

Article

Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel *Loigolactobacillus backii* Strains, Isolated from Spoiled Beer

Despoina Eugenia Kiousi ^{1,†}, Joanna Bucka-Kolendo ^{2,†}, Adrian Wojtczak ³, Barbara Sokołowska ³, Agapi I. Doulgeraki ^{4,*} and Alex Galanis ^{1,*}

- ¹ Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- ² Culture Collection of Industrial Microorganisms, Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
- ³ Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
- ⁴ Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
- * Correspondence: adoulgeraki@aua.gr (A.I.D.); agalanis@mbg.duth.gr (A.G.); Tel.: +30-21028-45940 (A.I.D.); +30-25510-30634 (A.G.)
- † These authors contributed equally to this work.

Abstract: *Loigolactobacillus backii* is an important beer-spoiling species, exhibiting high hop tolerance. Here, we present the annotated whole genome sequence of two recently isolated strains, *Lg. backii* KKP 3565 and KKP 3566. Firstly, to study the genetic basis of the persistence of the two isolates in beer, a comprehensive bioinformatic analysis ensued. Their chromosome map was constructed, using whole-genome sequencing and assembly, revealing that the two strains carry genomes with a length of 2.79 Mb with a GC content of 40.68%. An average nucleotide identity (ANI) analysis demonstrated that the novel strains possess unique genomic sequences, also confirming their classification into the *Lg. backii* species. Their genome harbors numerous insertion sequences and plasmids, originating from other beer-spoiling species. Regarding their adaptation in brewery environment, homologous genes that confer resistance to hop were spotted, while the impact of hop bitters and pure beer on bacterial growth was investigated, in vitro. In brief, low hop concentrations were found to induce the proliferation of strains, while a higher concentration negatively affected their growth. Nonetheless, their ability to survive in pure beer indicated their tolerance to high hop concentrations. These results offer insight into the capacity of *Lg. backii* KKP 3566 and *Lg. backii* KKP 3566 to tolerate the extreme conditions prevalent in the brewery environment.

Keywords: lactic acid bacteria; hop resistance; whole genome sequencing; spoiled beer; *Loigolactobacillus backii*

1. Introduction

In 2020, EU countries produced over 32 billion liters of beer, with Germany (24%) being the top producer, followed by Poland (12%), Spain (10%), Netherlands (8%), France (7%), Czech Rep. (6%) and Romania (5%) (EUROSTAT. Happy International Beer Day! Available online: https://ec.europa.eu/eurostat/web/products-eurostatnews/-/edn-20200807-1 (accessed on 5 September 2022)). Evidently, the brewing industry is an important branch of the food industry. It is known for centuries that hop components are responsible for the bitter taste of beer, also being recognized as a preservative [1]. Due to the evolution in the perception of taste and the association of bitterness with food hazard, the bitterness range has also changed, from the range of 20–60 IBU to 6–30 IBU in the case of lager. As

Citation: Kiousi, D.E.; Bucka-Kolendo, J.; Wojtczak, A.; Sokołowska, B.; Doulgeraki, A.I.; Galanis, A. Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel *Loigolactobacillus backii* Strains, Isolated from Spoiled Beer. *Microorganisms* 2023, *11*, 280. https://doi.org/10.3390/ microorganisms11020280

Academic Editor: Franca Rossi

Received: 20 December 2022 Revised: 15 January 2023 Accepted: 17 January 2023 Published: 20 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). a final product, the beer is considered a microbiologically stable beverage owing to the presence of alcohol, hop bitter compounds, high level of CO_2 , low level of O_2 and low pH value [2,3]. However, lactic acid bacteria (LAB) can grow and spoil the beer, with Levilactobacillus brevis and Pediococcus damnosus being categorized as obligate spoilers found in most beer types. Other species, including Fructilactobacillus lindneri, Loigolactobacillus backii, Secundilactobacillus paracollinoides and Furfurilactobacillus rossiae, have been described as potential beer-spoiling bacteria [4,5]. As the ability of LAB to spoil beer is related to their tolerance to ethanol and acids, mainly iso- α -acids from hops which have an antibacterial effect [6], insight into the mechanism of resistance of LAB to hop compounds is necessary for understanding and estimating the level of risk involved in spoiling the final product. Some LAB strains are less sensitive to hop compounds and adapt well to the beer environment owing to the *horA*, *horC* and *hitA* genes, whereas the presence or absence of hop-resisting genes highly correlates with their beer-spoiling ability [7,8]. The horA gene encodes an ATPdependent multidrug transporter that removes the hop bitter acids from the bacterial cells. This pump is located at the cytoplasmic membrane and has been found in many bacteria, e.g., Lb. brevis ABBC45, and was reported to be overexpressed when the strain has been exposed to hop compounds [7]. HorC is a proton motive force (PMF)-dependent multidrug transporter. In various LAB strains, *horC* is reported to be detected along with *horB*, which acts as a transcriptional repressor for *horC*, downregulating its expression in the hop-less bitter acids medium [3]. Accordingly, HitA participates in the transport of divalent cations, such as Mn^{2+} , playing a significant role in maintaining the membrane pH gradient [3]. This is considered to help beer-spoiling LAB preserve cellular activities dependent on Mn²⁺, such as oxidative stress response, where HitA regulates the intracellular Mn²⁺ to minimize the stress induced by hop bitter acids [3]. Furthermore, beer-spoiling bacteria can also carry the fatty acid biosynthesis (FAS) gene cluster [3]. FabZ, that is coded by this cluster, is responsible for the production of the 3-hydroxyacyl-acyl-carrier-protein-dehydratase, catalyzing fatty acid synthesis de novo. These genes may provide diagnostic indicators to differentiate beer spoilage bacteria from non-spoilage ones.

Among beer-spoiling bacteria, little is known about the *Loigolactobacillus backii* species, which contains strains exhibiting high hop tolerance. Genetic and phenotypic characterization of *Lg. backii* is valuable to enhance the knowledge of their behavior, adaptation, and unique features, to design strategies for their control in the beverage industry. In this study, whole genome sequencing (WGS) and annotation, and in vitro analysis, were performed to determine the genetic and phenotypic characteristics of hop resistance of two, recently isolated, *Lg. backii* strains. More specifically, phylogenomic analysis and comparative genomics were used to study their spoiling characteristics, focusing on *horA*, *horC*, *hitA* and *fabZ* genes. The ability of the two novel strains to withstand increasing concentrations of hop bitters was also investigated, in vitro.

2. Materials and Methods

2.1. Bacterial Strains Isolation and Growth Conditions

Both strains of *Lg. backii* were isolated from lager beer (5.5% v/v) by ISO 15214:2000, as described previously by Bucka-Kolendo et al. [9]. They were cultured on MRS agar (DeMan, Rogosa, and Sharpe, Merck KGaA, Darmstadt, Germany) and UBA medium (Universal Beer Agar, Merck KGaA), and incubated at 30 °C for 3 to 5 days under anaerobic conditions.

2.2. DNA Extraction and Molecular Identification

Total bacterial DNA was extracted using the DNeasy PowerFood Microbial Kit (Qiagen, GmbH, Hilden, Germany), according to the manufacturer's protocol. DNA purity was measured with the Nanodrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Watertown, MA, USA), and the concentration was quantified with Qubit 4.0 Fluorometer using the Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, CA, USA). DNA samples were stored at -20 °C for further processing.

Strains were given the collection numbers KKP 3565 and KKP 3566 and deposited in the Culture Collection of Industrial Microorganisms—Microbiological Resource Center (IAFB, Warsaw, Poland). The 16S rDNA sequences of each strain were deposited in the GenBank NCBI database under the respective accession numbers OK2913330 for KKP 3565 and OK2873775 for KKP 3566. The genetic affiliation of the *Lg. backii* strains KKP 3565 and KKP 3566 were confirmed based on their phylogenetic analysis of the 16S rDNA and *pheS* sequences, as described previously by Bucka-Kolendo et al. [9,10] and by examining proteomic mass spectra profiles on MALDI-TOF MS [11].

2.3. Whole Genome Sequencing Analysis and De Novo Assembly

Genomic DNA was extracted from pure bacterial isolates using DNeasy PowerFood Microbial Kit (Qiagen) according to the manufacturer's protocol. The DNA library was prepared using the Illumina DNA Prep kit (Illumina, San Diego, CA, USA) according to the manufacturer's protocol (number #100000025416v09). The magnetic bead normalization step was replaced with a manual normalization step, based on library concentration and average size as measured by the Qubit 4.0 Fluorometer with Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and the TapeStation 4200 Analyzer using the High Sensitivity D1000 ScreenTape Assay Kit (Agilent, Santa Clara, CA, USA), respectively. DNA was sequenced with a MiSeq next-generation sequencing platform, using the 2×151 bp paired-end MiSeq protocol and reagent v3 (600-cycle) kit (Illumina).

A total of 1,554,032 and 1,182,876 paired-end reads were obtained for *Lg. backii* KKP 3565 and KKP 3566, respectively. The quality of the reads was determined using FASTQC (v0.11.9) [12] and Trimmomatic was utilized to discard low-quality sequences (version 0.39) [13]. De novo assembly was executed with SPAdes and plasmid sequence extraction from the WGS with plasmidSPAdes (version 3.15.1) [14]. Scaffolding was performed with SSPACE [15]. Assembly metrics were calculated with the Quality Assessment Tool (QUAST, version 5.2.0) [16].

2.3.1. Genome Annotation

Genome annotation was performed using Prokka (version 1.14.5) [17] and the local version of the Prokaryotic Genome Annotation Pipeline (PGAP) [18]. PlasmidFinder was utilized to detect the presence of plasmids in WGS [19]. Mobile genetic elements and prophage regions were investigated using MobileElementFinder [20] and PHAge Search Tool Enhanced Release (PHASTER) [21], respectively. ISFinder [22] was used to identify insertion sequence elements. Furthermore, for the detection of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), arrays analysis with CRISPRDetect (version 2.4) [23] and PILER-CR [24] was performed. The presence of genes involved in antimicrobial resistance was determined using Resistance Gene Identifier (version 5.2.0) and ResFinder 4.1 [25,26]. The possibility of the novel strains being human pathogens was predicted using PathogenFinder 1.1 [27]. The EggNOGmapper (version 2.0) tool of the online EggNOG database (version 5.0) [28] was used for the classification of predicted proteins into Clusters of Orthologous Groups (COGs) and BlastKOALA (version 2.2) for the assignment of proteins into KEGG Orthology (KO) groups [29]. The CGview server [30] was utilized to visualize the whole genome sequence maps.

2.3.2. Comparative Genomics

The genome sequences of all available *Lg. backii* strains, isolated from the brewery environment and spoiled beer (NCBI Genome. Available online: https://www.ncbi.nlm. nih.gov/genome/browse/#!/prokaryotes/45189/ (accessed on 1 October 2022)), (a total of 8 strains as of October 2022), were obtained using a python script. ANI was calculated with the python module Pyani (version 0.2.10) [31] and was used to verify strains' uniqueness and taxonomic classification. Pangenome analysis of *Lg. backii* strains were performed with Roary (version 3.13.0) [32], and core genome sequences were used to construct an approximately-maximum-likelihood phylogenetic tree with FastTree 2.1 [33]. WGS of the

available *Lg. backii* strains, three *Loigolactobacillus coryniformis*, four *Lactiplantibacillus plantarum*, and three *Lactiplantibacillus pentosus* strains were aligned with progressiveMauve [34]. Phylogenetic tree visualization was performed with the publicly-available online EMBL tool "Interactive Tree of Life" (iTol; version 6.1.1) [35].

2.3.3. In Silico Investigation of Properties Related to Beer-Spoiling Capacity

Genes coding for proteins related to stress resistance were identified using annotation algorithms, including the KEGG database. Putative bacteriocin clusters were identified using BAGEL4 [36]. Comparative genomic analysis was used to predict the functionality of the annotated proteins involved in hop resistance. More specifically, Uniprot was searched for registered sequences of genes *horA*, *horC* and *hitA*, which were previously shown to be involved in the manifestation of hop resistance [3,37,38]. These sequences were queried against the WGS of the two novel strains. The alignment of sequences showing the higher sequence identity was performed with ClustalW [39]. Visualization of alignments was performed with Jalview [40]. Gene matrices for predicted proteins conferring resistance to stress and hop were constructed using GENE-E (GENE-E, Matrix visualization tool. Available online: https://software.broadinstitute.org/GENE-E/index.html (accessed on 1 November 2022)).

2.4. Determination of Lg. backii Strains Growth Inhibition in 5, 10, 20 and 30 IBU Hop Concentrations

The growth kinetics of *Lg. backii* KKP 3565 and *Lg. backii* KKP 3566 strains were estimated by maximum growth rate using the automated microbiology growth curve analysis system Bioscreen C Pro (Oy AB Ltd., Growth Curves, Finland), as described by Gientka et al. with modifications [41]. To determine the resistance to hop, modified MRS broth media with the bitterness of 5 IBU, 10 IBU, 20 IBU and 30 IBU (International Bitterness Units) were prepared by mixing concentrated MRS broth (Merck KGaA, Darmstadt, Germany), water, and beer (40 IBU) as shown in Table 1. An amount of 250 µL of the medium was applied to the wells, and 50 µL of 0.5 McF microbial culture in MRS broth was inoculated.

	5 IBU	10 IBU	20 IBU	30 IBU	Beer 43.6 IBU	Control
MRS broth concentrate $(2 \times)$	50%	50%	50%	-	-	50%
MRS broth concentrate (4 \times)	-	-	-	25%	-	-
Water	37,5%	25%	-		-	50%
Beer (40 IBU)	12,5%	25%	50%	75%	-	-
Beer (43.6 IBU)	-	-	-	-	100%	-

Table 1. Scheme of the studied bitterness concentrations.

As a control, the strain's ability to grow in pure beer was also tested. The beer chosen as the control was London Ale with 5.79% alcohol (v/v) and 43.6 IBU, which was used to prepare the starting concentration of 40 IBU beer. Beer used for evaluation was a mix of different hop compounds, mainly α -acids, iso- α -acids, xanthohumol, and iso-xanthohumol. All analyses of the beer were performed by standard methods of the European Brewery Convention (EBC) and Mitteleuropäische Brautechnische Analysenkommission (MEBAK).

In the following steps, beer adjusted to 40 IBU was used to achieve 5, 10, 20 and 30 IBU hop concentrations.

The Bioscreen analysis was performed for 72 h at 30 $^{\circ}$ C, and the OD600 was measured every hour. All assays were conducted in triplicates.

Based on the bacteria growth curves, the specific growth rate coefficients (μ) were determined from the equation:

$$\mu = \frac{\ln OD_{max} - \ln OD_{min}}{t} \tag{1}$$

where $\ln OD_{max}$ is the natural logarithm of the value of the culture's maximum optical density during the log phase, the $\ln OD_{min}$ is the natural logarithm of the value of the culture's minimum optical density during the log phase, and *t* is the duration of the log phase [h].

2.5. Statistical Analysis

Data are presented as mean \pm standard deviation (SD). Statistical analysis was performed using Statistica 14.0 (TIBCO Software, Palo Alto, CA, USA). The normality of the distribution was checked using the Shapiro–Wilk test. Equality of variance was studied using the Levene test and Brown–Forsythe test. To assess the significance of the influence of the examined factors, a one-way analysis of variance (ANOVA) was performed. HSD Tukey's test was used after checking the assumptions to show differences between the groups.

3. Results and Discussion

3.1. Whole Genome Annotation and Gene Clustering

Whole genome sequencing and assembly were performed to investigate the genomic features of the two novel strains *Lg. backii* KKP 3565 and *Lg. backii* KKP 3566. Both genomes carry a chromosome with a length of 2.79 Mb, with GC content of 40.68% (Table 2; Figure 1) and three plasmids (Table 3). These genome metrics are characteristic of the *Lg. backii* species that contain strains with a median genome length of 2.78 Mb and a median GC% content of 40.7% (NCBI Genome. Available online: https://www.ncbi.nlm.nih.gov/genome/?term=loigolactobacillus+backii (accessed on 1 November 2022)). Among the amended *Lactobacillus* genus, *Lg. backii* strains carry large chromosomes, evolved to allow survival in nutrient dense but diverse environments [42]. *Lg. backii* KKP 3565 and KKP 3566 code for 2640 and 2633 genes and for 2593 and 2582 CDSs, respectively. These genes cluster into 18 COG categories with known functions; the most represented group is amino acid metabolism and transport (E) followed by replication and repair (R) (Table 4). This classification of genes into clusters has been observed previously in members of the emended *Lactobacillus* genus. Of note, the high abundance of genes clustering in group E indicates the dependency of the strains for the extracellular supply of amino acids [43].

Element	Lg. backii KKP 3565	Lg. backii KKP 3566
Length	2,796,657 bp	2,798,617 bp
GC content (%)	40.68	40.68
Genes (total)	2640	2633
CDSs	2593	2582
tRNAs	39	42
ncRNAs	4	4
Pseudogenes	47	50
Cas arrays	0	0
Insertion Elements	124	175
Mobile Elements	19	20
Prophages		
Intact	2	2
Incomplete	1	0
Questionable	0	0
Bacteriocin Production	No	No
Bacteriocin Immunity	Yes	Yes
Pathogenicity (%)	0.106	0.099

Table 2. Genomic features of Lg. backii KKP 3565 and KKP 3566.

Figure 1. Whole genome sequence maps of *Lg. backii* KKP 3565 and KKP 3566 constructed with CGView.

Table 3. Plasmids contained in Lg. backii KKP 3565 and KKP 3566.

Strain	Plasmid AN	PlasmidFinder Annotation	Origin	Identity
T . 1	NZ_CP014896.1	rep28_2_LBPp6g007 (LBPp6)	Lg. backi TMW 1.1992	0.99928
Lg. backii	NZ_CP031183.1	rep38_1_rep (pLBUC03)	<i>Lv. brevis</i> UCCLB95	0.99447
KKP 3565	NZ_CP014889.1	rep38_1_rep (pLBUC03)	Lg. backii TMW 1.1991	0.99145
T 1 1''	NZ_CP014896.1	rep28_2_LBPp6g007 (LBPp6)	Lg. backii TMW 1.1992	0.99918
Lg. backii	NZ_CP031183.1	rep38_1_rep (pLBUC03),	Lv. brevis UCCLB95	0.99345
KKP 3566	NZ_CP014889.1	rep38_1_rep (pLBUC03)	Lg. backii TMW 1.1991	0.99048

Table 4. Categorization of Lg. backii KKP 3565 and Lg. backii KKP 3566 CDS in COGS.

COG	Lg. backii KKP 3565	Lg. backii KKP 3566
C—Energy production and conversion	95 (4.3%)	95 (4.26%)
D—Cell cycle control and mitosis	46 (2.07%)	47 (2.11%)
E—Amino acid metabolism and transport	203 (9.13%)	204 (9.14%)
F—Nucleotide metabolism and transport	102 (4.58%)	107 (4.8%)
G—Carbohydrate metabolism and transport	128 (5.75%)	130 (5.82%)
H—Coenzyme metabolism	89 (4%)	90 (4.03%)
I—Lipid metabolism	64 (2.88%)	64 (2.87%)
J—Translation	173 (7.78%)	173 (7.75%)
K—Transcription	176 (7.92%)	177 (7.93%)
L—Replication and repair	195 (8.77%)	195 (8.74%)
M—Cell wall/membrane/envelop biogenesis	136 (6.12%)	133 (5.96%)
N—Cell motility	9 (0.4%)	9 (0.4%)
O—Post-translational modification, protein turnover, chaperone functions	49 (2.2%)	49 (2.2%)
P—Inorganic ion transport and metabolism	129 (5.8%)	131 (5.87%)
Q—Secondary structure	24 (1.08%)	24 (1.08%)
T—Signal transduction	47 (2.11%)	47 (2.11%)
U—Intracellular trafficking and secretion	52 (2.34%)	52 (2.34%)
V—Defense mechanisms	34 (1.53%)	34 (1.52%)
S—Function unknown	472 (21.23%)	471 (21.1%)
Total	2223 (100%)	2232 (100%)

To investigate the genome stability of the strains, their WGS was searched for CRISPR arrays and mobile elements. Both strains lack CRISPR arrays and do not code for caspases, and thus they could be susceptible to phages and the incorporation of extrinsic DNA in

their genome. CRISPR arrays are acquired with events of horizontal gene transfer between LAB and distant genera, as reflected in the distinctively different GC contents of these regions compared to the WGS [44]. Notably, phage immunity requires the synergy of complex processes to occur, and thus it could be mediated by alternative mechanisms [45]. However, both strains contain intact prophage sequences and a plethora of insertion and mobile elements, originating from other LAB, including *Lacticaseibacillus* spp, *Lactiplantibacillus* spp. and *Leuconostoc* spp. or commensal bacteria, such as *Fusobacterium nucleatus* (Table S1). Importantly, further genomic annotation of the mobile elements showed that the novel strains do not harbor transferable antimicrobial resistance genes, while prediction algorithms suggested the susceptibility of the two strains to common antibiotics (Table S2).

3.2. Phylogenomic and Pangenome Analysis

ANI was calculated as a metric to infer phylogenetic relationships and strain uniqueness. It was shown that the two novel strains present ANI of 99.7%, presenting high similarity at the genetic level. Importantly, they share ANI of >98% with other members of the *Lg. backii* species, alluding to their correct taxonomic classification (ANI species cut off: 96%, Figure 2A–C) [46]. Furthermore, the WGS of the strains was aligned against members of the *Lg. backii* species and of other closely or more distantly-related LAB to produce a phylogenetic tree (Figures S1 and 2D). As shown in Figure S1, the two novel strains cluster with other members of the *Lg. backii* species, forming a distinct clade.

Pangenome analysis was utilized to detect core genome sequences of the species, as well as to pinpoint unique genetic loci in the genome of *Lg. backii* KKP 3565 and KKP 3566 (Figure 2E). The phylogenomic relationships of the strains based on the core genome of the *Lg. backii* species are depicted in Figure 2D. The core genome of the strains is dominated by proteins involved in replication and genetic information transport, as well as in carbohydrate metabolism (Table S3). Unique genomic sequences of the two strains were predicted using the same bioinformatic pipeline and the identified loci were annotated using eggNOG and Blastp. It was found that the unique protein groups are involved in chromosomal and plasmid replication (e.g., DNA topoisomerases, DNA primases and MobA/MobL mobilization proteins for plasmid transfer) and in genetic element transposition (e.g., IS family transposases) (Table S4). IS elements are widespread in LAB, playing an important role in their evolution and also contributing to adaptation in different environments [47]. Importantly, these elements are a key source of strain-specific genetic variability [48].

3.3. Comparative Genomic Analysis of Genes Related to Beer Spoilage and Adaptation to the Brewery Microenvironment

Although beer presents high microbiological stability, resisting to extrinsic contaminants due to its acidic pH, high concentration of hop bitters, alcohol, and low oxygen and nutrient content, LAB strains have successfully adapted to this hostile environment [38]. Growth of these bacteria in beer can increase turbidity, inducing a buttery odor and sourness due to the production of secondary metabolites and of exopolysaccharides. Comparative genomic studies of strains isolated from spoiled beer have aided in the identification of genes related to this phenotype [37]. In this sense, we sought to predict, in silico, genetic determinants involved in the spoilage capacity and ability of the strains to withstand stress relevant to the brewery environment (Figure 3). More specifically, their capability to produce diacetyl or lactic acid, two important secondary metabolites that contribute to beer spoilage was determined. Not surprisingly, a gene coding for an FMN-dependent L-lactate dehydrogenase (*lctO*) was annotated in both strains. The enzymatic activity of the product of this gene can vary, influencing matrix acidification levels. Additionally, a locus coding for a-acetolactate decarboxylase (budA) responsible for the production of a precursor (acetoin) of diacetyl was annotated, however diacetyl reductases were not found in the genome of the strains. Spontaneous non-enzymatic oxidative decarboxylation of acetoin for diacetyl formation may occur, however, diacetyl production is experimentally validated predominantly in beer spoiling *P. damnosus* strains [37]. Furthermore, we sought to determine the ability of the novel strains to produce biogenic amines, small compounds derived from amino acid decarboxylation or deamination that can have toxic implications for the consumer (e.g., nausea, headache, vomiting) [49]. Annotation algorithms did not provide evidence for the presence of enzymes involved in the production of these compounds.

Figure 2. Phylogenomic and pangenome analysis of the two novel *Lg. backii* KKP 3565 and KKP 3566 strains. (**A–C**) ANI matrices of strains belonging to the *Lg. backii* species calculated by Pyani (version 0.2.10). (**D**) Approximately-maximum-likelihood phylogenetic tree of the core genome of *Lg. backii* strains. The visualization of the tree was performed with iTol. Highlighted in red are gene clusters contained in the genome of *Lg. backii* KKP 3565 and KKP 3565. (**E**) Presence/absence gene cluster of the *Lg. backii* pangenome. Enclosed in the red box are gene groups contained in the genome of the two strains of interest, *Lg. backii* KKP 3565 and KKP 3566.

Figure 3. Gene matrix presenting CDS identified in the WGS of *Lg. backii* strains correlated with resistance to acid (e.g., F0-F1 ATPase), stress response and genome repair mechanisms (e.g., *dnaJ/K*, *uvrA*, *grpE*, *groS/L*), EPS production (e.g., *epsL/F*, *ywnA/H*), biofilm-related genes (e.g., *veg*, *comFC*, *comFA*, *comGA*, *comGB*, *comGC*, *luxS*) and hop resistance (*fabZ*, *hitA*, *horA/C*).

Exopolysaccharide production can protect the cell from extrinsic stress, however, its accumulation in beverages results in higher, unfavorable viscosity [50]. To this end, genes involved in EPS biosynthesis and export were identified, namely epsD, epsF, epsL, ywnqA and ywnqC. EPS-producing strains present an enhanced ability to adhere to and colonize abiotic surfaces, ultimately leading to biofilm formation. Apart from EPS-synthesis related genes, other loci involved in biofilm formation were also identified in the genome of the strains. More specifically, a biofilm formation stimulator (veg family) is encoded by both strains, alongside members of the competence system (comFC, comFA, comGA, comGB, *comGC*) and the quorum sensing signal LuxS. Biofilm formation in the beverage industry can contribute to the deterioration of measuring organs or fermenters, causing significant economic loss [51]. Furthermore, we investigated the ability of the strains to produce antimicrobial compounds that could destabilize beer microbiota, further contributing to the spoilage phenotype. Analysis with BAGEL4 showed that the strains do not contain bacteriocin clusters. In this vein, no data exist for the presence of bacteriocin clusters in the genome of Lg. backii strains, although bacteriocin immunity proteins have been previously detected [37]. Indeed, bacteriocin immunity proteins, and more specifically, outer membrane porins and transporters, were annotated in the genome of both strains.

The ability of strains to withstand the hostile beer microenvironment was investigated in silico with the prediction of genes involved in acid, hop and extreme temperature resistance, as well as in protein folding and DNA repair (Figure 3). Indeed, a cluster for F0-F1ATPase proton pump (*atpABCDEFGH*) and a sodium–proton antiporter (*nhaK*) involved in acid tolerance were found in the genome of the strains. These genes are widespread in LAB strains adapted to acidified matrices, including potential probiotic strains, able to withstand the gastrointestinal conditions of the host [52]. Accordingly, genes coding for cold-shock proteins (*cspC*), members of the universal stress protein family (*uspA*) and of the UvrABC DNA damage system were annotated, among others, in the genome of the strains. Interestingly, analysis with ResFinder showed that both strains are resistant to heat treatments, due to the presence of the plasmid-encoded gene *clpL*. This gene was previously implicated in heat resistance of *Listeria monocytogenes* [53], while also being possibly involved in penicillin resistance [54].

Next, we determined the ability of the two strains to code for proteins involved in hop resistance. Hop bitters possess antimicrobial properties, limiting the growth of contaminants in beer [38]. Comparative genomic studies of beer-spoiling species have highlighted that HorA, an ABC-type multidrug transporter, HorC, a PMF-dependent multidrug transporter, and HitA, a divalent metal cation transporter, show a strong correlation with the resistant phenotype [55]. Furthermore, FabZ (3-hydroxyacyl-[acyl-carrier-protein] dehydratase), an enzyme involved in fatty acid biosynthesis has been additionally proposed as a diagnostic marker for beer-spoiling species. In this vein, we managed to identify and pinpoint the location of the genes in the WGS of both strains, using annotation algorithms and local Blastp (Figure 4). Homologous genes presenting sequence identity and structural conservation to sequences derived from beer-spoiling *L. brevis* strains were identified in the genome of the novel strains, as shown in Table 5. Cluster analysis showed that their

structure is conserved (Figure 4), showing similarities to those previously described in beer-spoiling species [8]. Among these genes, *horC* resides in plasmid sequences and not in the chromosome of the strains. In this context, plasmids of both novel strains carry *fabZ* among other genes involved in fatty acid biosynthesis (i.e., *fabH*, *fabD*, *fabF*, *fabI*). The presence of genes conferring resistance to heat stress and hop in plasmid sequences supports the transfer of these elements in other microbes inhabiting the beer microenvironment [8]. Indeed, we showed that the plasmids carried by the two strains originate from other beer-inhabiting *Lg. backii* and *L. brevis* strains (Table 3). In agreement to this, strains that exhibit the hop-resistant phenotype do not present phylogenetic closeness, therefore supporting the transmission of these elements between strains that inhabit the same matrix [56].

Table 5. Sequence identity of genes conferring hop resistance carried by the novel strains with genes identified in beer-spoiling species.

Gene	Function	Locus Tag (Lg. backii)	Reference (AN)	Identity (%)	E-Value
hitA	Nramp family divalent metal transporter	KKP3565_001038	J7LK56_LEVBR	83	0.0
hitA	Nramp family divalent metal transporter	KKP3566_001304	J7LK56_LEVBR	83	0.0
horA	ABC transporter ATP binding protein/permease	KKP3565_002144	O32748_LEVBR	97	0.0
horA	ABC transporter ATP binding protein/permease	KKP3566_002171	O32748_LEVBR	97	0.0
horC	ABC transporter permease	KKP3565_001952	Q6I7K2_LEVBR	95	0.0
horC	ABC transporter permease	KKP3566_001675	Q6I7K2_LEVBR	95	0.0

3.4. Beer-Spoilage Ability of Lg. backii KKP3565 and KKP3566 Strains

A modified medium containing different concentrations of hop bitters (Table 1) was used to assess the capability of *Lg. backii* KKP 3565 and KKP 3566 strains to grow. Both strains demonstrated the ability to grow in MRS broth enriched with beer and in pure beer (Figures 5 and 6, respectively). The *Lg. backii* KKP 3565 showed slightly higher growth parameters [both the specific growth rate (μ) and the maximum optical density (OD_{max})] in all tested media than *Lg. backii* KKP 3566 (Tables 6 and 7, respectively).

Lg. backii KKP 3565 demonstrated better growth on the beer-enriched medium than on the control one, except for the 30 IBU variant, where the growth dynamic was worse than that of the control. On the other hand, variants in 5 IBU, 10 IBU and 20 IBU showed better growth dynamics compared to the control. *Lg. backii* KKP 3565 not only showed resistance to the ingredients contained in beer, but lower concentrations of beer even stimulated its growth. *Lg. backii* KKP 3566 showed similar growth on beer-enriched MRS broth with higher concentration of hop bitters (20 IBU and 30 IBU) than on MRS broth, and better expansion in the lower concentration (5 IBU and 10 IBU). Only 5 IBU showed better growth dynamics than the control, so a small addition of beer stimulates its growth. *Lg. backii* KKP 3566 showed resistance to the ingredients contained in beer, but not as much as *Lg. backii* KKP 3565. In addition, preliminary data showed that both *Lg. backii* strains exhibited better adaptation to hop than other analyzed strains isolated from beers, including *L. brevis* strains (data not shown). The prevalence of the iso- α -acids in the used beer could affect the lower antibacterial activity and impact the lower growth inhibition of the strains.

356356HIAONETKKP3565_001307glycosyltransferase family & protein100HIAONETKKP3565_0013061-acyl-sng/ycerol-3- phosphate acyltransferase100HIAONETKKP3565_0013061-acyl-sng/ycerol-3- phosphate acyltransferase100HIAONETKKP3565_0013051-acyl-sng/ycerol-3- phosphate acyltransferase100HIAONETKKP3565_0013051-acyl-sng/ycerol-3- phosphate acyltransferase100HIAONETTetRJAcrR family transcriptional regulator100HIAONETKKP3565_001304Nramp family divalent magnesium100HIAONETKKP3565_001303magnesium glycyl radical proteinKKP3566_001038HIAONETKKP3565_001302glycyl radical protein family protein100HIAONETKKP3565_001302glycyl radical protein100HIAONETKKP3565_002171ABC transporterATP-binding protein/permeaseHorAONETKKP3565_002170ABC transporterATP-binding protein/permeaseHorAONETKKP3565_002170Mar family winged helix-turn-helixMark family winged transcriptional regulatorHorAONETKKP3565_002169PadR family transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional regulatorHorAONETKKP3565_001674TetR/AcrR family transcriptional regulator100transporterHorCONETKKP3565_001677TetR/AcrR family transcriptional regulator100transposase response regulatorHorCONE	Genes	Lg. backii KKP	Product	Lg. backii KKP	Product	Identity (%)
HitA _{Our1} KKP3565_001307 glycosyltransferase family 8 protein 100 HitA _{Our2} KKP3565_001306 1-acyl-sn-glycerol-3- phosphate 100 family 8 protein 1-acyl-sn-glycerol-3- phosphate 100 HitA _{Our2} KKP3565_001305 1-acyl-sn-glycerol-3- phosphate 100 phosphate acyltransferase 100 HitA _{Our2} KKP3565_001304 TetR/AcrR family KKP3566_00138 TetR/AcrR family 100 HitA _{Our2} KKP3565_001304 Nramp family divalent 100 metal transporter transporter HitA _{Our2} KKP3565_001303 metal transporter transporter CorA family protein 100 transporter 100 HorA _{Our2} KKP3565_002172 hypothetical protein family sympotein 142.8 ABC transporter 100 HorA _{Our2} KKP3565_002170 Marf family winged helix-turn-helix KKP3566_002145 ABC transporter 100 HorA _{Our2} KKP3565_002169 PadR family valdorductase KKP3566_002147 ABC transporter 100 HorA _{Our2} KKP3565_001674 TetR/AcrR family transcriptional regulator		3565		3566		
family & protein family & protein HitA _{OH72} KKP3565_001306 1-acyl-sn-glycerol-3- phosphate 100 HitA _{OH72} KKP3565_001305 1-acyl-sn-glycerol-3- phosphate 100 HitA _{OH72} KKP3565_001305 TetR/AcrR family transcriptional TetR/AcrR family regulator TetR/AcrR family transporter 100 HitA _{OH72} KKP3565_001305 TetR/AcrR family transporter KKP3566_001038 Nramp family divalent metal	HitA _{ORF1}	KKP3565_001307	glycosyltransferase	KKP3566_001035	glycosyltransferase	100
HitA _{OBE2} KKP3565_001306 1-acyl-sn-glycerol-3- phosphate acyltransferase 100 HitA _{OBE3} KKP3565_001305 TetK/AcrR family KKP3566_001037 TetK/AcrR family 100 HitA _{OBE3} KKP3565_001304 Transporter regulator regulator regulator HitA _{OBE3} KKP3565_001304 Nramp family divalent metal KKP3566_001038 Mramp family transporter Nramp family transporter Nramp family transporter KKP3566_001040 magnesium 100 HitA _{OBE3} KKP3565_002172 hypothetical protein family protein KKP3566_002144 ATP-binding protein/permease 100 HorA _{OBE3} KKP3565_002170 Mark family winged helix-turn-helix KKP3566_002145 ATP-binding protein/permease 100 HorA _{OBE3} KKP3565_002170 Mark family transcriptional regulator KKP3566_002145 ADP-tinding protein/permease 100 HorA _{OBE3} KKP3565_002169 Padk family vadioreductase KKP3566_002147 Padk family regulator 100 HorA _{OBE3} KKP3565_001674 Tetk/AcrR family transcriptional regulator 100 100 HorA _{OBE3} KKP3565_001675 ABC transporter 100 100			family 8 protein		family 8 protein	
LinkphosphatephosphateacyltransferaseacyltransferaseacyltransferaseHitAqueraKKP3565_001305TetK/AcrR family100HitAqueraKKP3565_001304Nramp familyKKP3566_001038Nramp family divalentHitAqueraKKP3565_001303magnesiumKKP3566_001038Nramp family divalentHitAqueraKKP3565_001303magnesiumKKP3566_001039magnesiumHitAqueraKKP3565_001302glycyl radical proteinKKP3566_001040glycyl radical proteinHitAqueraKKP3565_001212hypothetical proteinKKP3566_00140glycyl radical protein100HorAqueraKKP3565_002172hypothetical proteinKKP3566_00140glycyl radical protein19.28HorAqueraKKP3565_002172hypothetical proteinKKP3566_002143ABC transporter ATP100HorAqueraKKP3565_002170Mark family wingedKKP3566_002143ABC transporter ATP100HorAqueraKKP3565_002169PadR familyKKP3566_002146SDR family100HorAqueraKKP3565_002169PadR familyKKP3566_002147PadR family100HorAqueraKKP3565_002167TetR/AcrR family100transcriptionalregulatorregulatorregulatorregulatorregulatorHorCqueraKKP3565_001675ABC transporterKKP3566_001951TetR/AcrR family100HorCqueraKKP3565_001676IS30 familyKKP3566_001952ABC transporter100HorCqueraKKP	HitA _{ORE2}	KKP3565 001306	1-acyl-sn-glycerol-3-	KKP3566 001036	1-acyl-sn-glycerol-3-	100
HitA_0BF3 HITA_0BF3KKP3565_001305 TERX/AcR family transcriptional regulatorControl Control Terx/AcR family transcriptional regulatorControl Control Terx/AcR family transcriptional regulatorControl Control Terx/AcR family transcriptional regulatorControl Control Terx/AcR family transporterControl Terx/AcR family transporterControl Ter	On 2	-	phosphate		phosphate	
HitA _{OBF3} KKP3565_001305 TetR/AcrR family transcriptional regulator KKP3566_001037 TetR/AcrR family transcriptional regulator 100 HitA KKP3565_001304 Nramp family divalent metal transporter Nramp family divalent metal transporter Nramp family divalent metal transporter 100 HitA _{OBF4} KKP3565_001303 magnesium transporter KKP3566_001039 magnesium transporter 100 HitA _{OBF4} KKP3565_001212 hypothetical protein ARC transporter KKP3566_002143 ATP-binding protein 19.28 HorA _{OBF7} KKP3565_002170 ABC transporter ATP-binding protein/permease KKP3566_002143 ATP-binding protein 19.28 HorA _{OBF73} KKP3565_002170 Mark family transcriptional regulator KKP3566_002144 ABC transporter ATP 100 HorA _{OBF73} KKP3565_002169 PadR family transcriptional regulator KKP3566_002146 SDR family 100 HorA _{OBF74} KKP3565_001674 TetR/AcrR family transcriptional regulator KKP3566_001951 TetR/AcrR family transcriptional regulator TetR/AcrR family transcriptional regulator 100 HorC _{OBF74} KKP3565_001676 TetR/AcrR family transcriptional regulator KKP3566_001952 ABC transporter <t< td=""><td></td><td></td><td>acyltransferase</td><td></td><td>acyltransferase</td><td></td></t<>			acyltransferase		acyltransferase	
HitA KKP3565_001304 iransporter CorA family protein 100 HitA ₀₆₈₇₄ KKP3565_001303 magnesium KKP3566_001039 magnesium 100 transporter CorA family protein 100 HorA ₀₆₇₇₄ KKP3565_001272 hypothetical protein KKP3566_001040 glycyl radical protein 100 HorA ₀₆₇₇₃ KKP3565_002172 hypothetical protein KKP3566_002143 ATP-binding protein 100 HorA ₀₆₇₇₃ KKP3565_002172 hypothetical protein KKP3566_002143 ATP-binding protein/ HorA ₀₆₇₇₃ KKP3565_002170 Marf family kKP3566_002143 ATP-binding protein/ HorA ₀₆₇₇₃ KKP3565_002170 Marf family kKP3566_002145 Marf family winged 100 helik:turn-helix transporter CorA transporter CorA ATP-binding protein/ HorA ₀₆₇₇₃ KKP3565_002170 Marf family KKP3566_002145 Marf family winged 100 helik:turn-helix transporter CorA transporter CorA ATP-binding protein/ HorA ₀₆₇₇₃ KKP3565_002175 Marf family KKP3566_002145 Marf family winged 100 helik:turn-helix transporter CorA transporter CorA transporter CorA ATP-binding protein/ HorA ₀₆₇₇₄ KKP3565_002169 PadR family KKP3566_002146 SDR family 100 transpriptional regulator regulator HorC ₀₆₇₇₄ KKP3565_001674 TetR/ACR family KKP3566_001951 TetR/ACR family 100 transposeae HorC ₀₆₇₇₄ KKP3565_001676 ABC transporter KKP3566_001951 TetR/ACR family 100 transposeae HorC ₀₆₇₇₄ KKP3565_001677 response regulator regulator HorC ₀₆₇₇₄ KKP3565_001677 response regulator response regulator (pseudogene) HorC ₀₆₇₇₄ KKP3565_001678 KKP3566_001952 ABC transpose transpose transpose family 2 protein (pseudogene) HorC ₀₆₇₇₄ KKP3565_001677 response regulator (pseudogene) HorC ₀₆₇₇₄ KKP3565_001678 MBC transpose (KP3566_001955 host family 2 protein (pseudogene) HorC ₀₆₇₇₄ KKP3565_001678 MBC transpose (KP3566_001955 host family 2 protein (pseudogene) HorC ₀₆₇₇₅ KKP3565_001678 MBC transpose (KP3566_001955 host family 2 protein 100 HorC ₀₆₇₇₅ KKP3565_001678 HBC transpose (KP3566_001955 host family 2 protein 100 HorC ₀₆₇₇₅ KKP3565_001679 hypothetical protein 100 HorC ₀₆₇₇₅ KKP3565_001681 Host family KKP3566_001959 hypothetical protein 100 HorC ₀₆₇₇₅ KKP3565_001681	HitA	KKP3565 001305	TetR/AcrR family	KKP3566 001037	TetR/AcrR family	100
HitAKKP3565_001304Nramp family Mramp familyKKP3566_001038Nramp family divalent metal transporter100HitA_0RF4KKP3565_001303magnesium transporterKKP3566_001039magnesium transporter CorA family protein100HitA_0RF5KKP3565_001302glycyl radical proteinfamily protein100HorA_0RF1KKP3565_002172hypothetical proteinKKP3566_001400glycyl radical protein19.28HorAKKP3565_002171ABC transporterKKP3566_002143ATP-binding protein19.28HorA_0RF2KKP3565_002171ABC transporterKKP3566_002144ABC transporter ATP100HorA_0RF2KKP3565_002170Mart family winged100transcriptional regulator100HorA_0RF2KKP3565_002169Mart family winged100kKP3566_002145Mart family winged100HorA_0RF2KKP3565_002169PadR familyKKP3566_002147Mart family winged100HorA_0RF2KKP3565_001674TetR/AcrR familyKKP3566_001951TetR/AcrR family100HorC_0RF1KKP3565_001675ABC transporterKKP3566_001952ABC transporter100HorC_0RF2KKP3565_001676IS30 familyKKP3566_001952ABC transporter100HorC_0RF3KKP3565_001677response regulator-(pseudogene)-HorC_0RF3KKP3565_001678ABC transporterKKP3566_001952ABC transporter-HorC_0RF3KKP3565_001677response regulator-(ps	ORF3		transcriptional		transcriptional	100
HitA KKP3565_001304 Nramp family divalent metal KKP3566_001308 Nramp family divalent metal transporter 100 HitA ₀₆₈₇₄ KKP3565_001303 magnesium transporter KKP3566_001039 magnesium transporter CorA 100 HitA ₀₆₈₇₅ KKP3565_001302 glycyl radical protein AG KKP3565_001400 glycyl radical protein AG 100 HorA ₀₆₇₅₅ KKP3565_002172 hypothetical protein ATP-binding protein/permease KKP3566_002143 ATP-binding protein/permease 19.28 HorA ₀₆₇₇₂ KKP3565_002170 MarR family winged helix-turn-helix KKP3566_002145 MarR family winged helix-turn-helix 100 HorA ₀₆₇₇₃ KKP3565_002169 PadR family transcriptional regulator KKP3566_002146 SDR family oxidoreductase 100 HorA ₀₆₇₇₄ KKP3565_001674 TetR/AcrR family transcriptional regulator KKP3566_001951 TetR/AcrR family transcriptional regulator 100 HorC ₀₆₇₇₁ KKP3565_001675 ABC transporter (pseudogene) KKP3566_001953 IS30 family transposase 100 HorC ₀₆₇₇₄ KKP3565_001676 IS30 family transposase KKP3566_001954 TetR/AcrR family transposase			rogulator		rogulator	
IntraKKP3565_001303KKP3566_001039material transporterHitA_0BF4KKP3565_001303magnesium100HitA_0BF4KKP3565_001302glycyl radical proteinfamily proteinHitA_0BF4KKP3565_001302glycyl radical proteinKKP3566_001040glycyl radical proteinHorA_0BF1KKP3565_002172hypothetical proteinKKP3566_002143ATP-bindingHorA_0BF1KKP3565_002170ABC transporterKKP3566_002144ABC transporter ATPHorA_0BF2KKP3565_002170Mark family wingedKKP3566_002145Mark family wingedHorA_0BF2KKP3565_002169PadR familyKKP3566_002146Mark family wingedHorA_0BF2KKP3565_002169PadR familyKKP3566_002146SDR familyHorA_0BF2KKP3565_001674Tetk/AcrR family kKP3566_002147PadR family100HorA_0BF2KKP3565_001674Tetk/AcrR familykKP3566_001951Tetk/AcrR family100HorC_0BF1KKP3565_001676IS30 familyKKP3566_001951Tetk/AcrR family100HorC_0BF2KKP3565_001676IS30 familyKKP3566_001953IS30 family100HorC_0BF3KKP3565_001676IS30 familyKKP3566_001953IS30 family100HorC_0BF3KKP3565_001678phosphatase PAP2-family proteinHorC_0BF3KKP3565_001676glycosyltransferase100family cproteinHorC_0BF4KKP3565_001678phosphatase PAP2-family proteinHorC_0BF5KKP3565_001678 <td< td=""><td>LitA</td><td>KKD2565 001204</td><td>Nramp family</td><td>KKD2566 001028</td><td>Nramp family divalent</td><td>100</td></td<>	LitA	KKD2565 001204	Nramp family	KKD2566 001028	Nramp family divalent	100
Interal ItransporterInteral magnesiumInteral transporter magnesiumHitA_ONF4KKP3565_001303magnesium transporter CorA family proteinKKP3566_001040magnesium glycyl radical protein100HitA_ONF5KKP3565_002172 KKP3565_002171hypothetical protein ABC transporterKKP3566_002143 KKP3566_002144ATP-binding protein ABC transporter ATP100HorA_ONF2KKP3565_002172 Mark family wingedhypothetical protein ABC transporterKKP3566_002143 KKP3566_002144ATP-binding protein ABC transporter ATP100HorA_ONF2KKP3565_002170Mark family winged helix-turn-helixKKP3566_002146SDR family transcriptional regulatorNark family winged transcriptional regulator100HorA_ONF4KKP3565_002169Padk family transcriptional regulatorKKP3566_002147Padk family transcriptional regulator100HorCONF1KKP3565_001674TetR/Acrk family transcriptional regulator100transcriptional regulatorHorCONF2KKP3565_001677ABC transporter transcriptional regulatorKKP3566_001951TetR/Acrk family transcriptional regulator100HorCONF2KKP3565_001677ABC transporter transposaseKKP3566_001952ABC transporter transposase100HorCONF4KKP3565_001677glycosyltransferase family protein (pseudogene)KKP3566_001955phosphatase PAP2 family protein- (pseudogene)HorCONF4KKP3565_001678phosphatase PAP2 family proteinKKP3566_001955 <td< td=""><td>HILA</td><td>KKF3505_001504</td><td>divelant metal</td><td>KKF3300_001038</td><td></td><td>100</td></td<>	HILA	KKF3505_001504	divelant metal	KKF3300_001038		100
HitA _{DBF4} KKP3565_001303 magnesium transporter family protein KKP3566_001039 magnesium family protein 100 HitA _{DBF5} KKP3565_001302 glycyl radical protein glycyl radical protein KKP3566_001040 glycyl radical protein 100 HorA _{DBF5} KKP3565_002172 hypothetical protein KKP3566_002143 ATP-binding protein 19.28 HorA KKP3565_002170 ARS transporter ATP-binding KKP3566_002144 ABC transporter protein/permease D00 HorA _{OBF2} KKP3565_002170 MarR family winged helix-turn-helix KKP3566_002145 MarR family winged helix-turn-helix transcriptional HorA _{OBF3} KKP3565_002169 PadR family transcriptional KKP3566_002146 SDR family oxidoreductase oxidoreductase HorC _{OBF1} KKP3565_001674 TetR/AcrR family transcriptional KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{OBF1} KKP3565_001677 ABC transporter (speudogene) KKP3566_001952 ABC transporter nassoriptional 100 HorC _{OBF2} KKP3565_001677 response regulator (speudogene) KKP3566_001954 response regulator (speudogene) 1			uivalent metal		metal transporter	
HitA _{OBF4} KKP3565_001303 magnesium transporter CorA family protein KKP3566_001040 glycyl radical protein glycyl radical protein 100 HorA _{OBF1} KKP3565_002172 hypothetical protein ABC transporter ATP-binding ABC transporter protein/permease ABC transporter ATP-binding 100 HorA _{OBF2} KKP3565_002172 hypothetical protein ABC transporter KKP3566_002143 ATP-binding protein protein/permease 100 HorA _{OBF2} KKP3565_002170 MarR family winged helix-turn-helix KKP3566_002145 MarR family winged helix-turn-helix 100 HorA _{OBF3} KKP3565_002169 PadR family transcriptional regulator KKP3566_002146 SDR family soldoreductase SDR family transcriptional regulator 100 HorA _{OBF4} KKP3565_001674 TetR/AcrR family transcriptional regulator KKP3566_001951 TetR/AcrR family transcriptional regulator 100 HorC _{OBF1} KKP3565_001676 IS30 family transpose regulator KKP3566_001952 ABC transporter response regulator - HorC _{OBF2} KKP3565_001677 response regulator (pseudogene) ransposase - - HorC _{OBF4} KKP3565_001677 response regulator (pseudogene) - - - <			transporter			100
transporter CorAtransporter CorAfamily proteinfamily proteinHitA _{ORF1} KKP3565_001302glycyl radical proteinKKP3566_001040glycyl radical proteinHorAKKP3565_002172hypothetical proteinKKP3566_002143ATP-binding protein19.28HorAKKP3565_002170ABC transporterKKP3566_002144ABC transporter ATP100HorAKKP3565_002170MarR family wingedbindingbinding100HorAFranceprotein/permeaseprotein/permeaseprotein/permease100HorAKKP3565_002169PadR familyKKP3566_002146SDR family100HorAregulatorregulatorsxidoreductaseregulatorHorAKKP3565_002168SDR familyKKP3566_001917PadR family100oxidoreductaseregulatorregulatorregulator100HorCKKP3565_001674TetR/AcrR familyKKP3566_001951TetR/AcrR family100transporterKKP3565_001676IS30 familyKK93566_001952ABC transporter100HorCKKP3565_001676IS30 familyKKP3566_001953IS30 family100transposaseresponse regulatorresponse regulator-(pseudogene)HorCKKP3565_001677response regulator(pseudogene)(pseudogene)-HorCKKP3565_001677response regulator-(pseudogene)-HorCKKP3565_001677response regulator-(pseudogene)- </td <td>HITA_{ORF4}</td> <td>KKP3565_001303</td> <td>magnesium</td> <td>KKP3566_001039</td> <td>magnesium</td> <td>100</td>	HITA _{ORF4}	KKP3565_001303	magnesium	KKP3566_001039	magnesium	100
family proteinfamily proteinfamily proteinHitA _{ORF1} KKP3565_001302glycyl radical proteinKKP3566_001040glycyl radical protein100HorA _{ORF1} KKP3565_002171hypothetical proteinKKP3566_002143ATP-binding protein19.28HorAKKP3565_002171ABC transporterKKP3566_002144ABC transporter ATP100bindingprotein/permeaseprotein/permeaseprotein/permease100HorA _{ORF2} KKP3565_002170Mark family wingedKKP3566_002145Mark family winged100HorA _{ORF3} KKP3565_002169PadR familyKKP3566_002146SDR family100HorA _{ORF4} KKP3565_002168SDR familyKKP3566_002147PadR family100HorA _{ORF4} KKP3565_001674TetR/AcrR familyKKP3566_001951TetR/AcrR family100HorC _{ORF1} KKP3565_01675ABC transporterKKP3566_001951TetR/AcrR family100HorC _{ORF1} KKP3565_01676IS30 familyKKP3566_001952ABC transporter100HorC _{ORF2} KKP3565_01677response regulatorresponse regulator-HorC _{ORF4} KKP3565_01678phosphatase PAP2KKP3566_001952ABC transporter100HorC _{ORF4} KKP3565_01678phosphatase PAP2HorC _{ORF4} KKP3565_01677response regulator-(pseudogene)HorC _{ORF4} KKP3565_01678phosphatase PAP2HorC _{ORF4} KKP3565_01679glycosyltransferase100 <td< td=""><td></td><td></td><td>transporter CorA</td><td></td><td>transporter CorA</td><td></td></td<>			transporter CorA		transporter CorA	
HitA _{OBES} KKP3565_001302 glycyl radical protein KKP3566_001040 glycyl radical protein 100 HorA _{OBE1} KKP3565_002171 ABC transporter ATP-binding protein/permease ATP-binding protein/permease 100 HorA _{OBE2} KKP3565_002170 Mark family winged helix-turn-helix KKP3566_002143 ATP-binding protein/permease 100 HorA _{OBE2} KKP3565_002169 Padk family winged helix-turn-helix KKP3566_002146 SDR family unacriptional regulator 100 HorA _{OBE3} KKP3565_002169 Padk family KKP3566_002146 SDR family unacriptional regulator 100 0xidoreductase 100 HorA _{OBE4} KKP3565_002168 SDR family unacriptional regulator KKP3566_002147 Padk family 100 100 HorC _{OBE1} KKP3565_001674 TetR/AcrR family transcriptional regulator regulator regulator regulator HorC _{OBE1} KKP3565_001675 ABC transporter KKP3566_001951 TetR/AcrR family transcriptional regulator regulator regulator HorC _{OBE1} KKP3565_001676 IS30 family transcriptional regulator regulator regulator regulator regulator regulator regulator regulat			family protein		family protein	
HorA_ONF1 HorAKKP3565_002172 KKP3565_002171hypothetical protein ABC transporter ATP-binding protein/permeaseATP-binding protein binding protein/permease19.28HorA_ONF2KKP3565_002170MarR family winged helix-turn-helixKKP3566_002144ABC transporter ATP binding protein/permease100 helix-turn-helixHorA_ONF2KKP3565_002170MarR family winged helix-turn-helixKKP3566_002145MarR family winged helix-turn-helix100 helix-turn-helixHorA_ONF3KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family voidoreductase100HorA_ONF4KKP3565_002168SDR family voidoreductaseKKP3566_002147PadR family transcriptional regulator100HorC_ONF1KKP3565_001674TetR/AcrR family transcriptional regulator100KKP3566_001951TetR/AcrR family transcriptional regulator100HorC_ONF2KKP3565_001675ABC transporter transporterKKP3566_001952ABC transporter transporase100HorC_ONF2KKP3565_001677response regulator response regulator- (pseudogene)- (pseudogene)- family protein (pseudogene)HorC_ONF4KKP3565_001677response regulator response regulator- (pseudogene)- family protein family protein- family protein family proteinHorC_ONF4KKP3565_001677response regulator response regulator- family protein family protein- family proteinHorC_ONF4KKP3565_001679 <td< td=""><td>HitA_{ORF5}</td><td>KKP3565_001302</td><td>glycyl radical protein</td><td>KKP3566_001040</td><td>glycyl radical protein</td><td>100</td></td<>	HitA _{ORF5}	KKP3565_001302	glycyl radical protein	KKP3566_001040	glycyl radical protein	100
HorA _{OBF1} KKP3565_002172 hypothetical protein ABC transporter KKP3566_002143 ATP-binding protein binding 19.28 HorA KKP3565_002170 ABC transporter KKP3566_002144 ABC transporter ATP 100 HorA _{OBF2} KKP3565_002170 MarR family winged helix-turn-helix KKP3566_002145 MarR family winged 100 HorA _{OBF3} KKP3565_002169 PadR family transcriptional KKP3566_002146 SDR family regulator 100 HorA _{OBF4} KKP3565_002169 PadR family transcriptional KKP3566_002147 PadR family regulator 100 HorA _{OBF4} KKP3565_001674 TetR/AcrR family transcriptional KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{OBF1} KKP3565_001675 ABC transporter KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{OBF2} KKP3565_001676 IS30 family transposase 100 100 HorC _{OBF3} KKP3565_001677 TetR/AcrR family transposase KKP3566_001953 IS30 family transposase 100 HorC _{OBF4} KKP3565_001678 phosphatase PAP2 family protein (pseudogene) KKP3566_001955 phosphatase PAP2 family protein -						
HorAKKP3565_002171ABC transporter ATP-binding protein/permeaseKKP3565_002144ABC transporter ATP binding100HorA_0RF2KKP3565_002170MarR family winged helix-turn-helixKKP3565_002145MarR family winged helix-turn-helix100HorA_0RF3KKP3565_002169PadR family regulatorKKP3566_002146SDR family regulator100HorA_0RF4KKP3565_002168SDR family regulator100100HorA_0RF4KKP3565_002168SDR family regulator100HorA_0RF4KKP3565_002168SDR family regulator100HorC_0RF1KKP3565_001674TetR/AcrR family transcriptional regulator100HorC_0RF1KKP3565_001676TetR/AcrR family transcriptional regulator100HorC_0RF1KKP3565_001676IS30 family transporterKKP3566_001951TetR/AcrR family response regulatorHorC_0RF3KKP3565_001676IS30 family transposaseKKP3566_001952ABC transporter response regulator100HorC_0RF3KKP3565_001677response regulator (pseudogene)- (pseudogene)- (pseudogene)- (pseudogene)HorC_0RF5KKP3565_001678phosphatase PAP2 family protein (pseudogene)KKP3566_001955phosphatase PAP2 family protein- family 2 proteinHorC_0RF6KKP3565_001681phosphatase PAP2 family 2 proteinKKP3566_001955family 2 protein family 2 protein100HorC_0RF6KKP3565_001681MobA/MobL family transposasefamily 2	HorA _{ORF1}	KKP3565_002172	hypothetical protein	KKP3566_002143	ATP-binding protein	19.28
ATP-binding protein/permeasebinding protein/permeaseHorA _{ORF2} KKP3565_002170Mar family winged helix-turn-helixMar family winged helix-turn-helix100 helix-turn-helixHorA _{ORF3} KKP3565_002169PadR family transcriptionalKKP3566_002146SDR family oxidoreductase100HorA _{ORF4} KKP3565_002169PadR family transcriptionalKKP3566_002147PadR family oxidoreductase100HorA _{ORF4} KKP3565_002168SDR family soldoreductaseKKP3566_002147PadR family transcriptional regulator100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family regulator100HorC _{ORF1} KKP3565_001675ABC transporter transcriptional regulator100100HorC _{ORF2} KKP3565_001676IS30 family permeaseKKP3566_001952ABC transporter response regulator100HorC _{ORF2} KKP3565_001677response regulator (pseudogene)- (pseudogene)- (pseudogene)- (pseudogene)HorC _{ORF3} KKP3565_001678phosphatase PAP2 family protein (pseudogene)KKP3566_001955phosphatase PAP2 family protein (pseudogene)- (pseudogene)HorC _{ORF3} KKP3565_001681Mypothetical protein (pseudogene)KKP3566_001956glycosyltransferase family 2 protein family 2 protein100HorC _{ORF7} KKP3565_001681Mypothetical protein (pseudogene)I00KKP3566_001957hypothetical protein (pseudogene) <tr<< td=""><td>HorA</td><td>KKP3565_002171</td><td>ABC transporter</td><td>KKP3566_002144</td><td>ABC transporter ATP</td><td>100</td></tr<<>	HorA	KKP3565_002171	ABC transporter	KKP3566_002144	ABC transporter ATP	100
Protein/permeaseprotein/permeaseprotein/permeaseHorA _{OBF2} KKP3565_002170MarR family winged helix-turn-helixMarR family winged helix-turn-helix100HorA _{OBF3} KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family oxidoreductase100HorA _{OBF4} KKP3565_002169PadR family transcriptional regulatorKKP3566_002147SDR family transcriptional regulator100HorA _{OBF4} KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional regulator100HorC _{OBF1} KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional transcriptional transcriptional regulator100HorC _{OBF2} KKP3565_001675ABC transporter transposase100100HorC _{OBF3} KKP3565_001676IS30 family permeaseKKP3566_001953IS30 family transposase100HorC _{OBF4} KKP3565_001677response regulator response regulator- (pseudogene)- (pseudogene)- (pseudogene)HorC _{OBF5} KKP3565_001678phosphatase PAP2 family protein (pseudogene)- (pseudogene)- (pseudogene)- (pseudogene)- (pseudogene)HorC _{OBF7} KKP3565_001680hypothetical protein family 2 protein100- (pseudogene)- (pseudogene)- (pseudogene)HorC _{OBF7} KKP3565_001681hypothetical protein (pseudogene)KKP3566_001956			ATP-binding		binding	
HorA _{ORF2} KKP3565_002170MarR family winged helix-turn-helixMarR family winged helix-turn-helix100HorA _{ORF3} KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family socidoreductase100HorA _{ORF4} KKP3565_002168SDR family socidoreductaseKKP3566_002147PadR family vitranscriptional regulator100HorA _{ORF4} KKP3565_001674TetR/AcrR family transcriptional regulator100100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulator100100HorC ORF1KKP3565_001675ABC transporter transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional regulator100HorC ORF2KKP3565_001676IS30 family permease transposaseIS30 family transposase100HorC ORF3KKP3565_001678phosphatase PAP2 family protein (pseudogene)HorC ORF3KKP3565_001678phosphatase PAP2 family protein (pseudogene)HorC ORF5KKP3565_001679glycosyltransferase family protein (pseudogene)(pseudogene)-HorC ORF5KKP3565_001680hypothetical protein (pseudogene)100-HorC ORF7KKP3565_001681KKP3566_001955hypothetical protein (pseudogene)100HorC ORF7KKP3565_001682hypothetical protein (pseudogene)100HorC ORF7KKP3565_001680hypothetical protein (pseudogene)100 <td></td> <td></td> <td>protein/permease</td> <td></td> <td>protein/permease</td> <td></td>			protein/permease		protein/permease	
HorA ORF3KKP3565_002169PadR family PadR family transcriptional regulatorKKP3566_002146SDR family social oxidoreductase100HorA ORF4KKP3565_002168SDR family regulatorKKP3566_002147PadR family social regulator100HorC ORF1KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family regulator100HorC ORF1KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family regulator100HorC ORF2KKP3565_001675ABC transporter transposaseKKP3566_001952ABC transporter transposase100HorC ORF3KKP3565_001676IS30 family transcriptional transposaseKKP3566_001953IS30 family transposase100HorC ORF3KKP3565_001677response regulator response regulator- (pseudogene)- (pseudogene)- (pseudogene)HorC ORF3KKP3565_001678phosphatase PAP2 family protein family protein- (pseudogene)- (pseudogene)- (pseudogene)HorC ORF5KKP3565_001679glycosyltransferase family protein(pseudogene)- (pseudogene)- (pseudogene)HorC ORF5KKP3565_001678hypothetical protein family protein- (pseudogene)- (pseudogene)- (pseudogene)HorC ORF5KKP3565_001680hypothetical protein (pseudogene)100- (pseudogene)- (pseudogene)HorC ORF7K	HorA _{ORF2}	KKP3565_002170	MarR family winged	KKP3566_002145	MarR family winged	100
HorA _{ORF3} KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family socidoreductase100HorA _{ORF4} KKP3565_002168SDR family socidoreductaseKKP3566_002147PadR family regulator100HorA _{ORF4} KKP3565_001674TetR/AcrR family transcriptional regulator100100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulator100HorC ORF1KKP3565_001675ABC transporter transcriptional regulatorKKP3566_001951TetR/AcrR family regulator100HorC ORF2KKP3565_001675ABC transporter transposaseKKP3566_001952ABC transporter transposase100HorC ORF2KKP3565_001677response regulator response regulator- (pseudogene)- (pseudogene)- (pseudogene)HorC ORF4KKP3565_001677perpensase response regulatorKKP3566_001954response regulator (pseudogene)- (pseudogene)HorC ORF4KKP3565_001679glycosyltransferase family protein (pseudogene)KKP3566_001955phosphatase PAP2 (pseudogene)- (pseudogene)HorC ORF6 HorC ORF7KKP3565_001680Mypothetical protein (pseudogene)KKP3566_001957hypothetical protein (pseudogene)100HorC ORF7KKP3565_001682MobA/MobL family MobA/MobL family- protein100HorC ORF7 KKP3565_001682MobA/MobL family MobA/MobL family- protein100HorC ORF7 KKP3565_001684<			helix-turn-helix		helix-turn-helix	
HorA _{ORF3} KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family soldoreductase100HorA _{ORF4} KKP3565_002168SDR family sDR family oxidoreductaseKKP3566_002147PadR family transcriptional regulator100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family regulator100HorC ORF1KKP3565_001675ABC transporter transposaeKKP3566_001952ABC transporter transposae100HorC ORF2KKP3565_001676IS30 family transposaeKKP3566_001952ABC transporter transposae100HorC ORF3KKP3565_001676IS30 family transposaeKKP3566_001954response regulator response regulator-HorC ORF4KKP3565_001678phosphatase PAP2 family protein (pseudogene)KKP3566_001955phosphatase PAP2 family protein (pseudogene)-HorC ORF6KKP3565_001679glycosyltransferase family protein family protein (pseudogene)KKP3566_001956glycosyltransferase family 2 protein100HorC ORF6KKP3565_001680 KKP3565_001682MobA/MobL family MobA/MobL family proteinKKP3566_001959MobA/MobL family motein-HorC ORF7KKP3565_001680 KKP3565_001680MobA/MobL family proteinHorC ORF7KKP3565_001680 KKP3565_001680MobA/MobL family moteinHorC ORF7KKP3565_001680 KKP3565_001680					transcriptional	
HorA _{ORF3} KKP3565_002169PadR family transcriptional regulatorKKP3566_002146SDR family oxidoreductaseHorA _{ORF4} KKP3565_002168SDR family sDR familyKKP3566_002147PadR family regulator100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional regulator100HorC _{ORF1} KKP3565_001675ABC transporter transposaseKKP3566_001952ABC transporter transposase100HorC _{ORF2} KKP3565_001676IS30 family transposase100100HorC _{ORF3} KKP3565_001677response regulator transposase100HorC _{ORF3} KKP3565_001678phosphatase PAP2 family protein (pseudogene)(pseudogene) family protein (pseudogene)-HorC _{ORF3} KKP3565_001678glycosyltransferase family 2 protein family 2 proteinKKP3566_001956 family 2 protein family 2 protein100HorC _{ORF6} KKP3565_001680 for Afraily protein (pseudogene)KKP3566_001956 family 2 protein100HorC _{ORF6} KKP3565_001680 for Afamily protein (pseudogene)KKP3566_001957 family 2 protein100HorC _{ORF7} KKP3565_001682 KP3565_001682GtrA family protein family 2 protein (pseudogene)100HorC _{ORF7} KKP3565_001682 KP3565_001682MobA/MobL family hypothetical protein100HorC _{ORF7} KKP3565_001682 KP3565_001682MobA/MobL family hypothetical protein100HorC _{ORF7} KKP3565_001683 KP3					regulator	
HortOprisKin Bote_FilterKin Bote_FilterHorAoRF4KKP3565_002168SDR family sDR familyKKP3566_002147PadR family transcriptional regulator100HorCoRF1KKP3565_001674TetR/AcrR family transcriptional regulatorKKP3566_001951TetR/AcrR family transcriptional transcriptional regulator100HorC ORF2KKP3565_001675ABC transporter permease transposaseKKP3566_001952ABC transporter permease transposase100HorC ORF2KKP3565_001677response regulator response regulator100100HorC ORF3KKP3565_001677response regulator (pseudogene) family protein (pseudogene)(KR93566_001954response regulator (pseudogene)HorC ORF4KKP3565_001678phosphatase PAP2 family protein family protein family protein (pseudogene)(KR93566_001955phosphatase PAP2 family proteinHorC ORF6 HorC ORF6 HorC ORF6 HorC ORF7KKP3565_001679glycosyltransferase family protein family protein family 2 proteinKKP3566_001956 family 2 protein100HorC ORF7 KKP3565_001681 (pseudogene) (pseudogene)KKP3566_001958 (pseudogene) (pseudogene)GtrA family protein (pseudogene)100HorC ORF7 (pseudogene)MobA/MobL family protein100100HorC ORF7 (pseudogene)KKP3565_001682MobA/MobL family (protein100HorC ORF7 (pseudogene)KKP3565_001681 (pseudogene)KKP3566_001959MobA/MobL family (protein	HorA	KKP3565 002169	PadR family	KKP3566 002146	SDR family	100
HorA _{ORF4} KKP3565_002168SDR family solidoreductaseKKP3566_002147PadR family regulator100HorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulator100regulatorHorC _{ORF1} KKP3565_001674TetR/AcrR family transcriptional regulator100HorC ORF2KKP3565_001675ABC transporter transposeKKP3566_001951TetR/AcrR family regulator100HorC ORF2KKP3565_001675ABC transporter transposaseKKP3566_001952ABC transporter regulator100HorC ORF2KKP3565_001675ABC transporter transposase100100HorC ORF3KKP3565_001677response regulator response regulator-HorC ORF4KKP3565_001677response regulator (pseudogene)-HorC ORF4KKP3565_001678phosphatase PAP2 phosphatase PAP2-HorC ORF5KKP3565_001679glycosyltransferase family protein (pseudogene)(pseudogene) (pseudogene)100HorC ORF6KKP3565_001680hypothetical protein GtrA family protein100100HorC ORF7KKP3565_001682MobA/MobL family mprotein-100HorC ORF7KKP3565_001682MobA/MobL family mprotein-100HorC ORF7KKP3565_001682MobA/MobL family mprotein-100HorC ORF7KKP3565_001682MobA/MobL family mprotein-100HorC ORF7KKP3565_001682MobA/MobL family mprot	UKF3		transcriptional		oxidoreductase	
HorA ORF4KKP3565_002168SDR family sold oreductaseKKP3566_002147PadR family regulator100HorC ORF1KKP3565_001674TetR/AcrR family transcriptional regulator100regulatorHorC ORF1KKP3565_001675TetR/AcrR family transcriptional regulator100HorC ORF2KKP3565_001675ABC transporter transposaseKKP3566_001952ABC transporter permease transposase100HorC ORF3KKP3565_001677response regulator transposase100100HorC ORF4KKP3565_001678phosphatase PAP2 phosphatase PAP2response regulator transposase-HorC ORF3KKP3565_001678phosphatase PAP2 phosphatase PAP2response regulator family protein (pseudogene)-HorC ORF4KKP3565_001678glycosyltransferase family z protein (pseudogene)(pseudogene)100HorC ORF6KKP3565_001680hypothetical protein family z proteinfamily z protein family z protein100HorC ORF7KKP3565_001680GtrA family protein MobA/MobL familyKKP3566_001959MobA/MobL family motein100HorC ORF7KKP3565_001682MobA/MobL family moteinKKP3566_001959MobA/MobL family motein-HorC ORF7KKP3565_001682MobA/MobL family moteinHorC ORF7KKP3565_001682MobA/MobL family moteinHorC ORF7KKP3565_001682MobA/MobL family motein<			regulator		ONIGOTEGGEGGE	
HorCoRF1 KKP3565_001674 TetR/AcrR family transcriptional Itor regulator HorC _{ORF1} KKP3565_001674 TetR/AcrR family transcriptional KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{ORF1} KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC _{ORF2} KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC _{ORF2} KKP3565_001676 IS30 family KKP3566_001953 IS30 family 100 HorC _{ORF3} KKP3565_001676 IS30 family KKP3566_001954 response regulator - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF7} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family <td< td=""><td>HorA</td><td>KKP3565 002168</td><td>SDR family</td><td>KKP3566 002147</td><td>PadP family</td><td>100</td></td<>	HorA	KKP3565 002168	SDR family	KKP3566 002147	PadP family	100
HorC _{ORF1} KKP3565_001674 TetR/AcrR family transcriptional KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{ORF2} KKP3565_001675 ABC transporter permease regulator regulator 100 HorC _{ORF2} KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC _{ORF2} KKP3565_001676 IS30 family KKP3566_001953 IS30 family 100 HorC _{ORF3} KKP3565_001677 response regulator transposase response regulator - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF4} KKP3565_001678 glycosyltransferase family protein family protein family 2 protein HorC _{ORF6} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001958 GtrA family 2 protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001688 MobA/MobL family - pr	HOIAORF4	KKF5505_002108	SDR failing	KKF5500_002147	transcriptional	100
HorC _{ORF1} KKP3565_001674 TetR/AcrR family transcriptional KKP3566_001951 TetR/AcrR family transcriptional 100 HorC _{ORF2} KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC _{ORF2} KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 Permease permease permease permease 100 HorC _{ORF2} KKP3565_001677 response regulator - (pseudogene) - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF4} KKP3565_001678 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein family 2 protein family 2 protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family - protein protein prot			oxidoreductase		transcriptional	
HorC _{ORF1} KKP3565_001674 Tetry Att K taminy KKP3565_001951 Tetry Att K taminy transcriptional HorC KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 Permease permease permease permease 100 HorC _{ORF2} KKP3565_001676 IS30 family KKP3566_001953 IS30 family 100 HorC _{ORF3} KKP3565_001677 response regulator response regulator - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF4} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - Protein protein<	HarC		TotP/AcrP family		TotP / AcrP family	100
HorC KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 HorC permease permease permease HorC KKP3565_001676 IS30 family KKP3566_001953 IS30 family 100 HorC transposase transposase transposase HorC (pseudogene) (pseudogene) - HorC KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 HorC KKP3565_001678 glycosyltransferase (pseudogene) - HorC (pseudogene) (pseudogene) - - HorC glycosyltransferase KKP3566_001955 glycosyltransferase 100 HorC KKP3565_001680 hypothetical protein KKP3566_001956 glycosyltransferase 100 HorC KKP3565_001680 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC protein kKP3565_001682 MobA/MobL family - protein HorC protein kKP3565_001680 hypothetical protein KKP3566_001959 MobA/MobL family HorC kKP3565_001683 <td>HOICORF1</td> <td>KKP3505_001074</td> <td>tech/Acrk family</td> <td>KKP3300_001931</td> <td>transsistional</td> <td>100</td>	HOICORF1	KKP3505_001074	tech/Acrk family	KKP3300_001931	transsistional	100
HorC ORF2KKP3565_001675ABC transporter permeaseKKP3566_001952ABC transporter permease100HorC ORF2KKP3565_001676IS30 familyKKP3566_001953IS30 family100transposasetransposasetransposaseHorC ORF4KKP3565_001677response regulatorresponse regulator- (pseudogene)HorC ORF4KKP3565_001677response regulator(pseudogene)HorC ORF4KKP3565_001677response regulator- (pseudogene)HorC ORF4KKP3565_001678phosphatase PAP2- family protein- (pseudogene)HorC ORF5KKP3565_001679glycosyltransferaseKKP3566_001955phosphatase PAP2- family proteinHorC ORF5KKP3565_001679glycosyltransferaseKKP3566_001956glycosyltransferase100HorC ORF6KKP3565_001680hypothetical proteinfamily 2 protein100HorC ORF7KKP3565_001681GtrA family proteinKKP3566_001958GtrA family protein100HorC ORF7KKP3565_001682MobA/MobL family- proteinprotein100HorC ORF7KKP3565_001683MobA/MobL family- proteinprotein100HorC ORF7KKP3565_001683hypothetical protein100HorC ORF7KKP3565_001683hypothetical protein100HorC ORF7KKP3565_001683hypothetical protein100			transcriptional		transcriptional	
HorC KKP3565_001675 ABC transporter KKP3566_001952 ABC transporter 100 Permease			regulator		regulator	100
HorC _{ORF2} KKP3565_001676 IS30 family transposase KKP3566_001953 IS30 family transposase 100 HorC _{ORF3} KKP3565_001677 response regulator (pseudogene) response regulator (pseudogene) - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 family protein (pseudogene) KKP3566_001954 response regulator (pseudogene) - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001678 glycosyltransferase family protein (pseudogene) family 2 protein 100 HorC _{ORF5} KKP3565_001680 hypothetical protein family 2 protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - Protein protein protein kKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001683 hypothetical protein KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001683 hypothetical protein KKP3566_001959 MobA/MobL family -	HorC	KKP3565_001675	ABC transporter	KKP3566_001952	ABC transporter	100
HorC _{ORF2} KKP3565_001676 IS30 family KKP3566_001953 IS30 family 100 HorC _{ORF3} KKP3565_001677 response regulator transposase transposase transposase HorC _{ORF4} KKP3565_001677 response regulator (pseudogene) (pseudogene) - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF5} KKP3565_001680 hypothetical protein family 2 protein 100 HorC _{ORF6} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001683 hypothetical protein 100 - - HorC			permease		permease	
HorC _{ORF3} KKP3565_001677 response regulator response regulator - HorC _{ORF4} KKP3565_001677 response regulator (pseudogene) - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001678 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF5} KKP3565_001680 hypothetical protein family protein 100 HorC _{ORF6} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - Protein protein protein protein protein (pseudogene) - HorC _{ORF7} KKP3565_001683 MobA/MobL family KKP3566_001959 MobA/MobL family - HorC _{ORF7} KKP3565_001683 hypothetical protein 100 - - HorC _{ORF7} KKP3565_001683 hypothetical protein	HorCORF2	KKP3565_001676	IS30 family	KKP3566_001953	IS30 family	100
HorC _{ORF3} KKP3565_001677 response regulator response regulator (pseudogene) (pseudogene) (pseudogene) (pseudogene) HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein group opticin protein protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein protein 100 HorC _{ORF7} KKP3565_001683 hypothetical protein 100 100			transposase		transposase	
(pseudogene) (pseudogene) HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001678 glycosyltransferase family protein family protein 100 HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein protein (pseudogene) - HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein (pseudogene) - - HorC _{ORF7} KKP3565_001683 hypothetical protein KKP3566_001959 MobA/MobL family -	HorC _{ORF3}	KKP3565_001677	response regulator	KKP3566_001954	response regulator	-
HorC _{ORF4} KKP3565_001678 phosphatase PAP2 KKP3566_001955 phosphatase PAP2 - HorC _{ORF5} KKP3565_001678 phosphatase PAP2 family protein family protein (pseudogene) - HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF5} KKP3565_001680 hypothetical protein family 2 protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein protein 100 HorC _{ORF8} KKP3565_001683 hypothetical protein KKP3566_001959 MobA/MobL family - Image: transformation of transformation			(pseudogene)		(pseudogene)	
family protein family protein (pseudogene) (pseudogene) HorC _{ORF5} KKP3565_001679 glycosyltransferase 100 HorC _{ORF6} KKP3565_001680 hypothetical protein family protein 100 HorC _{ORF7} KKP3565_001680 hypothetical protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein (pseudogene) - - HorC _{ORF7} KKP3565_001683 hypothetical protein 100 - -	HorC _{ORF4}	KKP3565_001678	phosphatase PAP2	KKP3566_001955	phosphatase PAP2	-
(pseudogene) (pseudogene) HorC _{ORF5} KKP3565_001679 glycosyltransferase family 2 protein family 2 protein HorC _{ORF6} KKP3565_001680 hypothetical protein family 2 protein HorC _{ORF7} KKP3565_001681 GtrA family protein fully protein HorC _{ORF7} KKP3565_001682 MobA/MobL family for family protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 HorC _{ORF7} KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein (pseudogene) - HorC _{ORF8} KKP3565_001683 hypothetical protein 100			family protein		family protein	
HorC _{ORF5} KKP3565_001679 glycosyltransferase KKP3566_001956 glycosyltransferase 100 HorC _{ORF5} KKP3565_001680 hypothetical protein family 2 protein family 2 protein 100 HorC _{ORF5} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 Figure 1 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein (pseudogene) (pseudogene) (pseudogene) 100			(pseudogene)		(pseudogene)	
family 2 protein family 2 protein HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein protein protein (pseudogene) HorC _{ORF8} KKP3565_001683 hypothetical protein KKP3566_001960	HorC _{ORF5}	KKP3565_001679	glycosyltransferase	KKP3566_001956	glycosyltransferase	100
HorC _{ORF6} KKP3565_001680 hypothetical protein KKP3566_001957 hypothetical protein 100 HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein (pseudogene) (pseudogene) hypothetical protein KKP3566_001960 hypothetical protein 100			family 2 protein		family 2 protein	
HorC _{ORF7} KKP3565_001681 GtrA family protein KKP3566_001958 GtrA family protein 100 KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein (pseudogene) (pseudogene) HorC _{ORF8} KKP3565_001683 hypothetical protein KKP3566_001960 hypothetical protein 100	HorCORFE	KKP3565_001680	hypothetical protein	KKP3566_001957	hypothetical protein	100
KKP3565_001682 MobA/MobL family KKP3566_001959 MobA/MobL family - protein protein (pseudogene) (pseudogene) HorC _{nere} KKP3565 001683 hypothetical protein KKP3566 001960 hypothetical protein 100	HorC _{ORF7}	KKP3565_001681	GtrA family protein	KKP3566_001958	GtrA family protein	100
protein protein (pseudogene) (pseudogene) HorC _{nere} KKP3565 001683 hypothetical protein KKP3566 001960 hypothetical protein 100		KKP3565_001682	MobA/MobL family	KKP3566_001959	MobA/MobL family	-
(pseudogene) HorC _{ners} KKP3565 001683 hypothetical protein KKP3566 001960 hypothetical protein 100			protein	_	protein (pseudogene)	
HorC _{OPER} KKP3565 001683 hypothetical protein KKP3566 001960 hypothetical protein 100			(pseudogene)			
	HorCorre	KKP3565 001683	hypothetical protein	KKP3566 001960	hypothetical protein	100

Figure 4. Cluster analysis of the hop-resistant genes *horA*, *horC* and *hitA* annotated in the genome of *Lg. backii* KKP 3565 and KKP 3566. (**A**) Schematic representation of the *horA*, *horC* and *hitA* clusters contained in the genome of the two novel strains. (**B**) Description and pairwise comparison of genes (percentage identity) contained in the three clusters of *Lg. backii* KKP 3565 and KKP 3566.

Figure 5. Growth curves of the strain *Lg. backii* KKP 3565 in MRS media containing various hop concentrations.

Figure 6. Growth curves of the strain *Lg. backii* KKP 3566 in MRS media containing various hop concentrations.

Table 6. Growth dynamic (μ) of *Lg. backii* KKP 3565 and KKP 3566 in different hop concentrations using Tukey's HSD test ($\alpha = 0.05$). Lowercase—significant differences between the media for a given strain, and Uppercase—significant differences between strains on a given medium.

μ	Control	5 IBU	10 IBU	20 IBU	30 IBU	Beer 43.6 IBU
KKP 3565 KKP 3566	$\begin{array}{c} 0.05013 \pm 0.0002 \text{ cB} \\ 0.0475 \pm 0.0018 \text{ dA} \end{array}$	$\begin{array}{c} 0.0829 \pm 0.0003 \text{ eB} \\ 0.0629 \pm 0.0008 \text{ eA} \end{array}$	$\begin{array}{c} 0.0825 \pm 0.0005 \text{ eB} \\ 0.0429 \pm 0.0010 \text{ cA} \end{array}$	$\begin{array}{c} 0.0607 \pm 0.0002 \; dB \\ 0.0420 \pm 0.0024 \; cA \end{array}$	$\begin{array}{c} 0.0437 \pm 0.0003 \text{ bB} \\ 0.0318 \pm 0.0006 \text{ bA} \end{array}$	$\begin{array}{c} 0.0304 \pm 0.0005 \text{ aB} \\ 0.0280 \pm 0.0005 \text{ aA} \end{array}$

Table 7. Maximum optical density (OD max) of *Lg. backii* KKP 3565 and KKP 3566 in different hop concentrations using Tukey's HSD test ($\alpha = 0.05$). Lowercase—significant differences between the media for a given strain, and Uppercase—significant differences between strains on a given medium.

OD max	Control	5 IBU	10 IBU	20 IBU	30 IBU	Beer 43.6 IBU
KKP 3565 KKP 3566	$\begin{array}{c} 1.3833 \pm 0.0223 \text{ bB} \\ 1.2438 \pm 0.0945 \text{ bA} \end{array}$	$\begin{array}{c} 1.7240 \pm 0.0210 \text{ cB} \\ 1.5725 \pm 0.0414 \text{ cdA} \end{array}$	$\begin{array}{c} 1.7398 \pm 0.0021 \text{ cB} \\ 1.6420 \pm 0.0810 \text{ dA} \end{array}$	$\begin{array}{c} 1.7190 \pm 0.0055 \text{ cB} \\ 1.3298 \pm 0.1482 \text{ bA} \end{array}$	$\begin{array}{c} 1.7125 \pm 0.0839 \text{ cB} \\ 1.4190 \pm 0.0508 \text{ bcA} \end{array}$	$\begin{array}{c} 0.9855 \pm 0.0217 \text{ aB} \\ 0.8495 \pm 0.0133 \text{ aA} \end{array}$

4. Conclusions

Two novel strains, *Lg. backii* KKP 3565 and KKP 3566 previously isolated from spoiled beer, were characterized in this study. Utilizing in silico and in vitro analyses, we sought to investigate their persistence in spoiled beer. Comparative genomic analysis within the *Lg. backii* species, and with other beer-spoilage bacteria, highlighted the presence of shared genes involved in the adaptation to the brewery environment and stress tolerance mechanisms. In this context, homologous genes (*hitA*, *horA*, and *horC*) conferring resistance to hop were pinpointed in the genome of the novel strains. Furthermore, both strains were able to survive in pure beer and tolerate different hop concentrations, in vitro, suggesting adaptation to the extreme conditions prevalent in the brewery environment. Further studies will provide a better insight into the contribution of the identified loci in the manifestation of the beer spoiling phenotype.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/microorganisms11020280/s1, Figure S1: Phylogenetic tree of *Lg. backii* strains and of other closely or distantly-related LAB based on their WGS. WGS alignment was performed using progressive Mauve and tree visualization using the iTol server; Table S1: Prophage regions and insertion elements annotated in the genome of *Lg. backii* KKP 3565 and KKP 3566 using PHASTER and ISFinder, respectively; Table S2: Resistance phenotypes of *Lg. backii* KKP 3565 and KKP 3565 and KKP 3566 predicted by ResFinder; Table S3: Annotation of core genome sequences of the *Lg. backii* species using EggNOG; Table S4: Annotation of unique genome sequences of *Lg. backii* KKP 3565 and KKP 3566 derived from pangenome analysis.

Author Contributions: Conceptualization, J.B-K., A.I.D. and A.G.; methodology, D.E.K., J.B-K., A.W., A.I.D. and B.S.; software, D.E.K., A.I.D. and A.G.; validation, A.I.D. and A.G.; formal analysis, D.E.K., J.B-K., A.W., A.I.D. and B.S.; investigation, D.E.K., J.B-K., A.W., A.I.D. and B.S.; resources, A.I.D. and A.G.; data curation, D.E.K., J.B-K. and A.I.D.; writing—original draft preparation, D.E.K. and J.B.-K.; writing—review and editing, A.I.D. and A.G.; supervision, A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The *Loigolactobacillus backii* strain KKP3565 and *Loigolactobacillus backii* strain KKP3566 genome sequence has been deposited at DDBJ/ENA/GenBank under the accessions JAPTYS000000000 and JAPTYT000000000, respectively. The versions described in this paper are JAPTYS010000000 and JAPTYT010000000, respectively.

Acknowledgments: The authors wish to acknowledge Dorota Michałowska, from the Laboratory of the Beer and Malt from IAFB-SRI, for providing beer samples for research, and the support of the Biomedical Data Science and Bioinformatics Facility of the Department of Molecular Biology and Genetics, Democritus University of Thrace. Culture Collection of Industrial Microorganisms-Microbiological Resource Center (IAFB, Warsaw, Poland) is supported by the European Horizon 2020 research and innovation programme under grant agreement No 871129-IS_MIRRI21 Project.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Schönberger, C.; Kostelecky, T. 125th Anniversary Review: The Role of Hops in Brewing. J. Inst. Brew. 2011, 117, 259–267. [CrossRef]
- Sakamoto, K.; Konings, W.N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105–124. [CrossRef] [PubMed]
- Suzuki, K.; Iijima, K.; Sakamoto, K.; Sami, M.; Yamashita, H. A Review of Hop Resistance in Beer Spoilage Lactic Acid Bacteria. J. Inst. Brew. 2006, 112, 173–191. [CrossRef]
- Wieme, A.D.; Spitaels, F.; Aerts, M.; De Bruyne, K.; Van Landschoot, A.; Vandamme, P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. *Int. J. Food Microbiol.* 2014, 185, 41–50. [CrossRef] [PubMed]
- 5. Suzuki, K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon: A Review. J. Am. Soc. Brew. Chem. 2020, 78, 245–259. [CrossRef]

- Umegatani, M.; Takesue, N.; Asano, S.; Tadami, H.; Uemura, K. Study of Beer Spoilage Lactobacillus nagelii Harboring Hop Resistance Gene horA. J. Am. Soc. Brew. Chem. 2021, 80, 92–98. [CrossRef]
- 7. Suzuki, K.; Koyanagi, M.; Yamashita, H. Genetic characterization of non-spoilage variant isolated from beer-spoilage *Lactobacillus brevis* ABBC45C. *J. Appl. Microbiol.* **2004**, *96*, 946–953. [CrossRef]
- Suzuki, K.; Shinohara, Y.; Kurniawan, Y.N. Role of Plasmids in Beer Spoilage Lactic Acid Bacteria: A Review. J. Am. Soc. Brew. Chem. 2020, 79, 1–16. [CrossRef]
- 9. Bucka-Kolendo, J.; Juszczuk-Kubiak, E.; Sokołowska, B. Effect of High Hydrostatic Pressure on Stress-Related *dnaK*, *hrcA*, and *ctsR* Expression Patterns in Selected *Lactobacilli* Strains. *Genes* **2021**, *12*, 12. [CrossRef]
- 10. Bucka-Kolendo, J.; Sokołowska, B. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry. *Acta Biochim. Pol.* **2017**, *64*, 459–464. [CrossRef]
- 11. Bucka-Kolendo, J.; Sokołowska, B.; Winiarczyk, S. Influence of High Hydrostatic Pressure on the Identification of *Lactobacillus* by MALDI-TOF MS- Preliminary Study. *Microorganisms* **2020**, *8*, 813. [CrossRef] [PubMed]
- 12. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 19 March 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 2014, 30, 2114–2120. [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. Original Articles SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [CrossRef] [PubMed]
- 15. Boetzer, M.; Henkel, C.V.; Jansen, H.J.; Butler, D.; Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. *Bioinform. Appl. Note* **2011**, *27*, 578–579. [CrossRef]
- 16. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. *Bioinformatics* **2013**, *29*, 1072–1075. [CrossRef]
- 17. Seemann, T. Genome Analysis Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [CrossRef]
- 18. Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res.* **2016**, *44*, 6614–6624. [CrossRef]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.; Lund, O.; Voldby Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids. Antimicrob using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob. Agents Chemother.* 2014, 58, 3895–3903. [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in *Salmonella enterica* using a newly developed web tool: MobileElementFinder. *J. Antimicrob. Chemother.* 2020, *76*, 101–109. [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. *Nucleic Acids Res.* 2016, 44, W16–W21. [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [CrossRef] [PubMed]
- Biswas, A.; Staals, R.H.; Morales, S.E.; Fineran, P.C.; Brown, C.M. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genom. 2016, 17, 1–14. [CrossRef] [PubMed]
- 24. Edgar, R.C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinform. 2007, 8, 1–6. [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. *J. Antimicrob. Chemother.* 2020, 75, 3491–3500. [CrossRef] [PubMed]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. *PLoS ONE* 2013, *8*, e77302. [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.V.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 2019, 47, D309–D314. [CrossRef]
- 29. Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* **2016**, *44*, D457–D462. [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [CrossRef]
- 31. Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. *Anal. Methods* **2015**, *8*, 12–24. [CrossRef]
- 32. Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. *Bioinformatics* **2015**, *31*, 3691–3693. [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. *PLoS ONE* 2010, 5, e9490. [CrossRef] [PubMed]

- 34. Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. *PLoS ONE* **2010**, *5*, e11147. [CrossRef] [PubMed]
- 35. Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* **2016**, *44*, W242–W245. [CrossRef] [PubMed]
- 36. Van Heel, A.J.; De Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. *Nucleic Acids Res.* **2018**, *46*, W278–W281. [CrossRef]
- 37. Kajala, I.; Bergsveinson, J.; Friesen, V.; Redekop, A.; Juvonen, R.; Storgårds, E.; Ziola, B. *Lactobacillus backii* and *Pediococcus damnosus* isolated from 170-year-old beer recovered from a shipwreck lack the metabolic activities required to grow in modern lager beer. *FEMS Microbiol. Ecol.* **2018**, *94*, fix152. [CrossRef]
- 38. Xu, Z.; Luo, Y.; Mao, Y.; Peng, R.; Chen, J.; Soteyome, T.; Bai, C.; Chen, L.; Liang, Y.; Su, J.; et al. Spoilage Lactic Acid Bacteria in the Brewing Industry. J. Microbiol. Biotechnol. 2020, 30, 955–961. [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 1994, 22, 4673–4680. [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. *Bioinformatics* 2009, 25, 1189–1191. [CrossRef]
- Gientka, I.; Bugajewska, A.; Chlebowska-Śmigiel, A.; Kieliszek, M.; Misiura, S. Ocena Zdolności Przeciwdrobnoustrojowych i Bakteriocynogennych Lactobacillus rhamnosus ATCC 7469. Zesz. Probl. Postępów Nauk Rol. 2016, 585, 65–73.
- 42. Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus *Lactobacillus*. *FEMS Microbiol*. *Rev.* **2017**, *41*, S27–S48. [CrossRef] [PubMed]
- 43. Kant, R.; Blom, J.; Palva, A.; Siezen, R.J.; de Vos, W.M. Comparative genomics of *Lactobacillus*. *Microb*. *Biotechnol*. **2011**, *4*, 323–332. [CrossRef] [PubMed]
- 44. Stefanovic, E.; Fitzgerald, G.; McAuliffe, O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. *Food Microbiol.* **2017**, *61*, 33–49. [CrossRef] [PubMed]
- 45. Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The arms race between bacteria and their phage foes. *Nature* **2020**, 577, 327–336. [CrossRef]
- Ciufo, S.; Kannan, S.; Sharma, S.; Badretdin, A.; Clark, K.; Turner, S.; Brover, S.; Schoch, C.L.; Kimchi, A.; DiCuccio, M. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. *Int. J. Syst. Evol. Microbiol.* 2018, 68, 2386–2392. [CrossRef]
- 47. Vandecraen, J.; Chandler, M.; Aertsen, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. *Crit. Rev. Microbiol.* 2017, 43, 709–730. [CrossRef]
- Kaleta, P.; O'Callaghan, J.; Fitzgerald, G.F.; Beresford, T.P.; Ross, R.P. Crucial Role for Insertion Sequence Elements in Lactobacillus helveticus Evolution as Revealed by Interstrain Genomic Comparison. Appl. Environ. Microbiol. 2010, 76, 212–220. [CrossRef]
- 49. Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. *Foods* **2019**, *8*, 17. [CrossRef]
- 50. Dimopoulou, M.; Dols-Lafargue, M. Exopolysaccharides Producing Lactic Acid Bacteria in Wine and Other Fermented Beverages: For Better or for Worse? *Foods* **2021**, *10*, 2204. [CrossRef]
- 51. Wirtanen, G.; Storgårds, E.; Saarela, M.; Salo, S. Detection of Biofilms in the Food and Beverage Industry MIRRI-Microbial Resource Research Infrastructure (Preparatory Phase) View Project BIODAM View Project; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2000.
- Kiousi, D.E.; Efstathiou, C.; Tegopoulos, K.; Mantzourani, I.; Alexopoulos, A.; Plessas, S.; Kolovos, P.; Koffa, M.; Galanis, A. Genomic Insight Into *Lacticaseibacillus paracasei* SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. *Front. Microbiol.* 2022, 13, 922689. [CrossRef]
- 53. Pöntinen, A.; Aalto-Araneda, M.; Lindström, M.; Korkeala, H. Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in *Listeria monocytogenes. mSphere* 2017, 2, e00364-17. [CrossRef] [PubMed]
- 54. Tran, T.D.-H.; Kwon, H.-Y.; Kim, E.-H.; Kim, K.-W.; Briles, D.E.; Pyo, S.; Rhee, D.-K. Decrease in Penicillin Susceptibility Due to Heat Shock Protein ClpL in *Streptococcus pneumoniae*. *Antimicrob. Agents Chemother.* **2011**, *55*, 2714–2728. [CrossRef] [PubMed]
- Behr, J.; Geissler, A.J.; Schmid, J.; Zehe, A.; Vogel, R.F. The Identification of Novel Diagnostic Marker Genes for the Detection of Beer Spoiling *Pediococcus damnosus* Strains Using the BlAst Diagnostic Gene findEr. *PLoS ONE* 2016, 11, e0152747. [CrossRef] [PubMed]
- 56. Suzuki, K.; Asano, S.; Iijima, K.; Kitamoto, K. Sake and Beer Spoilage Lactic Acid Bacteria—A Review. J. Inst. Brew. 2008, 114, 209–223. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.