1 (C-25), 19.8 (C-26), 19.0 (C-27), 23.0 (C-28), 12.0 (C-29). It was identified as
3β,6α-diol-stigmastane (Figure 4) based on the data of reference [25].
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3.3. Nematicidal Activity of Compounds

Compounds 1, 2, 4, 5, 6, 8, and 9 were tested for their nematocidal activity against M.
incognita and P. redivivus. The results showed that all seven compounds caused less than
15% nematode mortality at 48 h (Figure S1) when the concentration of tested compounds
was 400 ppm, and also did not show significant differences compared to the control.

4. Discussion

Nosporin C (1) and nosporin D (2) are newly discovered metabolites in this study, and
their structure types are polyketides. In previous research, nosporins A and B, which are
the structural analogues of nosporins C (1) and D (2), were isolated from the filamentous
fungus VKM-3750, and possessed cytotoxic effects on the sea urchin Strongylocentrotus
intermedius and antibacterial effects on Gram-positive bacilli [10].

3-Chloro-4-methoxybenzaldehyde (3) was obtained from the white-rot basidiomycete
Pleurotus ostreatus. 4-Methoxybenzaldehyde is the structural analog of 3, which has one less
chlorine substituent group than 3 and has efficacy against Bacillus subtilis, Pseudomonas aerug-
inosa, Aspergillus niger, and Fusarium oxysporum [26]. This compound was also discovered
in Anthracophyllum discolor, showing antibacterial activity [27]. 3-Chloro-4-methoxybenzoic
acid (4) was isolated from Bjerkandera adusta, which can promote the activity of two key pro-
tein degradation systems in human foreskin fibroblasts, the autophagy–lysosomal pathway
(ALP), and the ubiquitin–proteasome pathway (UPP). It is important in the development
of new regulators of the proteostasis network and has the potential to be an anti-aging
agent [28]. In addition, 4 has been reported to possess anti-Escherichia coli and anti-Candida
albicans activities [29]. 2-Chloro-1-methoxy-4-(methoxymethyl)benzene (5) is an aromatic
compound [12] whose structural analog (methoxymethyl)benzene is a major constituent of
the floral scents of Nymphaea lasiophylla and Nymphaea lingulata [30].

The organic synthesis process of 3-hydroxy-3-methyloxindole (6) [31] has been re-
ported. This imine may be oxidized to 6 by a cytosolic enzyme, aldehyde oxidase [31]. The
substitution and cyclization processes with indole ring-related compounds have subse-
quently been reported [13]. The vitamin B group’s well-known pharmaceutical compound,
nicotinic acid (7), has garnered a lot of attention in recent years due to its crucial function
in the treatment of human disorders like pellagra. This compound has anti-tuberculosis
activity [32] and fibrinolytic activity [33]. In the chemical industry, succinic acid (8) is a
highly valued biological raw ingredient. It serves as a precursor for a variety of other
compounds [34], such as 1,4-butanediol, tetrahydrofuran, biodegradable polymers, and
fumaric acid. In a previous study, the concentration of this compound was positively
correlated with the area of colonic mucosal erosion formation in rats [35].

Uridine (11) is the precursor substance for uracil, which is widely produced in nature
via the decarboxylation of uronic acid that is catalyzed by the enzyme uridine decarboxy-
lase [36]. It has been shown that uracil can be used as a nutrient source in the tumor mi-
croenvironment, and studies targeting the uracil synthesis pathway suggest that uracil may
become a new target for cancer and immunotherapy in the future [36]. 2′-Deoxyuridine (12)
is a nucleoside analog that has a very similar chemical composition to uracil but lacks the 2′

hydroxyl group, which is used in antiviral medicines that are derivatives of deoxyuridine,
and the application of 12 is as a precursor in the production of edoxuridine [19]. Thymidine
(13) is also isolated from Hydrilla verticillata [20], and the structural analog of 13, azidothymi-
dine (AZT), is commonly used to treat HIV infection [37]. 1,2-Benzenedicarboxylic acid
bis(2-methyl heptyl) ester (16) is obtained from Phellinus linteus, and previous in silico
and in vitro results have validated that 16 could be exploited as a promising pancreatic
lipase inhibitor [38]. β-Sitosterol (17) has been reported to be present in different parts of
plants, such as fruits, leaves [39], and rhizomes [40], and possesses anti-inflammatory and
immunomodulatory activities [41].



Microorganisms 2023, 11, 2693 10 of 12

5. Conclusions

Nematode-trapping fungi can capture nematodes by producing traps. Some recent
studies have shown that metabolites play a role in the process of these fungi capturing
nematodes, such as 3-methoxy-3-methyl-1-butanol [42] and 6-methylsalicylic acid [43],
with nematode attraction activity identified from Orbilia oligospora and Arthrobotrys fla-
grans, and C-280 [44] with nematicidal activity isolated from O. oligospora. These results
indicate that nematode-trapping fungi have the potential to produce a variety of active
secondary metabolites.

In our previous studies, the genome of D. haptotyla YMF1.03409 was found to contain
relatively rich information on biosynthetic gene clusters, and a compound with broad-
spectrum nematicidal activity, 2-furoic acid, was identified. In addition to being isolated
from its fermentation products, 2-furoic acid could increase production during the process
of D. haptotyla YMF1.03409 infection with nematodes. These results suggest that D. haptotyla
YMF1.03409 possesses the ability to produce abundant metabolites [45]. Therefore, in this
study, we continued to carry out further investigation on the metabolites of D. haptotyla
YMF1.03409. By extracting and isolating the fermentation products, a total of eighteen
compounds were purified and identified as polyketides, steroids, aromatic compounds,
organic acids, and nucleosides, including two new polyketides, nosporins C (1) and D (2).
Some of these compounds have also been reported to possess diverse activities in previous
research. In the future, metabolic regulation can be employed to boost the active secondary
metabolites of D. haptotyla YMF1.03409 and apply them to biological control. Alternatively,
the secondary metabolites information in D. haptotyla YMF1.03409 could be further mined
via the heterologous expression technique. Our study deepens the understanding of the
secondary metabolites of D. haptotyla YMF1.03409 and also lays the foundation for the
application of this species in the future.
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(B) Activity against P. redivivus of compounds at 400 ppm.
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