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Abstract: Drug reaction with eosinophilia and systemic symptoms (DRESS) is a heterogeneous,
multiorgan and potentially life-threatening drug-hypersensitivity reaction (DHR) that occurs several
days or weeks after drug initiation or discontinuation. DHRs constitute an emerging issue for public
health, due to population aging, growing multi-organ morbidity, and subsequent enhanced drug
prescriptions. DRESS has more consistently been associated with anticonvulsants, allopurinol and
antibiotics, such as sulphonamides and vancomycin, although new drugs are increasingly reported
as culprit agents. Reactivation of latent infectious agents such as viruses (especially Herpesviridae)
plays a key role in prompting and sustaining aberrant T-cell and eosinophil responses to drugs
and pathogens, ultimately causing organ damage. However, the boundaries of the impact of viral
agents in the pathophysiology of DRESS are still ill-defined. Along with growing awareness of
the multifaceted aspects of immune perturbation caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) during the ongoing SARS-CoV-2-related disease (COVID-19) pandemic,
novel interest has been sparked towards DRESS and the potential interactions among antiviral and
anti-drug inflammatory responses. In this review, we summarised the most recent evidence on
pathophysiological mechanisms, diagnostic approaches, and clinical management of DRESS with the
aim of increasing awareness on this syndrome and possibly suggesting clues for future research in
this field.

Keywords: DRESS; virus; eosinophils; reaction; T-cells; herpesvirus; viral reactivation

1. Introduction

Adverse drug reactions constitute an emerging issue for public health due to their
increasing incidence over time, at least in Westernised countries [1,2]. Population aging
along with the growing prevalence of dementia and multi-organ morbidity are associated
with frequent institutionalisation and enhanced drug prescribing and may account for this
trend [3]. Hospitalisation-related adverse drug reactions are particularly relevant from an
epidemiological and economic standpoint and can occur in up to 30% of patients entering
ordinary wards [4]. Drug-related hypersensitivity reactions (DHR) constitute a subgroup
of adverse drug reactions, occurring with an incidence rate of 80 cases/1000 person-years
in in-patient settings [5]. DHRs pose major challenges to the management of hospitalised
patients, since they occur unpredictably (in contrast with non-immune-mediated adverse
drug reactions) and affect patients' ability to receive appropriate treatments for their acute
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conditions, besides bearing intrinsic morbidity and mortality risks [6]. Multiple pathogenic
factors are thought to contribute to the development and maintenance of hypersensitivity
reactions to drugs. Aberrant haptenation of drugs in the setting of acute inflammation
and/or direct drug-related activation of immune cells might combine with predisposing
genetic factors, such as a permissive human leukocyte antigen (HLA) repertoire, to prompt
drug sensitisation [7–13]. Microbial factors might also contribute to the development
of DHRs by promoting systemic inflammation and affecting immune tolerance due to
molecular mimicry among self and microbial antigens. Consistently, the majority of DHRs
are associated with the use of antimicrobials [5].

Drug reaction with eosinophilia and systemic symptoms (DRESS, also known as
drug-induced hypersensitivity syndrome, DIHS) is a rare but potentially life-threatening
delayed-type systemic DHR characterised by elevated blood eosinophil counts along with
constitutional symptoms and multi-organ failure [14,15]. Affordable estimates of DRESS
epidemiology are to date missing. The current literature suggests that DRESS incidence
can range from less than 0.01 cases to 0.7 cases per 1000 hospitalised patients depending
on the healthcare system and demographic context [16–19]. Changing epidemiological
trends within the same cohort according to variations in drug prescription attitudes and
environmental factors have also been reported [20]. Infectious agents including exogenous
or latent virus along with endogenous retroviral elements constitute known perturbators
of the physiological immune response and are increasingly recognised as cofactors in the
onset of DRESS. This review summarises the clinical and pathophysiological evidence
addressing the role of microbial cofactors in DRESS up to date.

2. Aetiology and Pathogenesis

DRESS is a systemic disorder sustained by two pairs of fundamental pathophysiolog-
ical pillars: (1) inciting stimuli, encompassing drugs; and viruses; (2) deranged immune
responses including (a) HLA-restricted aberrant T-cell activation and; (b) eosinophilic
inflammation (Figure 1).
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Figure 1. Simplified DRESS aetiopathogenesis. Flow-chart depicting the pathophysiological re-
lationships among the main exogenous and host-related factors involved in the development of
DRESS.

2.1. Drugs

A straightforward association with drug exposure is found in 80% of patients, and
DRESS onset typically occurs 2–8 weeks after treatment start with the causative drug [21].
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Recent drug discontinuation is also associated with DRESS. Numerous drugs have been
described as possible triggers of DRESS, but around 75% of cases can be traced back to a
high-risk group of drugs [19,22], including anticonvulsants, allopurinol, antibiotics such as
vancomycin, minocycline, trimethoprim-sulfamethoxazole and other sulphonamides, anti-
tuberculosis agents and antiviral drugs such as nevirapine [23]. Shorter lag times for DRESS
onset are observed when antibiotics or iodinated contrast media are implicated [24,25].

However, other drugs have also been reported in association with DRESS onset. Some
of these drugs are in more widespread use, such as anti-inflammatory drugs (e.g., non-
steroidal anti-inflammatory drugs, NSAIDs, and paracetamol) or antipsychotic drugs.
Special attention should be given to special populations such as patients with cancer,
rheumatic diseases and chronic viral infection. These patients bear disease-specific risk
factors for developing DRESS, including concomitant polytherapy, concomitant infection,
kidney or liver failure, and intrinsic immune dysfunction [23]. Furthermore, novel drugs
are continuously introduced in the setting of these disorders, expanding the spectrum
of potential DRESS triggers. Anti-cancer targeted therapies such as imatinib [21] or so-
rafenib [22], immune-modulators such as IL1 or IL6 inhibitors (e.g., anakinra, canakinumab,
tocilizumab or hydroxychloroquine) or anti-HCV therapies including Telaprevir and Bo-
ceprevir constitute potential examples of emerging culprit drugs for DRESS (Table 1) [26].

Culprit drug cross-reactivity is not conventionally expected in DRESS. However,
very limited evidence suggests that sensitisation to glycopeptides and β-lactams might
compromise patient ability to eventually receive any members of these drug classes [27].
In addition, patients with DRESS may develop secondary neosensitisation to unrelated
chemical compounds concurrently administered during DRESS [28].

From a pathophysiological standpoint, trigger drugs are thought to constitute the
main target of the immune response. The strength of association between drugs and
DRESS is affected by interindividual and inter-ethnic variations in the HLA repertoire (see
below). Distinct HLA variants might in fact segregate with selected ethnicities. Additional
inherited factors may promote altered drug metabolism and variably combine with HLA-
related factors to contribute to DRESS susceptibility. Polymorphisms in cytochrome P
(CYP) 450 and N-acetyltransferase (NAT1, NAT2) may affect drug pharmacokinetics and
cause active ingredients of metabolism by-product overload [29]. Examples of the roles of
these polymorphisms are constituted by the associations between CYP2C9*3 and severe
reactions to phenytoin (in Asian ethnicities) and between variants of the NAT gene and
sulphonamides [30,31]. This evidence raises the possibility that non-immunological, non-
virological factors impacting drug metabolism may play a role on DRESS.

Besides constituting a target for deranged immune response, culprit drugs might
also be involved in other disease mechanisms, including viral reactivation. For example,
continuous anticonvulsant therapy has been shown to associate with IgG production
decreases. Impaired humoral immunity in turn constitutes a risk factor for viral reactivation
(see below).

Table 1. Most frequent and newly reported culprit drugs in DRESS.

Drugs Categories Drug Ref.

Urate lowering agents Allopurinol High Risk [32]

Febuxostat [33]

Aromatic antiepileptic agents Carbamazepine High Risk

[14]

Phenytoin High Risk

Lamotrigine High Risk

Oxcarbazepine High Risk

Phenobarbital High Risk
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Table 1. Cont.

Drugs Categories Drug Ref.

Sulphonamides Sulfasalazine High Risk

[14]

Dapsone High Risk

Trimethoprim-
Sulfamethoxazole High Risk

Sulfadiazine High Risk

Antibiotics Vancomycin High Risk

[23]

Minocycline High Risk

Piperacillin-Tazobactam

Antituberculosis Agents High Risk

Other Penicillins and
Cephalosporins

Antiviral agents Nevirapine High Risk [34]

Abacavir High Risk [35]

Efavirenz [36]

Boceprevir [37]

Telaprevir [38]

Anti-inflammatory drugs Diclofenac

[23]Celecoxib

Ibuprofen

Anti-IL1 antibodies Anakinra
[39]

Canakinumab

Anti IL6 antibodies Tocilizumab [39]

Targeted therapies Imatinib [21]

Sorafenib [40]

Vismodegib [41]

Vemurafenib [42]

Antipsychotic agents Fluoxetine
[23]

Olanzapine

Anti-coagulant Rivaroxaban [43]

Immunomodulators Hydroxychloroquine [44]

2.2. Viral Factors

Clinically, viral reactivation occurs up to two weeks after the onset of DRESS symptoms
and is associated with a worse prognosis in term of disease duration, relapses, constitutional
symptoms and organ involvement [45–47], as compared to patients with no evidence of
viral reactivation [47,48]. The pathophysiological meaning of viral reactivation in DRESS
and the reciprocal interactions between viral reactivation and inflammation are the subjects
of an ongoing debate [49]. Viral reactivation may take part in DRESS pathogenesis in four
ways (Figure 1):

1. Viruses may cause direct tissue damage and contribute to the early manifestations of
DRESS.

2. In a later phase of the disease course, they can be the target of the immune re-
sponse [50,51]. In this regard, an “immune-reconstitution like” syndrome may occur
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as the result of corticosteroid treatment and/or immunosuppression to control DRESS
manifestations [48].

3. Viral reactivation might constitute the epiphenomenon of a wider expansion of virus-
harbouring immune cells in the setting of systemic inflammation. In fact, latent
human herpesviruses (HHVs) chronically resides in cells of the immune system,
including T-lymphocytes and cells of the monocyte/macrophage lineage. Thus, viral
reactivation and release could represent an early marker of stimulation of these cell
reservoirs following drug-driven expansion, rather than representing a trigger event
of DRESS [52].

4. Viruses might promote anti-drug responses and mis-differentiation of antigen-specific
lymphocytes by molecular mimicry. In fact, T-lymphocytes previously selected and
expanded by viral antigens might eventually be activated by drugs, inducing DRESS
(see also below at Section 2.3.2) [53]. Furthermore, challenging EBV-immortalised
B-lymphocytes from healthy subjects and from patients with DRESS with DRESS
culprit drugs selectively prompts EBV production increases in DRESS subjects [54],
suggesting generalised dysfunction of tolerance and pathogen control in both arms of
the immune response during DRESS.

Therefore, DRESS pathophysiological unicity may reside in the feed forward loop
linking drug-induced triggering of memory lymphocytes followed by additional antigenic
stimulation due to viral reactivation.

2.2.1. Human Herpesviruses (HHVs)

A typical feature of DIHS/DRESS is the reactivation of latent HHVs, namely HHV-
6, HHV-7, Epstein–Barr virus (EBV), and Cytomegalovirus (CMV) [22,49,55–66]. Herpes
viruses are known to promote the reactivation of other viruses upon reactivating themselves
with a peculiar reactivation sequency, as originally reported by Kano 2006 [63] and recently
reviewed by Anci 2021 [58]. As suggested by the literature, herpesviruses have differential
reactivation kinetics, which can also be observed in the same subjects. The first viruses to
reactivate are HHV-6 and EBV, followed by HHV-7 and finally CMV, in the same order that
occurs in graft versus host disease (GVHD).

Sequential herpesvirus reactivation can also account for the long-lasting clinical picture
of DIHS/DRESS and the occurrence of delayed organ complications even after discontinu-
ation of culprit drugs [46,49,56,57,63,67]. This evidence also suggests that viral reactivation
itself is presumably not involved in the onset of DRESS but may be a crucial factor de-
termining the prolonged clinical course of this condition [29,58,65,68]. Furthermore, the
characteristic 20%-mortality risk of DRESS/DIHS mortality is significantly affected by CMV
reactivation besides older age, hepatic and kidney involvement, while EBV reactivation is
most often observed in patients with milder DRESS presentations [29,55,69].

HHV-6 positivity also appears to be associated with a more severe disease course and
a later onset following drug exposure than in the case of HHV-6-negative DRESS [48,51,58].
HHV-6 is the most frequent HHV to be associated with DRESS, and its reactivation typ-
ically occurs during the course of DRESS and up to 2–3 weeks after DIHS/DRESS rash
onset [46,49,67]. HHV-6 infects the vast majority of the general population during in-
fancy and has been shown to be able to be chromosomally integrated into host DNA
both in the general population and in the setting of DIHS/DRESS [29,70–72]. Conversely,
DIHS/DRESS has rarely been reported in patients during primary viral infection [73,74].
HHV-6 reactivation is normally a transitory event; nevertheless, in some cases, the virus can
be detected also several weeks after the onset of DRESS, leading generally to the recurrence
of skin rash [49,75,76]. During the course of DRESS, HHV-6 DNA can be found in the skin,
lymph nodes, kidney, and liver, along with detection of HHV-6-derived microRNAs in
serum and circulating mononuclear cells, suggesting the potential concurrent role of reac-
tivated HHV-6 in the development of DRESS-related rash, lymphadenopathy, and organ
failure [49,64,77–79]. The detection of HHV-6 DNA was also associated with symptom
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flare-ups, and the increase in HHV-6 DNA levels correlated well with the severities of the
inflammatory responses [49,57,70,79,80].

HHV-7 has also been demonstrated to reactivate in patients with DRESS, albeit its clin-
ical impact is not fully elucidated. Notably, two separate prospective studies systemically
evaluated the proportion of DRESS patients with HHV-7 reactivation. In a study by Picard
et al., 32% of patients demonstrated HHV-7 reactivation (compared to 45% of subjects with
HHV-6 reactivation) [54]. On the other hand, in another study by Chen et al., only 1/23
patients experienced HHV-7 reactivation [66]. As the studies were performed in different
geographical settings, it is possible that this striking difference in the proportion of patients
with HHV-7 reactivation could be more related to epidemiological factors than to actual
pathophysiological mechanisms.

Among other human herpesviruses, herpes simplex virus (HSV) reactivation has rarely
been reported, and usually occurs early during the course of the disease followed by a rapid
reduction of HSV-DNA titres [58,81]. Few reports of complications due to reactivation of
HSV or VZV in DIHS/DRESS have been published [81,82]. By contrast CMV reactivation
can induce some of the late-onset complications of DIHS/DRESS [49,59,83], which can
present up to two months after the onset of DIHS/DRESS and even culminate with death.
This occurs especially in the case of evident CMV disease, whose manifestations can be
hepatitis, pneumonia, gastroenteritis, and skin and gastrointestinal ulcers. Indeed, the
higher mortality described in patients with DIHS/DRESS with CMV reactivation may,
at least in part, be related to viral end-organ disease, which occurs more commonly in
the case of CMV reactivation compared to other viruses. Nonetheless, the association
between CMV reactivation and mortality in critically ill patients has been described in
multiple studies (recently summarized by Lachance et al. [84] and Schildermans et al. [85]),
even though the underlying physiopathological mechanisms are not entirely understood.
Interestingly, studies analysing the use of antivirals for prophylaxis of CMV reactivation in
critically ill patients failed to show a benefit of this intervention [86–88], and, therefore, this
approach should be discouraged in patients with DRESS, while treatment of end-organ
disease should be promptly instated.

2.2.2. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

DIHS/DRESS has been described among patients with SARS-CoV-2-related disease
(COVID-19). These patients are particularly prone to classical risk factors for DIHS/DRESS,
as they are frequently affected by multiple comorbidities and exposed to several drugs
potentially associated with this syndrome. Few isolated cases of DIHS/DRESS in patients
with COVID-19 have been described in the literature [89–98], but the actual incidence of
this condition in patients with SARS-CoV-2 pneumonia is still to be fully explored. In
a retrospective cohort analysing 9330 patients hospitalised with COVID-19 from a US
healthcare system [99] between January 2020 and May 2021, six cases of DRESS syndrome
were identified, corresponding to an incidence of 6.43 per 10,000 patients. The most likely
culprit drugs were antibiotics, which were administered to all patients who developed
DRESS (specifically vancomycin in 6/6, cefepime in 4/6, and meropenem in 1/6 patients).
Nevertheless, all antibiotics were prescribed empirically, without microbiological evidence
of a secondary bacterial infection. Interestingly, all patients in the study had markedly
high eosinophilia (>3.00 × 106 cells/L), and no deaths were reported. In another cohort
study [20], five cases of DRESS syndrome were identified among 2721 patients admitted
with COVID-19 between February 2020 and March 2021. Notably, all cases were identified
during the first wave (February to May 2020), with a corresponding incidence rate of
0.17/100 patient-months (compared to 0.0005/100 patient-months recorded in the previous
3 years in the same institution). Hydroxychloroquine (prescribed in 4/5 cases) and β-lactam
antibiotics (administered to 4/5 patients) were considered the most probable culprit drugs,
even though all patients received multiple drugs that could, at least, be considered to have
a possible causative role. The authors argued that the differences in incidence of DRESS
syndrome between separate COVID-19 waves could have been attributable to the evolu-
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tion in the management of COVID-19, as patients were less exposed to potential culprit
drugs such as hydroxychloroquine or lopinavir/ritonavir (and possibly antibiotics) and
more frequently received corticosteroids, which could have dampened the immunological
mechanisms leading to DRESS syndrome. Indeed, hydroxychloroquine is an emerging
potential culprit drug in the setting of DRESS [14,44,90,94,100] (Table 1).

Interestingly, some authors postulated a possible role of SARS-CoV-2 infection in the
pathogenesis of DRESS syndrome. The cytokine storm seen in patients with COVID-19 and
maculopapular drug rashes was shown to promote the activation of monocytes/macrophages
and a robust cytotoxic CD8+ T-cell response. This immunological profile was seen, to a
lesser extent, in non-COVID-19 patients with DRESS syndrome, but not in patients with
other maculopapular drug rashes [101]. Specifically, COVID-19 and DRESS patients were
shown to share an upregulation of several inflammatory cytokines, namely IL-6, TNF,
IL-8, IFN-γ, CXCL9, CXCL10 and CXCL11, accompanied by an increase in IL-4 and IL-
5 (representing a type 2 response) and proteins associated with eosinophil chemotaxis
and immune suppressive phenotype. Therefore, it is possible to speculate that the T-
cell hyperactivation and systemic cytokine storm seen in COVID-19 patients may be a
predisposing factor for delayed drug hypersensitivity reactions [102], also given the absence
of SARS-CoV-2 RNA in skin biopsies from patients affected by maculopapular skin rashes.
Moreover, the reactivation of HHV-6, EBV and CMV has been described in patients with
COVID-19 [103–105], highlighting a possible shared pathophysiological mechanism.

In conclusion, there is currently a paucity of data regarding the possible relationship
between SARS-CoV-2 infection and DRESS, from both the clinical and biological points of
view. While some authors described a higher incidence of DRESS in COVID-19 patients
compared to historical cohorts, it is plausible that this finding may be related to the presence
of several risk factors in these patients, namely a widespread use of antibiotics and other
potential culprit drugs. Studies including a similar population (matched for demographic
characteristics, comorbidities, and drug prescription) could shed light on this matter. Based
on the data currently available, physicians should maintain a high index of suspicion and
promptly discontinue potential culprit drugs in patients with COVID-19 with suspected
DRESS, even in the absence of an intrinsically higher risk in this population.

2.2.3. Other Viruses

DIHS/DRESS has been described also in association with viruses that do not belong to
the Herpesviridae family. In a single case, Coxsackie B4 was reported in a patient who devel-
oped a fulminant type 1 diabetes mellitus during DIHS/DRESS induced by carbamazepine.
A serological panel was requested and a rise in anti-Coxsackie B4 immunoglobulin titre
from <1:4 to 1:64 was observed. However, specific anti-HHV-6 IgG increased by 64-fold,
too. Thus, it remains difficult to establish a clear pathogenetic relationship between DRESS
and Coxsackie virus [106].

In another report, influenza virus was associated with DIHS/DRESS. A 35-year-old
woman with rheumatoid arthritis developed DRESS-related symptoms 6 weeks after
starting sulfasalazine. She was tested for serology and antigens of different viruses, and
only influenza A and B turned out positive [107]. This is the only DIHS/DRESS case related
to influenza virus currently described in the literature.

Another case report describes a young man who developed DIHS/DRESS syndrome
and was diagnosed with chikungunya fever (chikungunya IgM titre 1:80 with a reference
range of 1:10). As in the previous case, the patient had been treated with sulfasalazine for
joint pain in the previous months, making it difficult to link chikungunya virus to DRESS
syndrome [108]. Moreover, chikungunya virus-infected patients can develop mucocuta-
neous changes that may mimic the clinical presentation of DIHS/DRESS, thus making a
differential diagnosis more difficult [109,110]. Notably, the macular hyperpigmentation of
the nose and cheeks that sometimes follows chikungunya infection (Chik sign) initially
appears as a maculopapular exanthem [111] resembling DRESS rash. In both scenarios,
activation of skin-resident memory T-cells may account for anti-infectious responses and
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hypersensitivity reactions, such as DRESS [112]. The pathogenesis of the later hyperpig-
mentation of chikungunya is unclear, even though some reports in the literature hint
at increased intraepidermal melanin dispersion or retention, triggered by chikungunya
fever [113].

Finally, another virus that is often cited in relation to DIHS/DRESS is HIV. However,
the use of antiretroviral drugs seems to be the trigger, while the virus itself is likely a
bystander. An interesting case series describes six patients who developed DIHS/DRESS
under treatment with raltegravir for HIV infection; five of these patients were of African eth-
nicity and four of them possessed the HLA-B*53:01 allele, thus suggesting a possible genetic
predisposition for the development of DIHS/DRESS when exposed to raltegravir [114].
Other antiretroviral drugs that have been linked to DIHS/DRESS are nevirapine [34,115]
and abacavir in patients who expressed the HLA-B*57-01 allele [35], even though with
the latter drug, a hypersensitivity reaction occurs without haematological abnormalities
or internal organ involvement. Lastly, a South African case series reported six patients
coinfected with HIV and tuberculosis who developed DRESS syndrome after starting
rifampicin [116], but even in this case, the link between DIHS/DRESS and HIV was weak,
given that antitubercular drugs are often associated with cutaneous adverse drug reac-
tions [117].

2.2.4. Immunological Mechanisms of Virus Reactivation

Multiple factors coincide with virus reactivation in the setting of DRESS. T-cells and
antibodies act synergically against virus dissemination by preventing viral reactivation
from a latent stage and by preventing the spread of reactivating lytic virus, respectively.
Therefore, DIHS/DRESS may develop at the crossroads between transient humoral adap-
tive immune dysfunction with decreased B-cell counts and antibody secretion, reactivated
HHV and expansion of drug-specific T-cells (see, for instance, Aihara 2003 [118] and Kano
2004 [119]). An early decrease in total IgG levels (mostly observed during the acute phase
of DRESS) might also corroborate the clinical suspicion of DRESS and might facilitate
HHV-6 reactivation [49,56]. Indeed, viral reactivation may potentially induce a secondary
immune response with subsequent increase in the levels of specific anti-HHV-6 IgG, mostly
observed in later stages of DRESS. It is also possible that the causative drug may induce a
state of immunosuppression, subsequently allowing HHV reactivation [50].

One of the reservoirs of human latent HHV-6 infection is represented by mono/myeloid
cells, which appear particularly prone to HHV-6 spreading in patients with DRESS. Specif-
ically, circulating CD11b + CD13 + CD14 − CD16high mono/myeloid precursors rise
in the early stage of the disease course. In addition, these cells express high levels of
OX40L, promoting interactions with their lymphocytic counterpart, which in turn ex-
presses supranormal levels of the cognate receptor CD134 (=OX40) following systemic
activation [49,70,120]. Strikingly, CD134 is also a cell-specific receptor for HHV-6 [49,70].
Furthermore, DRESS cases following immune checkpoint inhibitor exposure are increas-
ingly reported [121,122]. Circulating CD11b + CD13 + CD14 − CD16high mono/myeloid
precursor cells harbouring HHV-6 also express a skin-homing molecule, CD194 (=CCR4),
and are responsive to high mobility group box (HMGB-1). In the skin and in the blood
of patients with DIHS/DRESS, high levels of HMGB-1 have been found. Taken together,
these data suggest that HHV-6 reactivation might initiate in the skin [22] and consists in
monocytes/macrophages latently infected by HHV-6 reactivating during the early phase of
DIHS/DRESS, leading to increased viral loads, and subsequent infection of CD4+ T cells
via CD134 [49]. This mechanism might account for the preferential involvement of the skin
in the clinical spectrum of DRESS. Consistently, the expression of HHV-6 cellular receptors
in skin lesions soon after onset positively correlates with DIHS severity [49,70].

Patients with DIHS/DRESS can present high levels of plasmacytoid dendritic cells
(pDCs) in the affected skin regions, but, on the contrary, low levels of pDCs in the peripheral
blood. Interferon α (IFNα), produced by pDCs, inhibits viral infection and connects innate
and adaptative antiviral immunity. In fact, IFNa triggers the antiviral response of myeloid
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dendritic cells (mDCs), T-cells and natural killer cells and also the maturation of B-cells
in order to promote IgG production for antiviral response. When pDCs migrate from
the circulation to the skin, the number of pDCs in blood is reduced, possibly resulting in
reduced antiviral responses [123].

The cytokine milieu can also affect viral reactivation. Interestingly, a G-CSF-, MIP-1α-,
TNF-α-, IL-8-, IL-10-, IL-12p40-, and IL-15-enhanced profile as observed in DRESS has
been shown to be associated with CMV reactivation, and higher eotaxin, IL-10, and G-CSF
levels accompanied with lower IL12p40 levels at baseline might be useful for predicting
the development of CMV disease [124]. Patients at risk of CMV reactivation can be iden-
tified by surveillance of these cytokine/chemokine levels prior to and after beginning
immunosuppressive therapy. This may help in preventing morbidity and mortality.

2.3. T-Cell Responses

The role of T-cells in DRESS is clinically supported by evidence of positive patch
testing and of activation of drug-specific CD4+ and CD8+ T-lymphocytes in patients with
DRESS [125,126]. Pharmacogenomic and functional data (see below) point to a prominent
role of CD8+ T cells in mediating anti-drug and anti-viral responses along with non-typical
support for eosinophil recruitment. Nonetheless, evidence of antigen-specific CD4+ T-cell
activation and expansion in DRESS has also consistently been reported [49,125,126]. Drug-
reacting cells typically produce large amounts of cytokines potentially associated with a
broad spectrum of inflammatory phenotypes that include IL-4, IL-5, IL-13, IFN-γ, and TNF-
α [60]. Multiple aspects of T-cell biology may contribute to pathophysiological mechanisms
underlying DRESS [22]. Recent evidence indicates that genetically determined dysfunctions
in the control of apoptosis and proliferation might contribute to susceptibility to severe
cutaneous adverse reactions (including DRESS) in populations of European descendent.
Nicoletti et al. performed a recent meta-analysis of two genome-wide association studies
(GWAS) on patients with phenotypically defined carbamazepine-serious cutaneous adverse
reaction (CBZ-SCAR) and carbamazepine-drug-induced liver injury (CBZ-DILI). They
found that an uncommon variant in the ALK gene conferred a supranormal risk of CBZ-
SCAR. Indeed, the ALK gene is a receptor tyrosine kinase found in numerous tissues,
being involved in cellular proliferation and cell death. This evidence could suggest that
the expression of this gene variant may have a relevant role both in T-cell function (as far
as proliferation is concerned) and keratinocyte biology (by affecting mechanisms of cell
death). These findings also suggest that cellular homeostasis, besides immune-specific
functionality, might be altered in T-cells in the setting of DRESS [127].

2.3.1. HLA

HLA-restricted antigen-specific recognition followed by cellular activation constitutes
the hallmark of T-cell-mediated responses. HLA is a complex of genes mapping to chromo-
some 6p21.3 in humans and encoding cell-surface proteins responsible for several activities
of the immune system, including self-non-self-recognition and presentation of antigen on
the membranes of specialized cells. HLA is highly polymorphic in the human population,
and associations between the risk of developing DRESS and several HLA genetic variants
have been reported [56,128,129]. These associations are usually drug-specific, possibly
implicating that some HLA molecules are able to interact with a specific drug in a more
efficacious way to activate T lymphocytes [130]. Although both CD4+ and CD8+ T lym-
phocytes can be activated by drug exposure in DRESS [125,126], the class I HLA profile
shows a stronger epidemiological association with DRESS than the class II HLA profile [55].
Besides the association with the risk of becoming sensitised to selected drugs, HLA is also
linked to susceptibility to infection and chronicisation of viral infection. A summary of
most frequent DRESS-related HLA variants and their effects on viral infection is reported
in Table 2.
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Table 2. Selected HLA haplotypes associated with DRESS.

HLA Viral
Infection

Effects on Viral
Infection Drugs Population OR (95% C.I.)

Ref.

HLA-A*24:02 Lamotrigine Spanish 34.5 (2.03–209.71)
[131]

HLA-A*31:01 Carbamazepine Han Chinese 12.9 (3.7–45.3)
[132]

Japanese [133]

European 24.1 (9.6–60.3)
[134]

North African 32.0 (2.6–389.2)
[133]

Lamotrigine Korean 11.43 (1.95–59.77) §

[135]
HLA-A*32:01 Vancomycin European [129]

HLA-A*33:03 Allopurinol Korean 25.2 (5.2–121.8)
[136]

HLA-B*13:01 Dapsone Han Chinese [137]

Thai 60.75 (7.44–496.18)
[138]

Taiwanese, Malaysian 49.64 (5.89–418.13)
[137]

Sulfasalazine Han Chinese 11.16 (1.98–62.85)
[139]

Sulphamethoxazole Asian 61 (21.5–175)
[140]

HLA-B14:02 Nevirapine Caucasian

HLA-B* 51:01 Carbamazepine Han Chinese 4.6 (2.0–10.5)
[132]

Phenytoin Thai 5.2 (1.2–22.7)
[141]

HLA-B*53:01 HIV Raltegravir African [114]
HLA-B*56:02 Phenytoin Australian Aboriginal [142]

HLA-B*58:01 Allopurinol
Han Chinese, Thai,
Japanese, Korean,

European

580.3 (34.4–9780.9)
§

[10]

Carbamazepine Asian 7.55 (1.20–47.58)
[143]

CMV Increased
reactivation risk

HLA-B*15:13 Phenytoin Malaysian 59.0 (2.5–1395.7)
[144]

HLA-C*03:02 Allopurinol Korean 135.7 (15.6–1177.8)
[136]

HLA-C*04:01 Nevirapine Malawian 2.6 (1.1–2.6) §

[145]
HLA-

DRB1*15:01
IL-1 and IL-6

inhibitors
European patients with

AOSD or JIA
40.8 (5.3–316)

[39]

EBV
Coreceptor to

EBV infection on
B cells

[146]

§ Odds ratios available only for DRESS + Stevens-Johnson’s Syndrome + Toxic epidermal necrolysis cumulated in
the original paper; AOSD—Adult-onset Still's disease; IJA—Juvenile idiopathic arthritis.
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Secondary to the prominent pathogenic role of HLA in DRESS and other DHRs, HLA
testing has high specificity and negative predictive value for predicting the occurrence of
such reactions in patients exposed to known DHR triggers, suggesting its potential clinical
use [19]. However, implementation of HLA genotyping into routine clinical practice is
mostly affected by the number needed to test (NNT) in order to prevent one case of DHR.
In turn, NNT is affected by DHR incidence and HLA frequency in a given population.
HLA-B*57:01 screening is part of routine clinical practice for candidates for abacavir, due
to the relatively high frequency of abacavir hypersensitivity syndrome in patients treated
with abacavir, at least in Caucasians. Similarly, screening for HLA-B*15:02 and HLA-
B*58:01 has a low NNT for carbamazepine-related SJS/TEN and for allopurinol-related
DHR, respectively, in Asian populations, due to the high frequency of these alleles in
these populations. Conversely, some drug regulatory agencies recommend HLA-A*31:01
genotyping for non-Asian patients due to receive carbamazepine. Due to the low incidence
of DRESS, NNT estimates for HLA testing might vary significantly among studies [147,148].
Konvinse et al. [129] have estimated an NNT of 75 for the HLA-drug pair HLA-B*32:01–
vancomycin in European populations, supporting its potential use routinely. However,
given that the population of the European Union is 447 million, the annual hospitalisation
rate approximately 1/10 [149], that 2% of hospitalised patients are usually exposed to
vancomycin [150,151], and that more than 40% of them receive vancomycin for 2 weeks
or more [152], more than 4000 DRESS diagnoses due to HLA-B*32:01 should be expected
yearly in the European Union, which largely exceeds the annual rate of total drug hyper-
sensitivity reactions reported in the EudraVigilance tool (n = 383 for the year 2022) [151].
Consistently, HLA-B*32:01 testing is currently not included among recommended tests by
drug regulatory authorities and pharmacogenetics working groups [150].

2.3.2. Molecular Mechanisms of T-Cell Activation and Aberrant HLA/TcR Interactions

Viral and pharmacological triggers can disrupt physiological HLA–T cell receptor
(TcR) interactions through multiple mechanisms (Figure 2), which may also co-occur in the
same subject [153]. A first set of mechanisms are supposed to alter peptide presentation by
haptenation of self-molecules or by modification of HLA steric properties.

The hapten-carrier model constitutes the simplest pathophysiological mechanism
accounting for drug hypersensitivity. In this setting, the culprit drug activates T-cells
after binding intracellular proteins, which are subsequently processed and presented by
antigen-presenting cells [154]. Drug binding to HLA might also induce conformational
changes causing a shift in HLA affinity to self-peptides, which in turn promotes autoreactive
responses [155].

Drugs might also bind HLA or the TcR by non-covalent direct pharmacological inter-
action (p-i concept), prompting T-cell activation [156]. This mechanism has been described
with several drugs classically involved in DRESS, such as carbamazepine [157] and allopuri-
nol [10] For a more comprehensive review on the p-i model, the reader is referred to Pichler
2019 [158]. The p-i concept seems relatively more suitable to explain severe reactions to
drugs, such as those observed in DRESS, since it is compatible with the activation of differ-
ent T-cell clonotypes, rather than the one or few expected in the case of the hapten-specific
activation model [158]. This scenario is reminiscent of an alloreactive activation, similar
to that observed in GvHD reactions [159]. The paucity of HLA variants capable of being
engaged in this dangerous liaison with the drug (or its metabolites) could contribute to
explain the low frequency of this condition. This consideration needs to be kept in mind
in order to explain why only a subgroup of individuals bearing a high-risk HLA allele do
actually develop DRESS following intake of the culprit drug [53].
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Figure 2. Pathogenic mechanisms for HLA-restricted, drug-induced activation of T-cells in DRESS.
In this simplified depiction of HLA-restricted antigen presenting cell (APC)–T-cell interactions, the
three main hypothesised mechanisms accounting for drug-induced T-cell activation in DRESS are
represented. Drugs might directly interfere with HLA–T-cell receptor interactions, causing T-cell
activation without the need for self peptides (p-i mechanism, left side). In this setting, drugs might
activate the T-cell receptor through allosteric mechanisms or by binding HLA either inside or outside
the peptide binding groove. Drugs bound to the peptide groove might cause conformational changes
enabling self-peptides to be accommodated within HLA and presented to T-cells, promoting self-
reactive responses (alternative peptide repertoire hypothesis, central section). Drugs can also bind
self molecules through conventional hapten-carrier models (right side).

On the other hand, heterologous reactivity of TcR (heterologous immunity) is a well-
recognised mechanism accounting for the ability of the relatively limited human repertoire
of T-cell clonotypes to respond to a broad variety of pathogens, even after first antigen
exposure, and also for natural autoreactivity towards drugs [160,161]. Promiscuous T-
cell activation might also lead to cross-reactivity among drugs sharing a similar chemical
structure [162] as well as among viral and self-peptides [163], possibly accounting for
hypersensitivity in drug-naïve subjects [164]. Viral factors might also play a role in shifting
the immune response towards selected T-cell clones prone to drug-induced activation
through recurrent reactivations [48,54,63,165]. Consistent with this model, a study by
Yerly et al. [166] showed that self-peptides able to bind permissive HLA variants (e.g.,
HLA-B*57:01 for abacavir hypersensitivity) may show sequence similarity to (herpes) viral
peptides, which can in turn promote T-cell activation. In another report, HLA-B*57:01-
restricted HIV-specific T-cells proliferated in response to HLA B*57:01-expressing cells
in vitro only in the presence of abacavir [167].

Little is known about the role of heterologous immunity in DRESS (Figure 3). Picard
et al. showed that drug exposure prompts expansion of CD8+ T-cells sharing the same
TcR repertoire of EBV-specific cytotoxic T-cells in DRESS patients [54]. Niu et al. also
showed that EBV-specific CD8+ responses correlate with CD8+ plasticity and DRESS
severity, suggesting that repeat challenge by viral factors might continuously renew a
pool of autoreactive CD8+ T-cells in predisposed individuals [168]. Heterologous immune
mechanisms might also account for potential class sensitisation to multiple drugs in the
setting of DRESS [27].
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Figure 3. Potential mechanisms of heterologous immunity in DRESS. This figure depicts features of
heterologous immunity with a potential pathogenic role in DRESS. Viral infections or reactivations
(1–3) prompt selective pressure on a heterogeneous pool of T-cells (A). Therefore, after exposure to
viruses (B), virus-reactive T-cells expand (C) and are readily available for eventual viral encounters
or reactivations (D). Among virus-reactive T-cells, subpopulations harbouring T-cell receptors devoid
of the ability to be activated by potential drug allergens might be selected (E), preventing the
occurrence of hypersensitivity. In other cases (F), either occurring in distinct subjects or in the same
subjects during distinct phases of life, virus–drug cross-reactive T-lymphocytes might be selected
by viral stimulation. When challenged with culprit drugs, these cells might initiate hypersensitivity
reactions, possibly including DRESS (G). Eventually, re-challenge with re-activating viruses (H, top)
or chemically related drugs (H, bottom) might promote DRESS progression and/or persistence (I).

2.3.3. T-Cell Polarisation and Functionality

Aberrant antigen processing and T-cell activation in DRESS encompass alterations in
T-cell polarisation and functional specialisation. In fact, patients with DRESS are charac-
terised by oligoclonal expansion of lymphocytes expressing defined subsets of TcR [169].
In addition, patients show a Th2/Treg-skewed phenotype characterised by the possible
coexistence of defective control of viral stimuli (that is, reactivated viruses) and enhanced
eosinophil proliferation and organ infiltration leading to tissue damage. Supranormal
expression of CD134 on circulating CD4+ cells has been detected in patients with DRESS
and might contribute to the promotion of Th2 responses [120], besides directly facilitat-
ing viral spreading (see above). Enhanced systemic expression of the CD194 (CCR4)
ligand Thymus and Activation-Regulated Chemokine (TARC) constitutes another hallmark of
the acute phase of DRESS. Mechanistically, elevated TARC levels might promote tissue
infiltration by Th2 and Treg along with HHV-6 reservoir cells such as mono/myeloid
precursors [22,170], favouring HHV-6 spreading and replication, through immunosuppres-
sive responses, and eosinophil-driven tissue damage [57,58,171]. Consistently, patients
with predominant HHV-6 reactivation present TARC levels significantly higher than those
without HHV-6 reactivation, and in the acute stage of DIHS, these levels correlate with
disease activity [22,57,58,171].

In contrast to the acute phase of the disease, where IL10-producing classical monocytes
are increased, patrolling monocytes are mobilised and release high amounts of IL6. This
in turn induces a drift towards Th17-dominated responses [172], while inhibiting Treg
cells. Treg cells collected from patients with DRESS in the late phase of the disease show
impaired ability to inhibit their effector counterpart in comparison to Tregs from healthy
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subjects and Tregs collected from patients with early-stage DRESS [173]. In this scenario,
late reactivation of other herpesviruses usually occurs.

2.4. Eosinophils

Deranged eosinophil inflammation is a hallmark of DRESS and contributes to organ
damage. Eosinophils take part in the early-phase response against microbial threats, and
their defensive capacities are impaired in eosinophil-driven diseases [174–177]. Besides
performing direct viral clearance tasks as granulocytes, eosinophils also contribute to shap-
ing the downstream inflammatory response to a Th2 profile. In this setting, eosinophils
may be stimulated by IL5 released from type II innate-like lymphoid cells (ILC2s) fol-
lowing alarmin release from infected/damaged tissues and in turn promote CD4+ T-cell
polarisation towards a Th2 profile by enhancing ILC2 activation and T-cell maturation by
releasing IL4 [178]. Consistently, activation-prone ILC2s have been shown to increase in the
blood and skin lesions of patients with DRESS along with elevated circulating levels of the
alarmin thymic stromal lymphopoietin (TSLP), of the alarmin receptor ST2 (which binds
IL33, a potent stimulator of ILC2) and of IL5 [179]. Besides primary eosinophil activation
following organ damage, IL5-dependent systemic eosinophilic responses may be sustained
by T-cell activation (see above) [180]. Elevated levels of other Th2-associated chemokines,
including TARC and macrophage-derived chemokine (CCL22), have also been described
in patients with DIHS/DRESS [120]. Persistently high eosinophil counts are thought to
correlate linearly with the development of organ damage [181] and are associated with an
increased likelihood of eosinophil infiltration of non-physiological eosinophil-homing tissues
such as the skin, the liver, the myocardium, and peripheral or central nervous fibres [178,182].
Consistently, these tissues are an integral part of the clinical spectrum of DRESS.

2.5. Pathophysiological Basis of DRESS Clinical Manifestations

Multiple aspects of DRESS pathophysiology remain obscure. Nonetheless, available
evidence globally suggests that viral reactivation, aberrant drug metabolism, and drug–
receptor interaction might prime T-cells to activation besides contributing to part of the early
tissue/organ damage. T-cell stimulation may then lead to reactivation of viral genomes
harboured by leukocytes, which would eventually further stimulate the immune response
to control the spread of actively replicating viral particles. Aberrant differentiation of
antiviral T-cell precursors, due to heterologous immune mechanisms, might also enhance
drug hypersensitivity and promote delayed-type eosinophil responses, exacerbating organ
damage. Persisting viral replication after drug clearance might account for slowly resolving
symptoms and potential long-term sequelae as observed in DRESS [29,51].

3. Clinical Presentation and Laboratory Findings: When to Suspect DRESS

Multiple organs and tissues can be affected by DRESS syndrome. Systemic findings
sorted by declining frequency include cutaneous, lymphatic, haematological, and hepatic
manifestations, followed by renal, pulmonary, and cardiac involvement. Severe, atypical
cases of DRESS may show neurologic, gastrointestinal, and endocrine dysfunction.

3.1. Systemic and Laboratory Findings

Systemic symptoms constitute a hallmark of DRESS. Fever develops in 90% of subjects,
but body temperature rarely (7% of cases) exceeds 38.5 ◦C. Lymph-node enlargement
may be detected in up to 60% of patients with DRESS. In the absence of peripheral lym-
phadenopathy, pathological lymph nodes may be relatively more frequently detected in the
mediastinum [183]. Activation of the reticuloendothelial system also causes leucocytosis,
with white blood cell count exceeding 10,000 cells/µL in the vast majority of patients.
Lymphocytosis and detection of atypical lymphocytes (with increased cellular volume
due to expanded cytoplasm along with irregularly shaped nuclei) are also common. El-
evated eosinophil count is a defining feature of DRESS, and up to 80% of subjects show
hypereosinophilia (that is, eosinophil count exceeding 1500 cells/µL). Neutrophilia and
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monocytosis might also be part of the blood cell count profile of patients with DRESS, while
alterations in platelet count have been less frequently reported [15,184,185].

Abnormal erythrocyte morphologies (AEMs) were studied in a cohort of 215 patients:
32 had AEMs (14%). AEMs were more frequent among patients with DRESS than in
patients with other skin manifestations. This phenomenon may be due to DRESS-related
perturbation of haematopoiesis. In fact, in DRESS, toxic eosinophilic granule proteins
are released and could affect bone marrow. The most frequent AEMs found in DRESS
patients are poikilocytosis (48% of patients with AEM), polychromasia (48%), burr cells
(33%), ovalocytes (33%) and others [186]. Recently, a study found that levels of TNF- α in
blood samples could be useful biomarkers to detect HHV-6 infection. Indeed, its levels
were higher in the reactivation group and decreased together with C-reactive protein and
lactate dehydrogenase after infection resolution.

3.2. Cutaneous Manifestations

Cutaneous eruptions are the most common clinical finding in DRESS. Symmetrical
maculopapular eruption involving either the trunk or the extremities is present in 15%
of patients [187]. According to the RegiSCAR prospective study [15], polymorphous
maculopapular rash is the most common presentation (85%) and encompasses findings
such as purpura, infiltrated plaques, blisters, and exfoliative dermatitis. Facial oedema
is observed in 70% of patients with skin manifestations. Some patients can develop an
exfoliative dermatitis. The rash extent is > 50% of the body surface in approximately 70%
of patients [15]. Some patients can present mucosal lesions, most commonly oral lesions
and cheilitis [188]. Cutaneous eruption may last more than 2 weeks.

3.3. Internal Organ Involvement
3.3.1. Liver, Gastrointestinal, and Pancreatic Involvement

Liver is the most common extracutaneous organ involved in DRESS/DIHS and is
often completely asymptomatic. Conversely, liver function abnormalities occur in up to
70% of patients. Anicteric hepatitis is more prevalent, but, if icteric hepatitis occurs, the
prognosis is usually poorer, with progression to hepatic failure [80,189]. Hepatic necrosis
may rarely develop, although more than 10% of cases may progress to death or need
for liver transplantation [83,190,191]. Sulphonamides/sulfones pose the highest risk of
inducing liver injury in DRESS, followed by antiepileptic drugs and allopurinol. A 2013
retrospective study on 136 patients suggested that antibiotics, especially β-lactams, are
the most frequent culprits for liver injury [192]. According to this study, liver injury is
more common in DRESS/DIHS than SJS/TEN, and is usually accompanied by renal failure.
Indeed, both drugs and herpesviruses are known to cause liver injury. In fact, HHV-6 not
only infects lymphocytes but can also show hepatotropism [57,193], and several reports of
CMV hepatitis in the context of DRESS/DIHS have been described in the literature [83].
As anticipated, reactivation of HHV-6 has been more commonly observed in patients with
severe clinical findings including long-lasting high fever, leucocytosis, renal failure, and
severe hepatitis [48]. Viral hepatitis panels are usually negative in DRESS, but when DRESS
associates with an underlying viral hepatitis infection, the disease course can be more
complicated and severe [194].

Intestinal involvement has been seldom described in association with DRESS. Descamps
et al. reported on a 32-year-old man with sulfasalazine-induced DIHS/DRESS and reacti-
vation of HHV-6 associated with colonic infection and subsequent development of Crohn’s
disease [195]. Intestinal involvement in DRESS has also been linked to CMV reactivation,
in light of CMV tropism for the intestinal mucosa. This should be suspected when patients
develop trunk and intestinal ulcers. The diagnosis is confirmed by detecting anti-CMV IgM
and increased CMV DNA copies in blood samples. As anticipated, CMV reactivation is ob-
served 4–5 weeks from the beginning of the disease and can be associated with concomitant
or previous detection of HHV-6 reactivation [196]. Gastrointestinal haemorrhage caused by
CMV has an unpredictable course and may frequently result in death. For this reason, early
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detection of CMV reactivation is necessary for successful management of DIHS/DRESS
patients, and early administration of anti-CMV treatment can keep these patients from
developing acute symptoms [56,59]. A case of esophagitis in DRESS syndrome also has
been described [197].

Very limited evidence exists for pancreatic involvement in DRESS. A 2003 case re-
port described a 40-year-old black woman treated with allopurinol who developed facial
oedema, erythroderma and pyrexia, along with pancreatitis and hepatitis. A potential
diagnosis of EBV-associated DRESS was hypothesised. However, non-DRESS-related EBV-
induced pancreatitis cannot be ruled out, given that EBV infection might independently
cause pancreatitis [198]. Some other cases of pancreatic injuries are described, one of them
with concomitant development of diabetes mellitus type 1 after carbamazepine treatment
and HHV-6 positivity detection [199].

3.3.2. Kidney Involvement

Kidney involvement occurs in 10–35% of patients [14] and usually manifests as acute
interstitial nephritis. Acute renal failure occurs in up to 8% of patients, with a minority
requiring renal replacement treatments. Patients are usually clinically silent, but some
can present with mild haematuria and proteinuria. In blood analysis, elevated blood urea
nitrogen and creatinine levels may point towards renal impairment. Eosinophils may be
detected on urinalysis. Kidney ultrasound is usually negative [200]. In most cases, there
is only mild renal impairment, which usually resolves after withdrawal of the offending
drug. Renal involvement in DRESS is more common after allopurinol treatment, followed
by carbamazepine and dapsone [201]. Indeed, allopurinol is generally associated with
acute kidney injury (AKI), and renal biopsy typically yields an acute interstitial nephritis
(AIN). Rarely, allopurinol can elicit renal vasculitis and glomerulonephritis [202]. On the
other hand, renal failure in CBZ-DIHS/DRESS is considered to be attributable to acute
interstitial nephritis. Acute interstitial nephritis is typically reversible after withdrawal
of the causative agent. Viral agents can directly affect the development of renal involve-
ment in DRESS. Hagiya et al. described a case report of granulomatous tubulointerstitial
nephritis accompanying the proliferation of HHV-6 in tubular epithelial cells, demonstrat-
ing a possible association between reactivation of HHV-6 directly in the renal tissue with
tubulointerstitial nephritis and renal dysfunction [203].

3.3.3. Heart and Muscle Involvement

The myocardium represents a preferential site for eosinophilic infiltration. Con-
sistently, heart involvement in DRESS/DIHS syndrome has been described, and my-
ocarditis represents one of the most relevant prognostic factors in DIHS/DRESS pa-
tients [29,46,49,59,67,82,83]. Heart disease is described at onset of disease or after ap-
proximately 40 days. Most frequent symptoms are tachycardia, chest pain, dyspnoea,
and hypotension, although some patients are completely asymptomatic. According to the
literature, ampicillin and minocycline are more frequently responsible for this manifesta-
tion [194].

Chest radiography shows cardiomegaly and/or pleural effusion. ECG shows ST-T
non-specific abnormalities and sometimes arrythmias. Echocardiography shows significant
ejection fraction reduction. Moreover, elevation of creatine kinase and troponin T is usually
detected [200]. Two forms of myocarditis are recognized in DRESS syndrome: hypersen-
sitivity myocarditis and acute necrotizing eosinophilic myocarditis (ANEM). The first is
usually self-limiting. ANEM is associated with >50% mortality and a median survival
of 3 to 4 days [194]. Echocardiography in patients with ANEM shows increased wall
thickness, severe biventricular failure, and a pericardial effusion. For both clinical entities,
endomyocardial biopsy is important for a definite diagnosis, and it helps in differential
diagnosis from other myocarditis. Eosinophilic and mixed lymphohistiocytic infiltrate with-
out necrosis is a typical histological finding of eosinophilic myocarditis. ANEM is defined
as eosinophilic and lymphocytic infiltrate with associated myocyte necrosis. Moreover, it is
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largely known that HHV-6 can cause myocarditis. The hypersensitive response to drug
metabolites and the reactivation of a virus such as HHV-6 may be the requisite “immune
alteration” in certain individuals that leads to the severe damage of myocardial tissue by
eosinophilic degranulation in this disease [204].

3.3.4. Lung Involvement

As well as other organs, the lungs may also be involved in DRESS syndrome. Indeed,
pulmonary manifestations may be among the first evidence of the syndrome, anticipating
even skin manifestations. According to a review of the literature, pulmonary symptoms
might be found in up to 72% of patients on hospital admission [183]. Symptoms of pul-
monary involvement are generally dyspnoea, cough and pleurisy [194,200,205]. The most
common pulmonary findings include infiltrating lesions of an interstitial nature, pneumo-
nia (50%), and pleural effusion (22.7%) [25,205]. In some cases, pulmonary nodulations
have been reported. Very severe manifestations of DRESS syndrome in the lungs can
also lead to the development of acute respiratory distress syndrome (ARDS) with acute
respiratory failure (31% of cases). The most important risk factors for the development of
severe pulmonary manifestations of DRESS accompanied by ARDS seem to be an onset
latency shorter than 30 days and age less than or equal to 60 years [183].

3.4. Nervous System Involvement

Neurological manifestations of DRESS might involve the central and peripheral ner-
vous system. Encephalitis and meningoencephalitis usually present in 2–4 weeks from
disease diagnosis and encompass symptoms such as coma, seizures, headache, and speech
disturbance. Evidence of HHV-6 DNA in the cerebrospinal fluid points to a probabile
role of HHV-6 in this setting [206]. Moreover, a possible link between DIHS/DRESS with
reactivation of EBV and the development of autoimmune limbic encephalitis has been
described [207]. Electroencephalography shows diffuse slow waves with an occasional
solitary spike and waves in the left frontal and temporal leads without periodic patterns.
MRI shows bilateral hyperintensity of the grey matter involving the amygdala, medial
temporal lobe, insula, and cingulate gyrus. Peripheral involvement is anecdotal [208].

3.5. Other Manifestations

An increased prevalence of autoimmune diseases has consistently been observed in
DRESS/DIHS survivors. While viral triggers such as EBV and HHV-6 are known potential
risk factors for the development of autoimmune diseases such as type 1 diabetes mellitus
and autoimmune hypothyroidism [69,209] in the general population, increased lymphocyte
counts along with late-phase hypergammaglobulinemia (in contrast to the early phase of
DRESS: see above), low levels of interleukin (IL)-2 and IL-4 at DRESS onset and severe liver
involvement might synergise with persistent reactivation of EBV and HHV-6 in enhancing
post-DRESS autoimmunity [55,210]. Unstable CD8+ T cell repertoires, possibly due to viral
stimuli, might also selectively associate with autoimmunity [168].

4. Diagnosis
4.1. Diagnostic Approach

DRESS should be highly suspected in patients who have recently started new treat-
ments and present with cutaneous eruptions, fever, hypereosinophilia, and alterations in
organ function tests [56,211]. Assessment of the causative drug and of the starting time of
therapy is one of the first steps of the diagnostic approach when DHR is suspected.

Initial laboratory investigations are aimed at confirming DRESS diagnosis and evaluating
the degree of severity of organ involvement. Laboratory tests include complete blood count
with peripheral blood smear for evaluation of eosinophilia (>700/µL), leucocytosis, and the
presence of atypical lymphocytes. Significant liver function test abnormalities in more than
two measurements are suggestive of liver involvement. Kidney function test abnormalities,
proteinuria >1 g/day, or haematuria are suggestive of renal involvement. Cardiac enzymes
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such as troponins, creatine kinase-MB, and NT-proBNP and pancreatic enzymes such as
amylase and lipase should be measured as clinically appropriate [21]. Comprehensive serial
laboratory investigations are recommended during the follow-up [21,56].

Reactivation of HHV-6 or other herpesviruses could be assessed by serology or viral
genome testing by polymerase chain reaction (PCR) in blood or other tissues [29,56,70,171,190].
There is no universal consensus on the methods to assess viral reactivation, and hetero-
geneity among different laboratories is the rule [212]. Screening for acute viral hepatitis
(e.g., anti-hepatitis A, anti-hepatitis B surface antigen, anti-hepatitis B core antigen IgM, or
hepatitis C viral RNA) could be performed to exclude alternative diagnoses in patients with
abnormal liver enzymes. The Monospot test is often used as a stand-alone evaluation of
infection, despite its low clinical value [213]. Additional tests such as blood cultures or anti-
chlamydia, anti-mycoplasma or antinuclear antibodies could be considered for differential
diagnosis with other infectious or autoimmune diseases [21,48,54,56,212]. Imaging with
ultrasound, computed tomography, echocardiography and cardiac magnetic resonance can
be performed to assess the severity of organ involvement. Growing evidence supports the
use of ECG and echocardiograms to screen for cardiac manifestations of DRESS, which
may have a fulminant course [214].

Patch testing may be useful to ascertain culprit drugs. Recent studies report patch
test positivity in 30–60% of patients with DRESS, especially in those cases caused by
carbamazepine, β-blockers and PPI administration. Negative results were reported when
testing for allopurinol and sulfasalazine [215]. Intradermal testing should be used only in
exceptional cases, as there is a risk of reaction recurrence. Drug challenge is contraindicated,
although it may be useful in the setting of multiple drug treatment for HIV infection or
tuberculosis [211]. In addition, the lymphocyte transformation test (LTT) measures T-
cell proliferation, following in vitro exposure to the causative drug [216]. For diagnostic
purposes, this assay, which is not available to the routine clinical lab, is best performed in
the recovery phase of DRESS. Positive LTT is expected to be found in half DRESS cases [216].
Consistently, LTT sensitivity and specificity are quite high( 73% and 82%, respectively).

Skin biopsy may provide further evidence supporting DRESS diagnosis, although
no histopathological finding is pathognomonic. Histopathologic examination may help
to rule out other diagnoses such as exanthematous drug eruptions, acute generalized
exanthematous pustulosis (AGEP), and Stevens–Johnson’s syndrome/toxic epidermal
necrolysis (SJS/TEN). The main histopathological findings encompass dyskeratosis (53–97%
prevalence), interface vacuolization (74–91% prevalence), spongiosis (40–78% prevalence),
perivascular lymphocytic and dermal eosinophil infiltrates (prevalence 20–80%) [217]. Wide
areas of keratinocyte necrosis are found in severe cases [217]. Biopsy of other commonly
involved organs (lymph nodes, kidney, liver, and heart) are not routinely performed due to
highly nonspecific inflammatory patterns.

4.2. Differential Diagnosis

Due to the heterogeneity of its clinical presentation, DRESS syndrome can be misdiag-
nosed. The main differential diagnoses include acute generalized exanthematous pustulosis
(AGEP), exanthematous drug eruptions and Stevens–Johnson syndrome/toxic epidermal
necrolysis (SJS/TEN). SJS/TEN shares with DRESS causative drugs, fever, haematological
abnormalities and hepatic involvement. While SJS/TEN generally presents a latency period
ranging from a few days to 3 weeks, DRESS is a late severe reaction to pharmacological
exposure taking at least 2 weeks to show symptoms. On the other hand, AGEP is usually
characterised by rapid onset of skin reaction. Referring to hepatic involvement, while
more frequent in DISH/DRESS, noteless elevations up to three times the normal value in
serum aminotransferase can be detected in half TEN patients (10% of TEN patients can also
develop full-blown hepatitis) [218]. Exfoliative dermatitis differs from DRESS in terms of
cutaneous and other systemic features. In particular, AGEP rarely associates with kidney
involvement and, when present, it is usually self-limited. In addition, visceral involvement
in AGEP has rarely been described. In SJS/TEN, a serum urea level >10 mmol/l is a poor
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prognosis marker [219]. In terms of skin manifestations, DIHS is characterized from the
very beginning by a maculopapular rash, often accompanied with oedema on the face and
limbs. These features can later evolve to erythroderma or exfoliative dermatitis. In contrast
with SJS/TEN, there is no haemorrhagic mucocutaneous involvement. Moreover, HHV-6
re-activation is commonly observed in patients with DIHS/DRESS, along with atypical
lymphocytes, whereas it is rarely found in SJS/TEN [220]. AGEP is characterized by an
erythematous rash with pustulosis (non-follicular, sterile pustules < 5 mm in diameter)
accompanied by fever and neutrophilia and develops typically within 48 h to 3 weeks
after drug ingestion. Skin lesions typically observed in AGEP are usually self-limited
desquamative pustules accompanied by erythema, with typical facial and intertriginous
distribution/pattern and mucosal involvement. Skin biopsies demonstrate intraepidermal
pustules with oedema of the papillary dermis and perivascular infiltrates of neutrophils
and eosinophils [221,222] (Table 3).

The diagnosis of DRESS may also be particularly challenging in the case of prominent
lung involvement because respiratory symptoms associated with peripheral eosinophilia and
rash can be found in different pathologies, both infectious and non-infectious (neoplasm,
drug, allergic, autoimmune). Specifically autoimmune diseases, acute eosinophilic pneu-
monia, eosinophilic granulomatosis with polyangiitis [223], idiopathic hyper-eosinophilic
syndrome and systemic lupus erythematosus [224], are particularly difficult to distinguish
from DRESS. As for infectious causes, all viral, bacterial, parasitic, and fungal pathogens
can mimic the symptomatology. The presence or absence of a certain symptom or sign, and
a careful anamnesis, help in making a differential diagnosis. In HIV-immunocompromised
individuals, a possible cause of DRESS can be found in patients taking raltegravir, whose
manifestations characteristically occur in the lungs [225]. The involvement of other districts
in addition to the lungs helps to make a differential diagnosis, e.g., renal co-involvement
makes one consider pulmonary-renal syndrome (Goodpasture’s), hepatic involvement,
and hepatopulmonary amebiasis (Entamoeba histolytica) [183,226]. As the differential
diagnosis is quite complex, several studies have shown that at least 50% of patients with
DRESS syndrome, given misdiagnosis, were initially treated with antibiotics on suspicion
of infection [205,227]. The first step, which is particularly important, is to rule out an
infectious aetiology, since corticosteroids, as the mainstay of therapy for DRESS, might
instead promote infection and, therefore, be contraindicated. Another condition commonly
misdiagnosed with DRESS is lymphoma, for which DRESS is misdiagnosed in up to 75% of
cases [14,227]. The presence of characteristic interstitial lung lesions, fever, and dyspnoea
may point toward a diagnosis of acute eosinophilic pneumonia, which certainly needs to
be differentially diagnosed. In the case of suspected eosinophilic pulmonary pathology,
although not a practice that can necessarily be used to make a diagnosis of DRESS, it
is useful to perform bronchoscopy in order to collect broncho-lavage (BAL) specimens.
Indeed, in the case of differential diagnosis with acute eosinophilic pneumonia (AEP),
there is evidence of eosinophilia in BAL samples, in the absence of peripheral eosinophilia,
which on the other hand is abundantly present in DRESS. AEP laboratory samples usually
show neutrophilic leucocytosis without hypereosinophilia. In the case of eosinophilic
pneumonias (EPs), the manifestations may also be secondary to exposure to toxins and
drugs. A recent literature review identified 196 cases of drug-induced EP over a 27-year
period, with a higher prevalence of AEP than the chronic form. In this case, eosinophilia on
peripheral blood was elevated, with mean values from 1232 to 1490 cells/µL in acute and
chronic forms, respectively. Compared with the more common forms of EP, drug-induced
forms of EP have eosinophilic leucocytosis on blood, as opposed to the far more com-
mon neutrophilic form. However, in both the drug-induced and non-drug-induced forms,
eosinophilia on BAL is present [228]. Although EPs generally present with low blood
eosinophilia, those secondary to drug exposure may instead exhibit hypereosinophilia. In
these cases, the differential diagnosis usually relies on cell count in BAL samples, which
will show increased eosinophils in almost all cases of EP and lower cellularity in cases of
DRESS.
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Table 3. Differential skin manifestations among DRESS and other diseases.

Syndrome Rash Features Timing of Onset Disease Extent Systemic
Manifestations

Other than Skin
Involvement

Blood Analysis
Findings Histopathological Findings

DIHS/DRESS

Maculopapular
exanthem 2–8 weeks

Generalised

Fever

Hepatitis
Lymphadenopathy

Pneumonitis
Nephritis

Eosinophilia, atypical
lymphocytes,
leucocytosis

Subtle, vacuolar interface
dermatitis, with scattered,
dyskeratotic keratinocytes

along the dermo-epidermal
junction zone

Erythroderma Mucosal involvement
Rare Abnormal liver and

renal function testsFacial oedema

AGEP

Generalised
erythema <3 days

Generalised usually
with skin fold and
facial localisation, Higher fever (>38 ◦C) Rare

Leucocytosis with
neutrophilia

(>7000/mm3)

Intraepidermal pustules
with oedema of the papillary

dermis and perivascular
infiltrates of neutrophils and

eosinophils
Pustules Mucosal involvement

rare
Erythroderma

SJS/TEN

Dusky red,
coalescent macular

exanthem
4–21 days Disseminated

Fever
Photophobia
Sore throat,
Dysphagia

Pneumonitis Lymphopenia

Necrosis of keratinocytes
Epidermis shedding
Absent inflammatory

infiltrate

Atypical target
lesions

Bullous lesions

Mucosal involvement
rarely absent
(stomatitis,

conjunctivitis)
Epidermal necrosis

Nikolsky sign
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4.3. Diagnostic and Prognostic Scoring Systems

Several scoring systems have been suggested over the years to guide the diagnosis of
DRESS. Currently three major scoring systems are available, including Bocquet’s published
in 2006, the Japanese Consensus Group Severe Cutaneous Adverse Reactions (J-SCAR)
in 2006, and the European Registry of Severe Cutaneous Adverse Reactions (RegiSCAR)
in 2007. Relevant items from the three scores are reported in Table 4. The RegiSCAR
scoring system is more frequently used and includes seven clinical characteristics. Each
characteristic is scored up to a total score in order to identify the diagnosis as possible,
probable, or definite [15]. Recently introduced Spanish guidelines for DRESS suggest the
use of RegiSCAR criteria for clinical diagnosis [23]. Indeed, they provide specific laboratory
investigations that are necessary to guide the diagnostic process. In a comparative retro-
spective analysis conducted by Kim et al., Bocquet’s criteria resulted in being the easiest
to be applied in clinical practice [229], although they did not provide specific parameters
to potentially guide the differential diagnostic process. A recent review by Cardones et al.
compared the abovementioned scoring systems. Interestingly, the Japanese consensus
group expanded Bocquet’s criteria, adding more detailed requirements based on clinical
manifestations. Differently from Bocquet’s and RegiSCAR criteria, the Japanese consen-
sus group also included HHV-6 reactivation among the relevant items for the diagnosis.
Nonetheless, DIHS diagnosis through the J-SCAR criteria is largely consistent with proba-
ble/definite DRESS diagnosis according to the RegiSCAR algorithm. This finding confirms
that DRESS and DIHS are part of the same heterogeneous disease [230]. One of the major
advantages of using the RegiSCAR diagnostic criteria is the possibility to simultaneously
differentiate DRESS from other, similar conditions such as acute cutaneous lupus and con-
nective tissue diseases through autoantibody testing or skin biopsy. Ruling out infections
through screening for viral acute hepatitis, blood culture, and testing for atypical bacteria
such as Chlamydia and Mycoplasma is also part of the RegiSCAR algorithm [15,231].

Table 4. Comparison between three scoring systems.

Bocquet et al., 1996 J-SCAR, 2006 RegiSCAR, 2007

Cutaneous drug eruption Fever Fever > 38.5 ◦C

Systemic involvement: lymphadenopathy
≥ 2 cm; liver involvement (transaminase
twice the upper limit); kidney
involvement (e.g., interstitial nephritis);
lung and cardiac involvement (e.g.,
interstitial pneumonitis or myocarditis)

Latency time of 3 weeks from drug
exposure to the onset of cutaneous
manifestations

Enlarged lymph nodes in ≥2 lymph node
stations

Hematologic alterations:
eosinophilia ≥ 1.5 × 109/L;
presence of atypical lymphocytes

Persistence of the eruption ≥ 2 weeks
after drug interruption

Eosinophilia > 700/µL
Thrombocytopenia

HHV-6 reactivation at PCR or serology
tests

Atypical lymphocytes
Skin involvement (rash extended for >
50% of body surface area, biopsy)
Organ involvement (one or ≥ two organs
involved)
Resolution in ≥15 days
≥3 negative laboratory investigations
including ANA screening, serological
screening for HAV/HBV/HCV, blood
cultures, tests for Chlamydia and
Mycoplasma to exclude other diseases

Despite evidence suggesting the use of RegiSCAR as a complementary diagnostic
tool, some limitations might be highlighted. For example, prolonged resolution time
(>15 days) is one of the diagnostic criteria but has little usefulness for early diagnosis.
Furthermore, assessment of viral reactivation is not included in the scoring system, even
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though it is considered as a marker of severe disease progression [23,230]. Interestingly,
there is increasing effort in identifying CMV disease as a potential prognostic factor for
disease severity in patients with DiHS/DRESS. Mizukawa et al. conducted a retrospective
analysis of patients with DiHS/DRESS aimed at developing a composite score based
on demographic data, medical history and clinical data to monitor severity at different
stages of disease, predict patient prognosis, and stratify the risk of CMV disease and
complications. Although the study was conducted on a limited number of patients, the
composite scoring system was useful in predicting complications related to CMV and to
guide medical decisions for early intervention in those patients considered at high risk of
CMV reactivation [232].

5. Management

The management of patients with DRESS is generally in-patient, although in milder
cases (patients without visceral involvement) outpatient management may be considered
with clinical and laboratory monitoring every 48 h [23]. The first necessary measure in the
case of DRESS is discontinuing potential culprit drugs, along with supportive treatments
such as fluid integration and antipyretics. Empirical use of NSAIDs and antibiotics in the
acute phase is not recommended, because it could trigger DRESS exacerbations [194].

Addition of systemic steroids is usually necessary [55,233], although evidence from
controlled trials is lacking. The rationale for corticosteroid use is the anti-inflammatory and
immunosuppressive effect through inhibition of activated cytotoxic T-cells and cytokine
production [234]. Immunosuppression poses the risk of favouring viral reactivation, es-
pecially of late-phase viruses such as CMV. Therefore, the timing and aggressiveness of
immunosuppressive treatments (including corticosteroids) should be evaluated on a case by
case basis with careful risk weighting [235]. Nonetheless, timely initiation of corticosteroid
treatment is crucial to break the core pathogenic loop of the disease, that is, the reciprocal
stimulation of viral replication and T-cell responses [233]. Early aggressive corticosteroid
treatment appear to contrast both T-cell activation and HHV-6 replication, while delayed or
low-dose treatments are thought to have limited impact on T-cell behaviour and HHV-6
viremia [46]. Similar to HHV-6, EBV-DNA loads are significantly debulked by systemic
corticosteroids. Furthermore, since EBV is a known trigger of autoimmunity, early sys-
temic corticosteroid treatment possibly prompting reduced EBV-DNA loads might have
a fundamental role in optimising patient outcomes especially in settings at high-risk for
autoimmunity [56]. It is recommended to start with a minimum dosage of 1 mg/kg/day
of prednisone or equivalent, with a taper in 3–6 months [235]. In cases where this is not
sufficient, pulse intravenous methylprednisolone may be used.

In refractory cases or when steroids are contraindicated, some studies recommend
the use of cyclosporine, due its effects on cytotoxic T-lymphocyte activation and on IL5
inhibition [23,236]. The efficacy of intravenous Immunoglobulins (IVIGs) may be due to
their general anti-inflammatory effect, protective effect against herpes virus reactivation
and compensation for decreased immunoglobulin levels observed in DRESS [237]. IVIGs
also constitute an interesting treatment option as a steroid-sparing agent in cases of con-
comitant infection [237], but they are not indicated in monotherapy due to potential lack of
efficacy and increased adverse event rates [194]. Limited data suggest the potential use of
immunosuppressants (cyclophosphamide, mycophenolate, rituximab) or plasmapheresis
in refractory cases [235].

CMV reactivation might be integral to the pathophysiology of DIHS/DRESS or consti-
tute an unwanted side-effect of immunosuppression [83]. Since CMV reactivation is among
the most important risk factors in the prognosis of DIHS/DRESS, caution in the use of
corticosteroids is recommended [46]. Indeed, fatal outcomes possibly related to the use of
DRESS-related treatments are found almost exclusively in CMV cases. Delayed anti-CMV
therapy is associated with a higher risk of adverse outcomes as patients receiving treat-
ment after three or more days from CMV reactivation detection bear a significantly higher
risk of death even compared to patients with treatment start after two days from CMV
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reactivation detection. Anti-CMV therapy may also have a synergic role in minimising the
risk of CMV-related and unrelated pathological events, including other herpesvirus-related
complications [56]. Some authors suggest that prophylactic treatment of CMV during vi-
raemic stages could prevent progression to CMV-related clinical manifestations in patients
with DIHS/DRESS [23]. Antivirals (ganciclovir or valganciclovir) in addition to standard
treatment are usually administered with continuous monitoring of viral loads.

Given the possible systemic involvement, multidisciplinary management may be
necessary depending on the organs involved. In cases of exfoliative dermatitis, treatment is
similar to that of major burns, and management in burn units should be considered [238].
Generally, most patients respond to treatment; however, it must be remembered that this
condition has an estimated mortality of up to 20%, while other subjects may have long-
term adverse effects [238]. Patients with DRESS may experience relapses of symptoms
in the recovery phase. These events are typically associated with corticosteroid dose
reduction and viral reactivation. Interestingly, exposure to new drugs during DRESS could
represent an underlying mechanism for relapse occurrence with or without subsequent
drug sensitization [239,240].

6. Final Remarks

DRESS is a severe multi-organ syndrome characterised by abnormal T-cell and eosinophil
responses to drugs along with abnormal control of viral stimuli. Advances in recent years,
possibly boosted by the ongoing COVID-19 pandemic and its sequelae for individuals and
public health, are increasingly highlighting the role of viruses in modulating the course
and severity of DRESS. Large multicentre studies addressing changes in epidemiology and
clinical presentation of DRESS among distinct healthcare and microbiological settings are
eagerly needed along with deeper mechanistic insights into the pathophysiological basis of
DRESS-related immune dysfunction.
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