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Abstract: Bacteremia and endocarditis are two clinical syndromes that, for decades, were managed ex-
clusively with parenteral antimicrobials, irrespective of a given patient’s clinical condition, causative
pathogen, or its antibiotic susceptibility profile. This clinical approach, however, was based on low-
quality data and outdated expert opinions. When a patient’s condition has improved, gastrointestinal
absorption is not compromised, and an oral antibiotic regimen reaching adequate serum concentra-
tions is available, a switch to oral antibacterials can be applied. Although available evidence has
reduced the timing of the oral switch in bacteremia to three days/until clinical improvement, there
are only scarce data regarding less than 10-day intravenous antibiotic therapy in endocarditis. Many
standard or studied oral antimicrobial dosages are smaller than the approved doses for parenteral
administration, which is a risk factor for treatment failure; in addition, the gastrointestinal barrier
may affect drug bioavailability, especially when the causative pathogen has a minimum inhibitory
concentration that is close to the susceptibility breakpoint. A considerable number of patients in-
fected by such near-breakpoint strains may not be potential candidates for oral step-down therapy to
non-highly bioavailable antibiotics like beta-lactams; different breakpoints should be determined
for this setting. This review will focus on summarizing findings about pathogen-specific tailoring of
oral step-down therapy for bacteremia and endocarditis, but will also present laboratory and clinical
data about antibiotics such as beta-lactams, linezolid, and fosfomycin that should be studied more in
order to elucidate their role and optimal dosage in this context.

Keywords: bacteremia; endocarditis; oral treatment; Enterobacterales; Staphylococcus; Streptococcus;
Enterococcus; Pseudomonas

1. Introduction

Bacteremia and infective endocarditis are two clinical entities associated with in-
creased morbidity and mortality. Most of the time, hospital admission is necessary, leading
to increased hospital stays and healthcare costs. To date, there are no guidelines for
oral step-down therapy in patients with bacteremia when the patient’s clinical condition
has improved. As a result, this topic is still a matter of debate, and lots of physicians
are reluctant to implement it in their everyday practice, especially among patients with
S. aureus bacteremia or infective endocarditis [1]. A previous survey has showed that there
are geographical discrepancies regarding treatment strategies between infectious disease
specialists, and lots of healthcare providers apply oral step-down only for some sources of
bacteremia (more commonly acute bacterial skin/skin structure infections (ABSSSI) and
urinary sources) [2].

This strategy, except for cost minimization, could reduce healthcare-associated com-
plications, including infections, and discomfort among patients who would otherwise
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receive inpatient or outpatient parenteral antimicrobial therapy (OPAT) [3,4]. OPAT is not
adverse-event-free: 9% of 1461 OPAT courses from a study conducted in the US had at least
one intravenous (IV) access complication requiring intervention [5]. A significant event
in 14.5% of the cases was reported in another study [6]. The complication rate rises when
a long-term IV antibiotic regimen is opted for. The mean time for the first complication
reported in a prospective cohort for peripherally inserted central catheters (PICCs) was
16.1 days, whereas the overall complication rate was 30.2% including occlusion, accidental
removal, infection, and thrombosis [7]. Oral therapy also improves patients’ quality of life
by reducing in-hospital length of stay, which is one of the axes of antimicrobial stewardship,
and eliminates restriction in daily activities and social life that a central catheter can cause,
as well as other difficulties such as mobility restriction due to the IV catheter [6,8]. As a
result, patients likely prefer oral antibiotic therapy [9].

In recent years, several studies, the majority of them retrospective, have been published
or are ongoing in this setting, mostly using oral antibiotic monotherapy for bacteremia and
combination therapy for endocarditis, even though it is still unclear if antibiotic combination
is indeed superior in some cases or if it simply serves as a safety net for patients who will
have subtherapeutic blood levels of the first-choice antibiotic.

2. Methods

A systematic literature search was conducted using PubMed and PubMed Central
from inception until 15 October 2023. Several research terms were used to identify relevant
literature: “oral” AND “bacteremia”, “oral” AND “endocarditis”, “oral penicillin” OR “oral
amoxicillin” OR “oral amoxicillin/clavulanate” OR “oral cloxaxillin” OR “oral dicloxacillin”
OR “oral cefalexin” OR “cefuroxime axetil” OR “cefaclor” OR “cefprozil” OR “cefixime” OR
“cefditoren” OR “cefpodoxime” OR “ciprofloxacin” OR “levofloxacin” OR “moxifloxacin”
OR “oral fluoroquinolones” OR “trimethoprim-sulfamethoxazole” OR “clindamycin” OR
“linezolid” OR “tedizolid” OR “rifampin” OR “rifampicin” OR “metronidazole” OR “oral
fosfomycin” AND “bacteremia”, “oral penicillin” OR “oral amoxicillin” OR “oral amoxi-
cillin/clavulanate” OR “oral cloxaxillin” OR “oral dicloxacillin” OR “oral cefalexin” OR
“cefuroxime axetil” OR “cefaclor” OR “cefprozil” OR “cefixime” OR “cefditoren” OR
“cefpodoxime” OR “ciprofloxacin” OR “levofloxacin” OR “moxifloxacin” OR “oral fluo-
roquinolones” OR “trimethoprim-sulfamethoxazole” OR “clindamycin” OR “linezolid”
OR “tedizolid” OR “rifampin” OR “rifampicin” OR “metronidazole” OR “oral fosfomycin”
AND “endocarditis”. Results were screened for appropriateness by the first and the last
author, according to title and abstract. Most relevant papers were further assessed by full
content; their references were also reviewed and assessed when appropriate. Only articles
published in the English language were included. Article types included clinical studies,
experimental studies, clinical trials, and reviews.

3. Effect of Acute Febrile Infection on Oral Antibiotic Absorption

Fever and acute infection in non-critically ill patients do not seem to affect oral absorp-
tion of antibiotics when the infection is outside the gastrointestinal tract [10]. In addition, a
retrospective study from two Brazilian intensive care units showed no difference in mortal-
ity when in-hospital step-down to oral antimicrobials was applied in initially septic patients
(most often from pneumonia) that had reached clinical stability [11]. A proportion 60.9% of
the cases received fluoroquinolones, which seems rational because oral bioavailability of
levofloxacin is similar to IV, even in critically ill patients [11,12].

3.1. Bacteremia and Oral Antibiotics
3.1.1. Gram-Negative Bacteremia
Enterobacterales Bacteremia: Clinical Efficacy Data and Upcoming Trials

Plenty of evidence regarding oral step-down in cases of bacteremia caused by
Enterobacterales is available from retrospective studies. All treatment outcomes have been
analyzed in several publications compared with patients who received parenteral an-
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tibiotics for the whole course of infection (re-initiation of IV antibiotics, microbiological
recurrence, bacteremia-related death within 21 days of negative blood cultures, 30-day
urinary tract infection (UTI) recurrence, and 30-day and 90-day bacteremia recurrence
and mortality); no statistically significant difference was identified in any of them [13–17].
These differences remained non-significant between different sources of bacteremia (UTI,
gastrointestinal tract, catheter-related bloodstream infection (CRBSI), and primary bac-
teremia) [13–16,18,19]. Oral de-escalation with fluoroquinolones has been also reported
even in patients with hematological or solid malignancies without prolonged bacteremia
or neutropenia for >5 days [20]. Appropriate source control upon indications (e.g., biliary
drainage, removal of infected catheter, resolution of urinary obstruction) seems to be a
prerequisite before oral switch [14,21–23]. In addition, some studies have provided us
evidence about significantly higher rate of IV-line complications in those receiving IV-only
antibiotics [13,20]. Patients who received only parenteral regimens stayed in the hospital
for a median of 6–7 days, whereas the group which underwent oral de-escalation had a
shorter median length of stay (4–5 days) [13–15].

Small, randomized trials have been published in this setting, too. Park et al. revealed
no difference in bacterial eradication, infection recurrence or 30-day mortality studying pa-
tients with bacteremic cholangitis after successful biliary drainage when oral ciprofloxacin
was used after six days of IV treatment [21]. Moreover, within the population of a random-
ized trial showing that a 1-week regimen is not inferior to a 2-week antibiotic treatment
after source control in patients with Gram-negative bacteremia (mainly from UTI), 64%
of short arm participants underwent oral step-down [24]. Oral-only ciprofloxacin reg-
imen has been also applied to an older randomized trial for hospitalized adults with
pyelonephritis or other complicated UTIs where 42% and 33%, respectively, had concomi-
tant bacteremia, with low rates of poor clinical or microbiological response [25]. The
upcoming results from the completed, randomized, non-inferiority SOAB (switch to oral
antimicrobials in Gram-negative bacteremia) trial (NCT04146922) for individuals with
bloodstream infection caused by Enterobacterales who are afebrile and hemodynamically
stable after source control and have received a minimum of 3-day IV therapy will fur-
ther enhance data in this topic [26]. Another randomized, non-inferiority trial (INVEST
[NCT05199324]) for non-critically ill, non-severely immunocompromised participants with
Gram-negative bacteremia is at the recruiting phase and will hopefully provide evidence
about outcomes and cost-effectiveness of early (within 72 h) oral switch to ciprofloxacin or
trimethoprim/sulfamethoxazole (TMP/SMX) [27].

Oral antimicrobials have been evaluated in pediatric populations against bacteremia
caused by Salmonella spp., too. Data derived from a study in Nigeria indicate that oral
ciprofloxacin for Salmonella bacteremia seems to be a common practice [28]. Patients receiv-
ing ciprofloxacin may have lower rates of microbiological failure and relapse compared to
cefixime [29]. However, in a randomized trial from Pakistan, cefixime was as effective as
ceftriaxone for bacteremic typhoid fever; more than 8-day treatment may not provide any
additional benefit [30,31].

Enterobacterales Bacteremia: Oral Agent Selection

Oral switch can be performed as early as three days after IV treatment initiation,
once the patient is afebrile for 1–2 days and clinical and laboratory improvement has
been observed [13,17,21,23]. Concerning the choice of oral agent, most studies have used
high-bioavailability drugs such as levofloxacin or moderate-bioavailability drugs like
ciprofloxacin and TMP/SMX [13,21]. When the aforementioned antibiotics were the antibi-
otics of choice for oral step-down in an observational study of adults with bacteremic UTI
performed at 24 US hospitals, no difference in odds of recurrence between patients who
received 1- or 2-week regimens was observed [18]. In a meta-analysis, oral or IV fluoro-
quinolones were non-inferior to other antibiotics when used as definitive therapy even for
bacteremia from extended-spectrum beta-lactamase (ESBL)-producing strains, if quinolone-
susceptible; similar outcomes for fluoroquinolones or TMP/SMX versus carbapenems
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were observed against ESBL or AmpC producers [32,33]. These favorable results likely
explain the higher incidence of OPAT reported in fluoroquinolone-resistant Gram-negative
bacteremia [34].

Nevertheless, in addition to their high utility, fluoroquinolones can have, like any
drug, toxicity issues, too. Out of all antibiotic classes, fluoroquinolones have the highest
hospitalization rates due to adverse effects according to the 2013–14 US registry which
reported emergency department examinations for a drug-induced etiology [35]. Of the
cases, 14.5% that had an emergency visit in this study due to fluoroquinolone use needed
hospital admission; the main adverse events consisted of allergic reactions, gastrointestinal
symptoms (abdominal pain, diarrhea, bloating, vomiting), neuropsychiatric manifestations
(seizures, lethargy, confusion, dizziness), musculoskeletal complaints such as tendini-
tis, and secondary infections, primarily Cl. difficile colitis and mucosal candidiasis [35].
Fluoroquinolones should therefore be administered with great caution and close follow-
up to individuals with a history of seizures, psychiatric disease, dementia, as well as
QTc prolongation.

There is also evidence, however, that if beta-lactams are appropriately dosed are
equally effective, provided that are able to achieve adequate serum levels. When beta-
lactam antibiotics compared with fluoroquinolones or TMP/SMX in an observational study
among 4089 adults with UTI plus bacteremia, non-significant differences in UTI recurrence,
30- and 90-day bacteremia recurrence and all-cause mortality were found when individuals
had previously received 4–5 days of effective IV antimicrobial therapy; treatment failure
was comparable for patients who received beta-lactams and fluoroquinolones in other ret-
rospective analyses from the US and Canada, too [19,36,37]. Similar results were reported
by Mercuro et al., who also included several patients with intra-abdominal source of bac-
teremia [23]. In addition, patients in oral beta-lactam arm experienced significantly fewer
adverse events [23]. The aforementioned study showed that a more than 10-day treatment
did not have more clinical or microbiological success or less 30-day readmission rates,
even for oral beta-lactams [23]. On the other hand, beta-lactam step-down therapy was
inferior to fluoroquinolones or TMP/SMX in other retrospective studies for Enterobacterales
bacteremia [22,38,39]. Oral beta-lactam administration was associated with increased risk
of 90-day mortality and recurrence, mainly due to cefdinir use in some patients, which is
an antibiotic not reaching adequate serum concentrations, in one study and due to low oral
beta-lactam dosages in others [22,38–40].

Oral Cephalosporins for Enterobacterales Bacteremia: PK/PD Data

Current susceptibility breakpoints defined by European Committee on Antimicro-
bial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute
(CLSI) for oral cephalosporins cannot be implemented in bacteremia cases; for EUCAST,
in particular, these breakpoints can be applied only for uncomplicated UTI. Pharmacoki-
netic/pharmacodynamic (PK/PD) studies showed with Monte Carlo simulations, consid-
ering the bactericidal target %f T > minimum inhibitory concentration (MIC) > 60–70%,
that probability of target attainment (PTA) > 90% in serum could not be achieved with
regular cefuroxime dosing (500 mg bid); the same results were reported with cefditoren
and confirmed in another study, even when the target was %f T > MIC > 40% [40–42].
Considering these studies, cefaclor and cefprozil should not be choices for oral treatment
of bacteremia, too [40,42]. Even when high-dose cefuroxime (500 mg tid) was simulated,
PTA was >90% only for MIC ≤ 0.5 mg/L, thus far below the breakpoint [41]. On the
other hand, cefixime reached PK/PD target for MIC ≤ 0.5 mg/L, but only when pre-
scribed in high doses (400 mg bid); similar pharmacological targets seem to be achievable
using cefpodoxime in the same dose [40,41]. Regarding cefalexin, high doses of 1 g qid
and 500 mg qid can reach PTA > 90% for MIC ≤ 4 and ≤2 mg/L, respectively, if the target is
%f T > MIC > 40%; similar findings have been also previously published [40,42]. Other
study has reported PTA > 90% (with a target of %f T > MIC > 70%) if MIC is ≤1.5 and
≤3 mg/L for 1 g tid and 1 g qid regimens, respectively (see also Table 1) [43].
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Table 1. Oral antibiotic dosages for bacteremia and infective endocarditis/beta-lactams.

Oral
Antibiotic Microorganism MIC

(mg/L) Dosage Dose Adjustment
for Special Populations References

Amoxicillin
Enterobacterales;

Streptococci;
Enterococci

≤1
1–2
>2

1 g tid
1 g qid
Avoid

eGFR ≤ 10 mL/min or dialysis-dependent
patients:
1 g bid

[40,44–47]

AMX/CLAV Enterobacterales ≤2
>2

1000/125 mg
tid

Avoid

eGFR ≤ 10 mL/min or dialysis-dependent
patients:

1000/125 or 875/125 mg bid
[42,46,48]

Cefalexin Enterobacterales
≤1.5
≤3
>3

1 g tid
1 g qid
Avoid

eGFR 10–30 mL/min:
1 g tid

eGFR ≤ 10 mL/min or dialysis-dependent
patients:
1 g bid

[43,49]

Cefuroxime
axetil

Enterobacterales;
Streptococci

≤0.5
>0.5

500 mg tid
Avoid None [41]

Cefixime
-

Cefpodoxime

Enterobacterales;
Streptococci

≤0.5
>0.5

400 mg bid
Avoid None [40,41]

List of abbreviations: MIC, minimum inhibitory concentration; eGFR, estimated glomerular filtration rate; bid,
two times a day; tid, three times a day; qid, four times a day; AMX/CLAV, amoxicillin/clavulanate.

Pseudomonas Bacteremia: Clinical Efficacy Data

Ciprofloxacin and levofloxacin are to date the only studied and commercially available
oral options against systemic infections caused by Pseudomonas spp. A retrospective
study with Pseudomonas bacteremia cases revealed that 28-day mortality rate stratified by
APACHE II and Pitt bacteremia score was not statistically different between patients who
were treated with fluoroquinolone or antipseudomonal beta-lactam [50]. Notably, 44.4%
of patients at the fluoroquinolone group continued the drug orally after a median of six
days IV [50]. In addition, retrospective data for Pseudomonas bacteremia derived from a
systematic review and meta-analysis did not show any worse outcomes in subjects who
received fluoroquinolones, even though oral switch was applied in a substantial percentage
of cases [51].

Oral Ciprofloxacin for Gram-Negative Bacteremia—PK/PD and TDM Data

Oral ciprofloxacin may have less bioavailability compared to newer fluoroquinolones
but is still a drug of choice from this category against Gram-negative bacteria, especially
in endemic tuberculosis areas where levofloxacin and moxifloxacin are reserved for these
patients. Retrospective studies have shown its potency and safety against Gram-negative
bacteremia regardless of the causative microorganism [52,53]. When ciprofloxacin is used
for bacteremia, the efficacy target should be area under the curve (AUC)0–24/MIC ≥ 125,
because probability for clinical and microbiological cure rises substantially above this
limit [54,55]. PK/PD studies suggest high PTA for 500 mg bid orally if MIC ≤ 0.125 mg/L;
750 mg bid is expected to be adequate for MIC ≤ 0.25 mg/L, as is the dose of 1200 mg/day
IV [10]. These findings are corroborated by therapeutic drug monitoring (TDM) data. When
500 mg bid regimen was prescribed against strains with an MIC of 0.25 mg/L, PTA was
only 41%, which rose to 72% after 1–2 days of treatment [56]. For the EUCAST breakpoint
of 0.5 mg/L for Enterobacterales (except Salmonella) and Pseudomonas, none of these regimens
can reach PK/PD targets [10,56]. Only very high dosages (1 g bid) that are not suggested by
European Medicines Agency could be sufficient [56,57]. Guideline-indicated dose reduction
in patients with impaired renal function is expected to further reduce PTA because reduced
renal clearance of ciprofloxacin in this context is compensated, to a great extent, by fecal
elimination (see also Table 2) [56,58].
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3.1.2. Gram-Positive Bacteremia
S. aureus Bacteremia: Clinical Efficacy Data

Oral treatment for staphylococcal bacteremia is not a novel concept. Carney et al.
reported a series of 18 oncology patients with staphylococcal bacteremia who were switched
to oral dicloxacillin or cefalexin 1 g qid after a mean of 9-day IV therapy from as early as
the 1980s, resulting in clinical and bacteriological cure in all cases except 1 [59]. Several
retrospective studies have been published data about safety and efficacy of oral step-down
in patients with bacteremia from S. aureus. Diego-Yagüe et al. found no difference in
90-day microbiological failure, relapse, and mortality when patients with uncomplicated
bacteremia who had already received IV treatment for a median of one week underwent
oral de-escalation compared with a cohort that received IV-only therapy; approximately
one-third of the subjects received oral fluoroquinolones and another half of them oral
beta-lactams [60]. Oral beta-lactams (mainly flucloxacillin 1 g tid) were also predominantly
prescribed to 81 low-risk, mostly CRBSI, bloodstream infections in a retrospective study
from New Zealand, when 5 days of IV treatment had preceded [61]. This approach resulted
in low 90-day recurrence and mortality (4% and 2%, respectively) [61]. Another single-
center study including 70 persons with variable sources of bacteremia (mainly ABSSSI)
who underwent oral de-escalation reported a 7.1% 90-day clinical failure rate; 90-day
readmission rate, however, was 32.9% [62]. The most commonly prescribed oral antibiotics
were linezolid, TMP/SMX and clindamycin after a median of eight days [62].

Similar results are available even for complicated bacteremia. Pérez-Rodríguez et al.
reported no differences in clinical cure, death or 90-day recurrence in an observational
study that almost half of the patients had a bone infection as the source of their bac-
teremia, whereas hospital stay was statistically shorter in the oral step-down group
(36 vs. 18 days) [63]. Oral monotherapy was administered; two-thirds of the subjects
received TMP/SMX [63]. Unlike other sources of bacteremia, de-escalation to oral antimi-
crobials should not be applied before the first week of treatment in patients with bone and
joint-originated infection based on the design of OVIVA trial [64]. In addition, a retrospec-
tive cohort analysis including S. aureus infective endocarditis or bacteremia with epidural
abscess, vertebral osteomyelitis or septic arthritis in people who inject drugs showed that
microbiological failure did not differ between patients who were discharged with oral
antibiotics (either monotherapy or antibiotic combination) after a 10-day IV regimen and
patients who received only parenteral antibiotics [65].

Regarding non-observational data, a meta-analysis of older randomized trials for
linezolid in S. aureus ABSSSI and pneumonia revealed that patients with concomitant
bacteremia had received oral linezolid after 8.6 days of IV treatment [66]. In addition, a
fluoroquinolone (fleroxacin in particular)–rifampicin combination has been used orally for
the whole course of treatment in S. aureus bacteremia versus parenteral flucloxacillin or van-
comycin in a randomized trial that showed no significant difference in cure rate [67]. How-
ever, patients from the IV arm had an 11-day longer median hospital stay [67]. TMP/SMX,
even in a dose of 320 mg/1600 mg bid, should not be used as monotherapy during the
initial, IV part of treatment for bacteremia patients because it failed to meet non-inferiority
criteria versus vancomycin, thus increasing treatment failure risk [68,69]. However, it
can be used as oral step-down therapy according to all the aforementioned retrospective
data, UK guidelines, as well as the results of the long awaited SABATO trial, where oral
TMP/SMX 160/800 mg bid was used in 58.3% of the cases; another 32.4% of the partici-
pants received oral clindamycin 600 mg tid [68,70]. In this study, patients with low-risk
S. aureus bacteremia were randomized to either an oral antimicrobial or to continue with
IV therapy after 5–7 days of parenteral antimicrobial treatment; non-inferiority criteria
for the composite primary endpoint (90-day relapse, evolution of deep-seated infection
or mortality attributable to primary infection) were met [70]. These data enriched the
available evidence about oral treatment in bacteremia for clinically improved patients
without prolonged bacteremia, concomitant pneumonia or other deep-seated infectious
focus; subjects in the oral switch group hospitalized for 3.1 days less, too [70].
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S. aureus Bacteremia: Duration of Treatment

Less than 2-week regimens should generally be avoided given the findings of Chong
et al., where no relapses of uncomplicated S. aureus bacteremia occurred in patients who
were treated for ≥14 days [71]. Duplex ultrasonography may be helpful in order to distin-
guish cases of septic thrombophlebitis in apparently uncomplicated cases of staphylococcal
CRBSI that could lead to the appropriate extension of treatment duration and consequently
less relapse rates [72].

Linezolid for S. aureus Bacteremia

Linezolid is suggested as the first-choice alternative drug for methicillin-resistant S.
aureus (MRSA) bacteremia by the UK guidelines when vancomycin is contraindicated [68].
This recommendation may be easily extrapolated to oral linezolid, given the fact that this
drug has excellent oral bioavailability. It should be noted here that an older randomized
trial has showed that linezolid was non-inferior to vancomycin or oxacillin in patients with
Gram-positive, mostly staphylococcal, CRBSI in terms of clinical or microbiological failure
and mortality [73]. Good results (17.1% 90-day infection-related readmission, 4% 90-day
mortality) have been also published from 54 patients who received oral linezolid after a
median of 5-day IV treatment; these subjects experienced significantly less line-associated
and total adverse events requiring readmission compared with vancomycin or daptomycin
OPAT [74]. Another study for oral linezolid in this setting was a prospective cohort study
from Spain with mostly uncomplicated catheter and ABSSSI-originated bacteremia [75].
Oral switch after a median of one week resulted in 30-day mortality and 90-day relapse
rates comparable to conventional parenteral regimens; patients from the IV-only group,
however, had a longer hospital stay (19 vs. 8 days) [75].

Clindamycin for S. aureus Bacteremia

Clindamycin, on the other hand, had been prescribed as oral monotherapy, mostly
when ABSSSI was the source of bacteremia, after a median of six days of IV antimicro-
bials in a retrospective study from Australia [76]. It is notable that, when the source of
bacteremia is osteomyelitis, a classic oral dosage of 600 mg tid is probably suboptimal in
patients weighing >75 kg according to a PK/PD study using data from clindamycin TDM
in 50 patients with bone infection; 900 mg tid is needed in such cases (see also Table 2) [77].
The reasons for this are the augmented clindamycin clearance when body weight increases,
despite an oral bioavailability of 87.6%, and clindamycin bone penetration rate of approxi-
mately 30% [77,78]. Oral clindamycin should not be co-administered with rifampicin unless
clindamycin TDM is available because in a study for osteoarticular infections, clindamycin
serum concentrations (trough and peak) were systematically below the recommended ther-
apeutic targets when combined with rifampicin [79,80]. In contrast, this was not the case
neither for IV clindamycin in continuous infusion when co-administered with rifampicin
nor for clindamycin–levofloxacin combination [79,80]. In particular, data from an observa-
tional PK study comparing the effect of rifampicin on IV and oral clindamycin metabolism
revealed that route of administration plays a major role; when oral clindamycin was given,
AUC0–8h decreased 12 times (3.1 versus 37.7 mg·h/L) compared with the same continuous
IV dose [80]. Because rifampicin has only a small influence on clindamycin half-life, this
effect is probably due to increased hepatic first-pass metabolism of clindamycin in the case
of oral intake, thus reducing clindamycin oral bioavailability from 59.7% to 15.1% in this
study [80].

Fluoroquinolones for S. aureus Bacteremia

Fluoroquinolone monotherapy against S. aureus is generally not preferred in most
guidelines due to on-treatment resistance issues irrespective of infection type. However,
not all antibiotics of this class are the same. Moxifloxacin seems to be the most potent
“anti-staphylococcal fluoroquinolone”. An older PD model has showed that the equivalent
daily dose of 400 mg of moxifloxacin against S. aureus is 5000 mg of levofloxacin, well above
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the studied human daily doses, whereas in another model ciprofloxacin was probably
suboptimal even in a dosage of 750 mg bid [81,82]. The MIC breakpoint for killing and
resistance suppression for moxifloxacin 400 mg qd should be ≤0.06 mg/L based on a
pharmacometric PK/PD model derived from plasma and target site TDM, far below the
established breakpoint of 0.25 mg/L; microbial subpopulations with acquired resistance to
moxifloxacin could emerge if used as monotherapy above this threshold [83]. High-dose
moxifloxacin (800 mg/day) can increase this breakpoint to ≤0.125 mg/L, which is a dose
that has been successfully used for tuberculosis; further data are needed before applying
such strategy in everyday routine (see also Table 2) [83,84].

Moxifloxacin has also been effectively used in other biofilm-associated infections
caused by S. aureus like orthopedic implant-related infections, either as monotherapy or
in combination with rifampicin, even though studies on tuberculosis have shown that
rifampicin lowers moxifloxacin serum levels by approximately 30% [85–88]. Relapses in
such infections were not attributed to on-treatment moxifloxacin resistance, as opposed to
when ciprofloxacin had been previously used as monotherapy [85,86,89].

Rifampicin-Containing Regimens for S. aureus Bacteremia

Adjunctive rifampicin seems to be a reasonable approach in patients with bacteremia
from rifampicin-susceptible strains who have a (yet uninfected) foreign body. Two post
hoc analyses of INSTINCT cohort study showed that this subgroup had a significant
reduction in bacteremia-related late complications and 90- and 180-day mortality when
received a biofilm-acting agent like rifampicin, fluoroquinolone or fosfomycin as second
antibiotic [90,91]. This result is strengthened by the observation that 68% of bacteremia-
related late complications were foreign body-associated [91]. Notably, moxifloxacin should
not be combined with doxycycline against S. aureus because available data indicate antago-
nism between these drugs [92].

Streptococcal Bacteremia: Clinical Efficacy Data

Multiple retrospective studies have been published on streptococcal bacteremia re-
garding oral switch, too. More than two decades ago, a case series with 18 individuals
hospitalized for bacteremic Streptococcus pneumoniae pneumonia with intact gastrointesti-
nal absorption who underwent oral switch within the first week of hospitalization was
published [93]. All patients had been improved clinically before switch and no one ex-
perienced a failure [93]. Moreover, data from a randomized trial comparing two amoxi-
cillin/clavulanate oral formulations for community-acquired pneumonia show that 37 of
these participants had bacteremic pneumonia from S. pneumoniae and received only oral
antibiotics for the whole course of treatment; no worse outcomes were reported for this
subgroup [94].

In a subsequent cohort of 244 patients with streptococcal bacteremia without endo-
carditis, concomitant bone and joint or central nervous system infection who had initial
Pitt bacteremia scores ≤ 3 and had already improved from IV treatment, 40% underwent
oral de-escalation; no difference in 30-day recurrence, readmission, or mortality rate was
observed [95]. The most frequent sources of bacteremia were pneumonia and ABSSSI [95].
Regardless of source or the causative species, oral step-down was performed after four
days of IV therapy and total length of treatment was two weeks; this early switch reduced
the duration of hospital stay by five days [95]. Oral agents of choice were fluoroquinolones
and secondarily amoxicillin, clindamycin, and TMP/SMX [95]. Another two recently
published cohorts with similar size, sources of bacteremia and timing of oral antibiotic
initiation did not detect any significant differences in antibiotic-related adverse events
and 90-day hospital readmission, treatment failure, or mortality between oral step-down
and IV-only groups [96,97]. Reports with smaller number of patients almost reproduce
the aforementioned results. Ramos-Otero et al. found that patients who received an oral
regimen had significantly earlier hospital discharge without increased risk of recurrence
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or death in the same setting, irrespective of whether they received IV antibiotics for three
days or more [98].

In addition, a multicenter study comparing oral step-down with fluoroquinolones
or beta-lactams in a population consisting mostly of patients with pneumonia or ABSSSI
with positive blood cultures was conducted [99]. Beta-lactams were non-inferior to fluo-
roquinolones for the composite outcome of 90-day recurrence, readmission, or death; in
both arms one of these complications occurred at <10% of the cases [99]. Oral step-down
before day 3 was identified as a risk factor for clinical failure, although the median timing
was 5.67 days; total treatment duration was again two weeks [99]. On the other hand,
regarding beta-hemolytic Streptococci in patients with ABSSSI-derived bacteremia, a study
using propensity score-matched analysis could not confirm non-inferiority of oral switch
to beta-lactams compared with IV antibiotics for the whole course of treatment, likely due
to underdosing of oral antibiotics and the use of cefdinir, which has low bioavailability
and consequently it is not an appropriate choice for bacteremia; treatment failure in both
subgroups (low oral dosage and cefdinir use) was above 40% [100].

Enterococcal Bacteremia: Clinical Efficacy Data

Regarding enterococcal bacteremia, ampicillin or amoxicillin should be the backbone of
antimicrobial therapy if the causative strain is susceptible, because data from a retrospective
cohort study conducted in Australia revealed that glycopeptide administration instead
of beta-lactams was an independent risk factor for 30-day mortality [101]. Notably, these
results favored beta-lactams despite including in the cohort patients with endocarditis who
were almost exclusively in the beta-lactam group; individuals in vancomycin arm were
younger, too [101]. These findings were in alignment with a subsequent retrospective study
where 30-day mortality rate was higher in the vancomycin treatment group, even though
a percentage of patients in the anti-enterococcal beta-lactam group were switched to oral
amoxicillin at some point during treatment [102]. It is unknown, however, whether these
results suggest that ampicillin is truly superior compared with vancomycin or this is a
consequence of vancomycin underdosing, which is frequent in the absence of TDM if a
conventional 1 g bid dose is applied [103].

For infections caused by ampicillin-resistant strains, glycopeptides remain the first
choice during initial management due to efficacy and lower cost. Linezolid, however, could
also be administered, either in patients who experience adverse events from glycopeptides
or as an oral step-down approach. Data from the previously mentioned randomized trial
published by Wilcox et al., which included participants with enterococcal CRBSI, indicate
that linezolid was non-inferior to vancomycin [73]. Moreover, a small retrospective study
from Spain found no significant difference in clinical or microbiological cure and 30-day
mortality among patients with bacteremia caused by E. faecium treated with linezolid or
glycopeptides [104].

On the other hand, the optimal initial antimicrobial agent against vancomycin-resistant
Enterococci (VRE) remains unknown due to the lack of high-quality data. A retrospective,
propensity score-matched cohort study with 2630 patients who received linezolid or dap-
tomycin for VRE bacteremia or endocarditis revealed that daptomycin group had lower
mortality only for endocarditis; patients in daptomycin arm experienced fewer adverse
effects, too [105]. However, it should be noted that daptomycin was prescribed in a dose
of approximately 6 mg/kg (not a high dose) [105]. Furthermore, daptomycin MICs were
not reported, which is the main factor that guides the optimal dose. EUCAST guidance
and other publications suggest that if daptomycin MIC is ≤1 mg/L, a 6 mg/kg dose is
efficacious [106]. For an MIC above 1 mg/L, however, higher doses and probably com-
bination with a beta-lactam are needed [106,107]. In a meta-analysis concerning only
high-dose daptomycin versus linezolid, again no difference in mortality was observed,
although patients who received daptomycin had a higher proportion of organ dysfunc-
tion and hematologic malignancy; thrombocytopenia was significantly more frequent in
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linezolid group [108]. Regardless, oral de-escalation with linezolid seems like it could be
implemented in any case.

Linezolid for Gram-Positive Bacteremia: PK/PD and TDM Data

Linezolid was prescribed as a fixed regimen of 600 mg bid in all the aforementioned
studies, regardless of renal and hepatic function, as the drug summary of product char-
acteristics indicates. These recommendations, however, are based on an older PK study
where participants received only one 600 mg dose of linezolid orally [109]. The truth is
that linezolid is primary metabolized in the liver and a 30% of the dose undergoes renal
elimination [110]. This one-size fits all approach can lead to high interindividual variability
observed by TDM, resulting in a proportion of patients treated with suboptimal doses and
another percentage that is exposed to a high, myelotoxic dose. For that reason, linezolid
TDM is suggested in critically ill patients and a Chinese expert consensus statement for
linezolid dose optimization has been published in 2022 [111,112]. Data from a meta-analysis
including 3580 patients who were prescribed linezolid revealed that eGFR ≤ 50 mL/min
raised the risk for thrombocytopenia more than two-fold, and the risk become even higher
as kidney function worsened or hemodialysis was needed; renal impairment was a risk
factor for linezolid-induced anemia, too [113,114]. In addition, a smaller retrospective
study has showed that as eGFR declines, the incidence of linezolid discontinuation due
to thrombocytopenia increases and, in many cases, it may start within the first week of
treatment [115]. This risk can be lowered if a dose of 300 mg bid is administered when
eGFR ≤ 60 mL/min, as PTA (trough linezolid levels > 2 mg/L) was not different for this
dosage compared with 600 mg bid in this subgroup according to retrospective TDM data,
whereas the probability of potentially toxic trough levels (>8 mg/L) was almost three times
lower (Table 2) [116]. Similar dose reductions are suggested for severe hepatic impairment
(Table 2) [112,117]. On the other hand, PK/PD studies have indicated that PTA is very
low when MIC is at the EUCAST breakpoint of 4 mg/L and therefore linezolid should be
avoided, while PTA > 85% was achieved only through continuous infusion in critically ill
patients if MIC = 2 mg/L [118,119]. Appropriate dose modification should be applied for
patients with obesity, too (see Table 2) [112,119,120].

Table 2. Oral antibiotic dosages for bacteremia and infective endocarditis/non-beta-lactams.

Oral Antibiotic Microorganism MIC
(mg/L) Dosage Dose Adjustment

for Special Populations References

Ciprofloxacin Enterobacterales;
Pseudomonas

≤0.125 500 mg bid eGFR ≤ 30 mL/min: 25% dose reduction
Obesity: no dose modification [10,56,58,121]0.25 750 mg bid

>0.25 Avoid

Levofloxacin
Enterobacterales;

Pseudomonas;
Streptococci

≤1
Dose guided by creatinine
clearance based on ideal

body weight

≤30 mL/min: 500 mg qd
30–90 mL/min: 750 mg qd
>90 mL/min: 500 mg bid

[122–124]

>1 Avoid

Moxifloxacin

Enterobacterales; ≤0.25 400 mg qd

Renal impairment or obesity: no
dose modification

[83,84,125]

Streptococci >0.25 Avoid
Staphylococci ≤0.06 400 mg qd

0.125
Use in combination with

another agent or 800 mg/day,
preferably with TDM

>0.125 Avoid

TMP/SMX

Enterobacterales;
Streptococci;

Staphylococci

≤1 10 mg/kg/day (TMP
component)

eGFR ≤ 30 mL/min: 50% dose reduction [126,127](as TMP concentration
[=20 mg/L
TMP/SXT])

divided in 2–3 doses

>1 Avoid

Clindamycin Staphylococci;
Streptococci

≤0.25 600 mg tid
Bone source of bacteremia

and either body weight >75 kg or
MIC = 0.25 mg/L: 900 mg tid

[70,76,77,79,128,
129]

>0.25 Avoid
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Table 2. Cont.

Oral Antibiotic Microorganism MIC
(mg/L) Dosage Dose Adjustment

for Special Populations References

Linezolid
Staphylococci;
Streptococci;
Enterococci

<2 600 mg bid

eGFR ≤ 60 mL/min, Child-Pugh C
cirrhosis or INR > 2 due to hepatic

impairment: 300 mg bid
Dialysis-dependent

patients:
300 mg bid or 600 mg qd

eGFR ≥ 120 mL/min: avoid
Obesity plus eGFR ≤ 60 mL/min:

600 mg bid
Obesity plus eGFR ≥ 60 mL/min:

450 mg tid
If body weight is >140 kg, use only if

MIC ≤ 1 mg/L

[112,113,116–
120,130–135]

2 Use in combination if
possible or use TDM

>2 Avoid

Rifampicin

Staphylococci;
Streptococci;
Enterococci

(adjunct
treatment)

≤0.06 300 mg tid None [136,137]

Metronidazole Anaerobes ≤4
Infections outside central

nervous system:
500 mg bid

Obesity:
500 mg tid [138–140]

List of abbreviations: MIC, minimum inhibitory concentration; eGFR, estimated glomerular filtration rate; qd,
once a day; bid, two times a day; tid, three times a day; INR, international normalized ratio; TDM, therapeutic
drug monitoring; TMP, trimethoprim; SXT, sulfamethoxazole.

Oral Amoxicillin for Bacteremia: PK/PD Data

Although oral amoxicillin is widely used against enterococcal and streptococcal bac-
teremia, as well as in amoxicillin-sensitive Enterobacterales bacteremia, oral dosing regimens
are nowhere near IV dosages of 100–200 mg/kg/day [137]. The reason for this discrepancy
is that such high doses are impossible to be absorbed from human gut due to the presence
of a saturable, probably capacity-limited and carrier-mediated mechanism of transport
from human intestine to circulation [141]. A pharmacological study in healthy volunteers
has revealed that amoxicillin oral bioavailability is dose-dependent; from almost 100% for
a 375 mg dose to 55% for a 3000 mg dose, which in addition caused more gastrointestinal
adverse effects [141]. In alignment with these results, when amoxicillin was administered
orally to individuals with an ileostomy, a 8% of amoxicillin was recovered from ileal fluid
for a dose of 375 mg while for a 6000 mg dose a 77% recovery was observed, with the
respective variations at the fraction excreted in urine (70% recovery at the lowest dose to
23% at the highest dose); these results have been reproduced in another study, too [142,143].

The aforementioned data play a pivotal role in the selection of patients with bac-
teremia or endocarditis that could be de-escalated to oral amoxicillin. A PK/PD study
for pyelonephritis (where tissue and not urine antibiotic concentrations are relevant to
cure) has showed that even for the modest target of 32.5%f T > MIC, PTA is <90% for a
1000 mg tid regimen when MIC is > 2 mg/L, well below the established breakpoint of
8 mg/L for IV administration [47,144]. A recent publication claims that maybe lower doses
(750 mg tid) are sufficient for 50%f T > MIC if MIC ≤ 2 mg/L (see also Table 1) [10]. The
same model calculated that for an MIC of 8 mg/L, an oral dose of 2500 mg tid would be
necessary, which is a regimen that, while it has not been tested on a large scale, could have
many tolerance issues [47]. Further evidence about the efficacy and tolerability of these
higher amoxicillin doses will be provided by the awaited RODEO 2 trial (NCT02701595) for
endocarditis, where 2000 mg tid oral regimens will be opted [145]. This rationale extends
to amoxicillin/clavulanate, too, because PK/PD data from healthy volunteers revealed
that 40%f T > MIC and >97.5% PTA is achieved only if MIC ≤ 1 mg/L for 500/125 mg qid
and 1000/125 mg tid doses [48]. These findings corroborated by the PK/PD study from
Yamada et al.; 1000/125 mg tid dose had PTA > 90% for 32.5%f T > MIC only if MIC was
≤2 mg/L, and 500/125 mg tid regimen had similar effect only for strains with an MIC at or
below 1 mg/L [42].
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3.2. Infective Endocarditis
3.2.1. Clinical Efficacy Data and Relevant Guidelines

Although parenteral-only antimicrobial therapy for endocarditis appeared as a “rule
of medicine” for decades, a series with 35 cases of S. aureus endocarditis who received an
oral antistaphylococcal penicillin or clindamycin after a mean of 16-day IV therapy has
been published in 1980 [146]. In addition, a randomized trial concerning oral treatment
for right-sided staphylococcal endocarditis in people who inject drugs has been finished
more than 27 years ago [147]. In this study, oral ciprofloxacin-rifampicin combination
treatment was used after five days of IV antibiotics, with good results. However, the results
may overestimate the efficacy of this oral regimen in endocarditis because participants
who had two or more positive sets of blood cultures with no other apparent source of
infection were enrolled as endocarditis cases [147]. Nowadays, VIRSTA and DENOVA
scores can be applied to rule out endocarditis without cardiac ultrasound in some patients
with bacteremia from Staphylococcus aureus and Enterococcus faecalis, respectively [148–150].

Both the 2015 American and European guidelines for endocarditis had already adopted
oral treatment for infections caused by typical bacteria, either as a drug-of-choice or as
an alternative. In particular, linezolid (oral or IV) is one of the first-line regimens for
endocarditis caused by Enterococci that are resistant to ampicillin and vancomycin [136,151].
The efficacy of oral linezolid in this setting had already been evaluated in a small number
of cases since its first years on the market [152,153]. However, linezolid treatment for
enterococcal endocarditis when the pathogen is resistant to vancomycin was associated
with higher mortality and adverse event rate compared with daptomycin in a retrospective
cohort; therefore, it should be reserved as an oral step-down choice after the initial IV
treatment with a daptomycin-containing regimen, provided that MIC for daptomycin is
not >4 mg/L [105,107]. In addition, rifampicin (oral or IV) is included in the proposed
regimen for staphylococcal prosthetic valve endocarditis at a dose of 300 mg tid [136,151].

Moreover, both American and European guidelines include IV or oral ciprofloxacin
as an alternative treatment for HACEK endocarditis [136,151]. European guidelines also
suggest the 1-week IV combination of TMP/SMX 4800/960 mg/day and clindamycin
600 mg tid, followed by oral TMP/SMX monotherapy as another option against staphylo-
coccal endocarditis [151]. This recommendation had been based on a preliminary report of
the study published by Tissot-Dupont et al. in 2019 [128]. In this study, all patients received
this regimen except those who had positive blood cultures after the second day of treatment
or in the cases where a cardiac abscess was present; in these two scenarios, IV rifampicin
(1800 mg/day) and gentamicin (180 mg/day) were added for the first week [128]. The
outcomes of the participants in this protocol were compared with an older control group of
patients treated in the same center for staphylococcal endocarditis with conventional IV
regimens. Although the mean age was higher in the oral group, no statistical difference in
90-day mortality or relapse was found; mortality was not significantly different even after
1-year follow-up [128]. To our opinion, further trials should be performed to assess the
efficacy of clindamycin plus TMP/SMX for the whole course of treatment for endocarditis.

The publication, however, that brought the biggest changes in this setting at the
recent 2023 European guidelines for endocarditis was POET trial and its sub-studies. This
randomized, non-inferiority trial compared oral step-down with IV-only treatment in
400 participants with staphylococcal, enterococcal, or streptococcal left-sided endocarditis
who had already received IV antibiotics for at least ten days (median 17 days) and for at
least seven days after valve surgery, showed clinical and laboratory improvement, and
had no indication of a local complication requiring surgery according to transesophageal
echocardiography performed before randomization [44]. Notably, enrollment included
participants with prosthetic valve endocarditis or a permanent pacemaker [44]. Oral de-
escalation strategy, which consisted of two antibiotics with different mechanisms of action,
was not inferior according to the 6-month composite outcome of mortality, unplanned
cardiac surgery, embolic events, or relapse; these results were consistent during an extended
follow-up after three and five years, too [44,154,155]. Moreover, the oral group had a
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significantly shorter length of stay in the hospital [44]. Before POET, a cohort study
including 214 patients with endocarditis who underwent oral step-down had similar results;
no increased risk of mortality or relapse was observed [156]. Although de-escalation was
applied later in-course of treatment in this cohort (mean after 14 days for Streptococci and
28 days for S. aureus and Enterococci) it still reduced IV-treatment days substantially, given
the fact that 23% of the cases had prosthetic valve endocarditis [156]. Patients were eligible
for oral treatment only if they were afebrile, laboratory and imaging abnormalities were
improving, and blood cultures had been sterilized [156]. Oral combination treatment
was prescribed only against Staphylococci (mostly two of a fluoroquinolone, clindamycin,
and rifampicin or combination of amoxicillin with one of them), whereas a strategy of
amoxicillin monotherapy was almost totally adopted for Streptococci and Enterococci [156].

The more commonly used oral regimens in POET trial were rifampicin 600 mg bid plus
either amoxicillin or dicloxacillin 1 g qid for S. aureus (all cases were methicillin-sensitive),
amoxicillin as backbone therapy plus one of rifampicin, moxifloxacin and linezolid against
E. faecalis, and for Streptococcus spp. endocarditis, the aforementioned anti-enterococcal
regimens were mainly prescribed, as well as a linezolid–rifampicin combination [44]. All
these findings led 2023 European Society of Cardiology guideline task force to adopt the
rationale of POET study and to suggest oral step-down with two antibiotics from different
drug classes, provided that all criteria applied in the study are fulfilled [137]. Proposed
regimens from the guidelines are similar to those used in POET.

Another oral antibiotic combination that, to our perspective, appears promising against
endocarditis caused by E. faecalis is amoxicillin plus cefditoren, an “oral extrapolation”
of the IV, guideline-proposed ampicillin–ceftriaxone regimen [136,137]. Attanasio et al.
published a case series of five patients with E. faecalis prosthetic valve endocarditis who
received amoxicillin/clavulanate 1 g tid plus cefditoren 400 mg bid as an oral regimen after
a median of four weeks IV; no patients required surgery [157].

3.2.2. Considerations Regarding Oral Antibiotic Selection in Endocarditis

Notably, except the aforementioned combinations, guidelines also include regimens
that did not tested thoroughly in the POET study like linezolid plus rifampicin for Staphy-
lococci and Enterococci (two patients received it for this indication) and moxifloxacin plus
rifampicin for Staphylococci and Streptococci (prescribed to three participants with staphylo-
coccal endocarditis) [44,137]. Oral combination therapy with fucidic acid 750 mg bid is also
included as a potential approach, although only six patients received it in POET [44,137].

Like previously mentioned, moxifloxacin presents antagonism with doxycycline and
moxifloxacin levels are reduced when co-administered with rifampicin; dramatic reduc-
tion in oral clindamycin bioavailability has also been observed if used with rifampicin.
Okazaki et al. have reported reduced linezolid serum concentration when combined with
rifampicin [158]. Consequently, to our opinion, the aforementioned regimens should be
avoided until further data are available. Even if linezolid–rifampicin co-administration
has been effectively used for tuberculosis, that is a totally different context consisting of
multidrug treatment against a microorganism that has substantially lower MIC for line-
zolid, so these data should not be extrapolated to endocarditis or bacteremia. Another drug
class that should be used with extreme caution against S. aureus endocarditis is oral beta-
lactams. This conclusion is derived from a PK/PD study based on TDM results from POET
trial, where using a clinical breakpoint for staphylococci, the PTA for dicloxacillin was
9%–17% [159]. A schematic illustration of the current antibiotic armamentarium depending
on blood culture result is provided in Figure 1.
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3.2.3. Probenecid as an Adjunct to Oral Beta-Lactams

A promising solution in improving the PTAs of oral beta-lactams is the addition of
probenecid, a molecule that acts through competitive inhibition of organic anion trans-
porters, which excrete beta-lactams from the kidneys. Probenecid remains a recommended
adjunct against some sexually transmitted diseases like neurosyphilis [160]. Moreover, oral
amoxicillin can achieve treponemicidal levels in cerebrospinal fluid only when combined
with probenecid [161]. A systematic review and meta-analysis including data mainly from
healthy volunteers suggested that when probenecid is added to an oral beta-lactam in-
creases total AUC, maximum concentration and serum half-life, thus improving PTA [162].
In particular, study results from a PK/PD model that was developed with data from co-
administration of 1 g cefalexin with 500 mg of probenecid in 11 healthy individuals showed
that PTA of %f T > MIC > 70% if MIC is 8 mg/L (epidemiological cut-off value (ECOFF) for
S. aureus) rises from <15% for cefalexin alone to almost 100% for a cefalexin 1 g qid regimen
plus probenecid 500 mg bid [43]. If MIC is ≤4 mg/L, then a regimen of cefalexin 1 g tid plus
probenecid seemed sufficient [43]. Administration with food and maybe even smaller doses
of probenecid in cases of renal impairment can reduce probability for drug-induced nausea
or other gastrointestinal adverse events [43]. In comparison, PTA > 90% was achieved if
MIC was ≤1.5 and ≤3 mg/L for oral cefalexin alone when administered as 1 g tid and 1 g
qid regimen, respectively [43].
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3.2.4. Infective Endocarditis—Upcoming Trials

There is no doubt that further randomized trials are needed for bacterial endocarditis
in order to solidify the evidence about the timing of oral switch and the proper oral regimens
against each microorganism. The RODEO 1 (NCT02701608) and RODEO 2 (NCT02701595)
trials for left-sided endocarditis caused by S. aureus and Streptococcus/Enterococcus spp.,
respectively, are in the recruitment phase [145]. Oral treatment will be attempted in both
studies after a minimum of ten days IV therapy. Oral levofloxacin–rifampicin combination
will be studied in RODEO 1 and oral amoxicillin in high doses (1500 mg tid for patients
≤70 kg and 2000 mg tid for patients >70 kg) in RODEO 2 [145]. In addition, another
trial (NCT04544306) examining non-inferiority of oral treatment after at least a 10-day IV
regimen for endocarditis in people who inject drugs is recruiting participants [163].

3.2.5. The Potential Utility of Oral Fosfomycin against Endocarditis and Bacteremia

Fosfomycin is a hydrophilic antibiotic with small molecular mass which has negligible
protein binding and consequently has good tissue distribution (see also Figure 2) [164,165].
In addition, it seems that it has some yet unclear PK/PD properties [166]. Time-dependent
killing has been identified against S. aureus and S. pyogenes, whereas concentration-dependent
activity has been found against E. coli and Proteus [167–169].

IV fosfomycin has already shown its effectiveness in the context of bacteremia and
endocarditis. It was non-inferior to piperacillin/tazobactam as monotherapy in ZEUS
trial which enrolled cases with complicated UTI, including patients with concomitant
bacteremia [170]. Fosfomycin has also showed synergistic effects with many antimicrobials
and for that reason antibiotic combinations including fosfomycin are therapeutic options for
staphylococcal and enterococcal endocarditis [137]. Moreover, it can act against infections
where biofilm formation is involved (e.g., prosthetic joint infections, prosthetic valve
endocarditis) [90,91,137].

When the linezolid–fosfomycin combination was used at clinical isolates of Entero-
coccus, it prevented the emergence of resistant mutants in lower drug concentrations and
was synergistic in a hollow fiber model; another in vitro study demonstrated a reduction in
linezolid MIC when co-administered with fosfomycin, even though MICs for fosfomycin
were relatively high (≥64 mg/L) [171–173]. The simulated fosfomycin regimen in this work,
however, was higher than the levels achievable by oral administration [171]. In addition,
an in vitro study showed that the fosfomycin–cefixime combination has synergistic killing
properties against E. coli, even in half the MIC concentrations for each drug [174].

Oral fosfomycin trometamol exhibits a 33–44% bioavailability [166,175–177]. This
characteristic has precluded its use for infections outside urinary tract until now. To date,
clinical data from oral fosfomycin in this context do not exist. Khatri et al. reported two
cases with persistent VRE bacteremia in neutropenic patients despite a multiple antibiotic
treatment regimen that resolved only when oral fosfomycin in conventional doses was
added [178]. According to a population PK model, oral fosfomycin in higher doses than 3 g
qd should be studied as a potential therapy for the treatment of systemic infections [179].
This model indicates that an oral dose of 3 g tid can achieve the time and concentration-
dependent targets for gram-positives, E. coli and Proteus if MIC ≤ 8 mg/L [179]. The
simulation for an even higher oral dose (6 g TID) revealed a %f T > MIC of 100% for MICs
≤ 16 mg/L and a maximum concentration >4 x MIC even for MICs above 8 mg/L (e.g.,
12 mg/L) [179].
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Figure 2. Chemical structure of certain commonly used oral antibiotics (adapted from Pub-
Chem): (A), amoxicillin; (B), cloxacillin sodium; (C), cefalexin; (D), cefuroxime axetil; (E), cefixime;
(F), ciprofloxacin hydrochloride; (G), levofloxacin hemihydrate; (H), moxifloxacin hydrochlo-
ride; (I) sulfamethoxazole/trimethoprim; (J), clindamycin; (K) linezolid; (L) fosfomycin
trometamol [180–191].

4. Conclusions

In summary, it seems like the available data, although the majority of them are non-
randomized, are too significant to ignore; they suggest that, when a patient with bac-
teremia has received IV antibiotics and has improved, then it is safe and effective to
de-escalate—after appropriate source control—to oral antibiotics, which have been shown
to achieve their PK/PD target in serum. This strategy can reduce patient discomfort,
hospital-associated complications, and costs. Until now, examples where IV therapy should
be extended are concomitant bone infection and endocarditis, but even these cases can
be safely switched after 7 and 10 days IV, respectively, based on randomized studies.
It is yet unknown what the optimal approach should be to an individual who has a
community-acquired infection but does not meet criteria for hospital admission, so empiric
oral antibiotic treatment is prescribed, and subsequently blood cultures turn positive. Based
on the scarce aforementioned data concerning oral-only regimens against bacteremia, if
the clinical condition remains good, then an outpatient therapy could be tried with close
follow-up examinations, but this is definitely a matter for debate. It is a fact that there are
still many unanswered questions regarding antibiotic selection, the choice of monotherapy
or combination treatment, antibiotic dosage, the timing of the oral switch, and the total
days of treatment that future trials could focus on and consequently lead more physicians
to implement this concept into their everyday practice.
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