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Abstract: Live feed enrichments are often used in fish larvicultures as an optimized source of essential
nutrients to improve larval growth and survival. In addition to this, they may also play an important
role in structuring larval-associated microbial communities and may help improve their resistance
to diseases. However, there is limited information available on how larval microbial communities
and larviculture water are influenced by different live feed enrichments. In the present study, we
investigated the effects of two commercial rotifer enrichments (ER) on turbot (Scophthalmus maximus)
larval and post-larval gut-associated bacterial communities during larviculture production. We
evaluated their effects on bacterial populations related to known pathogens and beneficial bacteria
and their potential influence on the composition of bacterioplankton communities during larval
rearing. High-throughput 16S rRNA gene sequencing was used to assess the effects of different
rotifer enrichments (ER1 and ER2) on the structural diversity of bacterial communities of the whole
turbot larvae 10 days after hatching (DAH), the post-larval gut 30 DAH, and the larviculture water.
Our results showed that different rotifer feed enrichments were associated with significant differ-
ences in bacterial composition of turbot larvae 10 DAH, but not with the composition of larval gut
communities 30 DAH or bacterioplankton communities 10 and 30 DAH. However, a more in-depth
taxonomic analysis showed that there were significant differences in the abundance of Vibrionales
in both 10 DAH larvae and in the 30 DAH post-larval gut fed different RE diets. Interestingly, the
ER1 diet had a higher relative abundance of specific amplicon sequence variants (ASVs) related
to potential Vibrio-antagonists belonging to the Roseobacter clade (e.g., Phaeobacter and Ruegeria at
10 DAH and Sulfitobacter at 30 DAH). In line with this, the diet was also associated with a lower
relative abundance of Vibrio and a lower mortality. These results suggest that rotifer diets can affect
colonization by Vibrio members in the guts of post-larval turbot. Overall, this study indicates that
live feed enrichments can have modulatory effects on fish bacterial communities during the early
stages of development, which includes the relative abundances of pathogenic and antagonist taxa in
larviculture systems.

Keywords: live feed; larviculture; Roseobacter; microbial modulation; Vibrio; Brachionus plicatilis

1. Introduction

Wild finfish larvae feed on a diverse array of zooplankton (e.g., copepods, cladocerans,
ciliates, and rotifers [1]) in order to fulfill their nutritional requirements during early
life stages [2,3], with copepods of particular importance [3,4]. Copepods are naturally
rich in essential nutrients (e.g., high quality proteins, amino acids, and minerals) and
polyunsaturated fatty acids (PUFAs, e.g.,ω-3 andω-5 [3,5]). PUFAs are essential for larval
development, and a deficiency or imbalance in PUFAs may adversely affect fish growth
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and immunological development [6–9]. However, the mass cultivation of these small
crustaceans is challenging, and, despite some successful small-scale ventures [10], they are
not systematically used in the marine finfish larviculture sector [3,11]. As an alternative,
rotifer and artemia are the most commonly used as the first feed in larviculture [5,11].
However, both artemia and rotifer are naturally poor in PUFAs. To overcome this problem,
a range of commercial products, made of nutritionally balanced lipid emulsions, have
been approved for the enrichment of live feed with PUFAs and are commonly used in the
production of fish larvae [5,9]. An optimal nutrition of these commercial enrichments has
been intensively debated in the literature for most commercial finfish species, including
the turbot (Scophthalmus maximus) [12], and this has led to significant improvements in fish
survival, growth, and disease resistance [13,14].

In addition to the importance of providing nutritionally complete live diets, the contin-
uous production of marine finfish fingerlings is frequently affected by stochastic episodes
of mass mortalities in the first weeks of life [2,15]. These outbreaks have typically been as-
sociated with pathogens belonging to genera Vibrio, Photobacterium, and Tenacibaculum that
naturally inhabit the microbial communities of rotifers, copepods, and artemia [16–18]. To
tackle this problem, strategies based on the exposure of live feed and fish eggs to mild doses
of chemical disinfectants have been adopted as the standard procedure in the larviculture
industry [19]. Although provisionally effective, these strategies may interfere with the nor-
mal development of fish larvae [20] and the quality of the live feed [21]. Furthermore, the
process of disinfection affects the microbial community as a whole, creating a more unstable
environment, which will favor the development of fast-growing opportunistic r-strategists
and increase the probability of pathogen proliferation and fish larvae infection [22]. Despite
the perception that the disinfection processes can have significantly adverse effects on
the larviculture microbiome, there is a scarce amount of information on how live feed
enrichments affect the initial microbe recruitment of newly hatched larvae [15,23–25].

The establishment of larval microbial communities is a multifactorial process, driven
by both extrinsic (e.g., environment) and intrinsic processes (e.g., phylogeny and host
genetics; [26–28]), in which diet plays a crucial role [25,29,30]. In larviculture, the rearing
water and feed are the earliest sources of bacteria that colonize the skin and gastrointestinal
tracts of fish [15,24,29,31]. There is, however, a lack of information on how larval bacterial
communities are influenced by different commercial live feed enrichments. Therefore, in
line with the need to better understand the effects of live diets on larval microbiomes, in
the present study we aimed to investigate the effects of two commercial rotifer enrichments
(ER1 and ER2) on turbot (Scophthalmus maximus) larval and post-larval gut-associated
bacterial communities during larviculture production. We hypothesize the following: (1)
Rotifer feed enrichments will have distinct effects on turbot (Scophthalmus maximus) larvae
and post-larval gut-associated bacterial communities. (2) Different live feed enrichment
products will have different effects on the balance of potential pathogenic and antagonistic
microbes in the larviculture production system. (3) Bacterial populations of live feed
enrichments will colonize turbot larvae and post-larval gut biotopes.

2. Methods
2.1. Larviculture

Water, larvae, post-larvae, and live feed samples were obtained between 17 November
and the 14 December 2021 in an intensive larviculture facility for the production of turbot
(S. maximus) larvae located in Portugal. The larviculture operates in a flow-through system
with natural seawater collected from the adjacent Atlantic Ocean. Sampling was conducted
during routine and animal husbandry practices of commercial farming operations. The
sampling procedure was in line with approved methods of animal killing according to
Annex IV of the European Directive Dir2010/63/EU on the protection of animals used
for scientific purposes. No experimental procedure was conducted on live fish. Two
products (ER1 and ER2), commercialized as enrichment diets for live feed, were used as
rotifer enrichments. Both products are commercially available and have been previously
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approved for use for animal feeding. They are routinely used by the larviculture facility
where the sampling occurred. ER1 and ER2 are dry formulas enriched in polyunsaturated
fatty acids (PUFAs), vitamins, and minerals. Based on the content declarations, ER1
contains a taurine additive and has higher protein and PUFA content than ER2. ER2 has a
higher vitamin content than ER1 and a probiotic additive based on viable cells of a strain of
Pediococcus acidilactici. Due to the fact that this study was not designed to evaluate different
commercial live feed enrichments, but instead to investigate their importance in shaping
larval microbiomes, the commercial name of the products is not provided, in order to avoid
misjudgment of the efficiency and quality of different products.

Water and larvae samples were obtained from independent cylindrical tanks (three
for each live feed enrichment). Larviculture tanks were operated as a flow-through system
with water pH 7.6–8.0, temperature 19.18 ± 0.51 ◦C, and salinity 34.05 ± 0.11‰. Larvae
were fed rotifers, enriched by ER1 or ER2, from 3 to 15 DAH. Rotifers enriched with their
respective product (ER1 or ER2) were added to rearing water of their respective tanks,
together with a mature culture of Tetraselmis sp. (green water technique). From 11 to
15 DAH, the differently enriched rotifers were gradually replaced by artemia enriched with
ER2. Between 16 DAH and until 30 DAH, only artemia enriched with ER2 were provided.
Fish were fed manually with a three hour interval between feeds. At 30 DAH, fish were
transferred to nursery tanks and they remained there until 60 DAH. During this time,
any detected abnormal fish (i.e., small, deformed, diseased, or depigmented fish) were
euthanized. At 60 DAH, surviving fish were counted to determine the survival rate of
each tank.

2.2. Sample Collection and DNA Extraction

Composite samples of the whole turbot larvae (n = 25) and the post-larval gut (n = 5)
were obtained seven (10 DAH) and twenty-seven days (30 DAH) after their transfer to
the larval rearing system, respectively. One composite sample was obtained for each tank,
totaling three composite samples of larvae for each combination of treatments (ER1 and
ER2) and sampling points (10 and 30 DAH). Larvae were collected using a fish net (the fish
net was cleaned in-between samplings with a 0.1% hydrogen peroxide solution). Collected
larvae were transferred to 120 mL sterile plastic cups filled with respective rearing water.
Larvae were killed using an overdose of fish anesthetic (clove oil; Sigma-Aldrich, Saint
Louis, MO, USA) and then rinsed with sterile artificial seawater with salinity adjusted to
36 ppt (ASW). Dissection only occurred after proof of death (waiting for the onset of rigor
mortis). Smaller larvae (10 DAH) were rinsed five times with 5 mL of ASW in a 15 mL
falcon tube, while larger larvae (30 DAH) were washed on both sides for approximately 5 s
with ASW, using a previously autoclaved wash bottle. Twenty-five larvae with 10 DAH,
were transferred whole into bead-beating tubed from the DNA extraction kit. Five larvae
with 30 DAH, were dissected and their gastro-intestinal tract was retrieved whole and
pooled into bead-beating tubes from the DNA extraction kit.

Bacterioplankton samples consisted of rearing water collected from each tank at
the same time that larvae samples were collected (i.e., 10 and 30 DAH). A 250 mL sterile
Erlenmeyer flask was filled with rearing water and filtered through a 0.22 µm polycarbonate
filter (Merck-Millipore, Rahway, NJ, USA) in an EZ-Fit™ Manifold base (Merck-Millipore,
Rahway, NJ, USA) or in a Büchner filtration assembly connected to a vacuum pump.
After filtration, the polycarbonate filter was cut thoroughly using sterile scissors and was
transferred to a bead-beating tube. Live feeds (rotifers, algae, and artemia) were collected
from respective stock cultures using a sterile 250 mL cup and transported to the laboratory.
Only one sample of each stock culture of feed was collected in the experiment. Algae
and rotifer samples were collected seven days after larval transfer to the rearing system,
while artemia samples were collected twenty-seven days later. Algae were harvested by
centrifugation at 4400× g during 30 min; supernatant was discarded and the pellet was
suspended in DNA extraction buffer and transferred into bead-beating tubes from the DNA
extraction kit. Rotifer and artemia samples were collected by filtering samples through a
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Whatman 113 paper filter (Merck-Millipore, Rahway, NJ, USA). Residues were washed
three times with sterile artificial seawater, collected using a sterile spatula (300 mg), and
transferred into respective bead-beating tubes from the DNA extraction kit.

All samples (larvae, bacterioplankton, and feed) were processed using FastDNATM

Spin kit (MP Biomedicals, Santa Ana, CA, USA) following the manufacturer’s instructions.
A blank negative control with no sample was included in the DNA extraction process each
time. All samples were processed immediately; no storage was required.

2.3. High-Throughput Sequencing Data Acquisition

The hypervariable region V3/V4 of the 16S rRNA gene was amplified by PCR us-
ing the primers 314F (CCTACGGGNGGCWGCAG) and 785R (GACTACHVGGGTATC-
TAATCC) [32]. Library preparation and sequencing were performed using a MiSeq sequenc-
ing platform at Molecular Research LP (www.mrdnalab.com; accessed on 15 September
2022, Shallowater, TX, USA), following standard Illumina procedures (Illumina, San Diego,
CA, USA). QIIME2 (version 2020.8) was used to transform the amplicon libraries to an am-
plicon sequence variant (ASV) abundance table [33]. Demultiplexing was performed using
the “demux” algorithm in QIIME2. The dada2 algorithm from the DADA2 plugin [34]
in QIIME2 was used to filter low-quality reads, merge forward and reverse reads into se-
quences, remove chimeras, and group sequences into ASVs. In dada2, forward and reverse
sequences were truncated at 220 and 240 bp, respectively. Taxonomy was assigned to ASVs
using the ‘feature-classifier’ algorithm in QIIME2 with a scikit-learn Naïve Bayes classifier
based on the SILVA database of the 16S reference sequences at 99% similarity (version 138,
released December 2019). The classifier was previously trained using a ‘feature-classifier’
algorithm in QIIME2 (version 2020.8) with reference sequences, trimmed and truncated
at the 314F and 785R region. To simplify interpretation, a unique number was assigned
to each ASV. Non-bacterial, mitochondrial, and chloroplastidial sequences were removed.
Negative controls from the DNA extraction were also sequenced and ASVs that occurred
in the negative controls, but which did not appear to be the result of “index hopping” [35],
were removed. A list of removed ASVs is presented in Supplementary File S1.

2.4. Data Analysis and Statistics

A table containing the ASV counts per sample was imported into R and used to com-
pare community diversity and composition and assess the relative abundance of selected
higher taxa. The Shannon’s H’ diversity index was calculated using the diversity() function
in the vegan package [36], rarefied richness was calculated using the rarefy() function in
vegan, evenness (Pielou’s J) was calculated by dividing Shannon H’ by the logarithm of the
total number of ASVs, and Fisher’s alpha was calculated using the fisher.alpha() function in
vegan. Since diversity parameter data were not normally distributed, we tested for signifi-
cant variations for each factor separately: diet, biotope (water and larvae), and sampling
time; using the Kruskal–Wallis rank sum test with the kruskal.test() function in the stats
package. Relative abundances of selected bacterial higher taxa were tested for significant
variation between diets, biotopes (water and larvae), and sampling times using the anova()
function in R with the F test applied to a general-linearized model using the glm() function
in R [37]. Since a number of these variables included an excess of zero counts in the sam-
ples, we set the family argument to ‘tweedie’ using the tweedie() function in the statmod
package in R, with var.power = 1.5 and link.power = 0 (a compound Poisson–gamma
distribution). To perform pairwise comparisons among treatments, we used the emmeans()
function from the emmeans package with the p-value adjustment set to the false discovery
rate (i.e., p.adjust = ”fdr”). Biplot ordinations of ASV composition were produced for the
full dataset and separately for each sampling point (10 and 30 DAH). First, a phyloseq
object was generated using the phyloseq() function from the ‘phyloseq’ package [38]. The
ordinate() function in ‘phyloseq’ was subsequently used with the phyloseq object as input,
the method argument set to ‘PCoA’, and the distance argument set to ‘bray’. A biplot was
then produced using the plot_ordination() function in ‘phyloseq’ with the type argument

www.mrdnalab.com
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set to ‘biplot’. Significant differences among factors (diet (ER1 vs. ER2) and sampling point
(10 vs. 30 DAH) and biotope (water vs. larvae)) and their interactions were determined
using the adonis() function in vegan for a permutational multivariate analysis of variance
(PERMANOVA). The BLAST search tool (http://www.ncbi.nlm.nih.gov/; accessed on 15
September 2022) was used to compare representative sequences of the 50 most abundant
ASVs to sequences in the NCBI 16S ribosomal RNA (Bacteria and Archaea type strains)
database using standard parameter settings [39,40]. Sequences that exhibited the highest
levels of similarity were considered to be closely related organisms.

3. Results and Discussion

After quality control and the removal of non-bacterial sequences, the dataset consisted
of 2486757 sequences binned into 2336 ASVs. Overall, our results showed similar α-
diversity patterns for water and fish (larvae 10 DAH and post-larval gut 30 DAH) bacterial
communities in tanks with different rotifer diets (ER1 and ER2) (Figure 1; Kruskal Wallis–
Wallis: p > 0.05). This is in line with other studies, which have shown that live feed
manipulation did not affect rarefied richness of the gut-associated bacterial communities of
34 DAH gilthead seabream post-larvae (Sparus aurata; [15]). Bacterioplankton communities,
however, were richer (Kruskal–Wallis: H(1) = 17.38; p < 0.001) than the fish samples, but
there were no significant differences in evenness or Shannon’s H’ diversity. Previous studies
also showed that bacterioplankton communities tended to be richer than the host-associated
bacterial communities [41,42]. There were differences in the diversity and evenness of
bacterioplankton communities from different sampling events (10 vs. 30 DAH), but these
differences were not significant following the p-value correction using the FDR method
(Kruskal–Wallis: FDR-P > 0.05).
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PERMANOVA showed that the rotifer’s diet was a significant predictor of ASV composi-
tion at 10 DAH (PERMANOVA: F1,11 = 5.21; p = 0.002), but not at 30 DAH (PERMANOVA: 
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Figure 1. Diversity indices (Peilou’s J (evenness), richness, Shannon’s H’ (Shannon), and Fisher’s α
(Fisher)) of bacterial communities of larvae (10 DAH), post-larval gut (30 DAH) and respective water
samples, in tanks fed rotifer enriched with different commercial products (ER1 and ER2). ER1L10
and ER2L10 (whole larvae 10 DAH); ER1L30 and ER2L30 (post-larval gut 30 DAH); ER1W10 and
ER2W10 (rearing water 10 DAH); and ER1W30 and ER2W30 (rearing water 30 DAH).
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A PCO ordination highlighting the differences in ASV composition is presented in
Figure 2. Biotope (water vs. larvae) and sampling time (10 vs. 30 DAH) were better
predictors of the bacterial community structure than the rotifer’s diet (Figure 2). The
rotifer’s diet, however, did have a significant independent and interaction effect on the
ASV composition (PERMANOVA: p < 0.05, Table 1). Separate PCO ordinations for 10 and
30 DAH samples are presented in Supplementary Figure S1 in order to better evaluate
the interactions between the sampling time and rotifer diets. Our results showed that the
differences between different diets (ER1 and ER2) were more prevalent for the 10 DAH
whole larvae samples as opposed to the post-larval gut and water samples, showing a clear
separation of the effects of the different diets along the second axis. In line with this, the
results of the PERMANOVA showed that the rotifer’s diet was a significant predictor of
ASV composition at 10 DAH (PERMANOVA: F1,11 = 5.21; p = 0.002), but not at 30 DAH
(PERMANOVA: F1,11 = 1.324; p = 0.202). Previous studies have reported similar results in
cod larvae that suggested that the environmental setting (e.g., water and biofilm) is more
influential than live feed during initial microbiome recruitment in larval guts [29]. Some
speculate that the maladaptation of feed’s microbes to the gut environment impedes a
successful gut colonization [24].
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Figure 2. First two axes of a principal coordinates analysis (PCO) of ASV composition. Colored
symbols are samples. Gray symbols are weighted averages scores for ASVs (size is proportional
to abundance). ER1 and ER2 corresponds to the different rotifer diets. ART (Artemia 30 DAH);
GW (Algae 10 DAH); Rot_ER1 and Rot_ER2 (Rotifers 10 DAH); ER1L10 and ER2L10 (whole larvae
10 DAH); ER1L30 and ER2L30 (post-larval gut 30 DAH); ER1W10 and ER2W10 (rearing water
10 DAH); and ER1W30 and ER2W30 (rearing water 30 DAH).

Table 1. PERMANOVA results of variation in ASV composition among groups and their inter-
actions using the adonis() function in vegan applied to the Bray–Curtis dissimilarity matrix of a
log-transformed ASV table and with permutations set to 999. Factors tested include rotifer’s diet
(Diet; ER1 and ER2), Biotope (water and larvae), and fish age (Age; 10 and 30 DAH). p-values (P) were
adjusted by false-discovery rate (FDR-P). Significant values (Sig.) are presented as **—FDR-P < 0.01,
*—FDR-P < 0.05, and ns—not significant.

Factor F1,23 R2 P FDR-P Sig.

Diet 2.4999 0.02844 0.037 0.432 *
Biotope 25.7843 0.29331 0.001 0.002 **
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Table 1. Cont.

Factor F1,23 R2 P FDR-P Sig.

Age 19.0044 0.21619 0.001 0.002 **
Diet:Biotope 2.0005 0.02276 0.064 0.064 ns
Diet:Age 3.0973 0.03523 0.010 0.015 *
Biotope:age 16.5838 0.18865 0.001 0.002 **
Diet:Biotope:Age 2.9368 0.03341 0.011 0.015 *

The taxonomic composition of the dataset is presented in Figure 3. Overall, our results
showed that, in contrast to the fish larvae 10 DAH, the taxonomic abundances of the
bacterial communities inhabiting the post-larval gut 30 DAH were highly variable among
the replicates. Larval microbiomes changed rapidly during development, a process which
may result in varying degrees of resistance (open niches and/or lack of antagonistic traits)
to the invasion by fast-growing opportunistic microbes [43]. Our results also showed that
the bacterial communities of the larvae 10 DAH and the post-larval gut 30 DAH were
dominated by members of the order Vibrionales. The predominance of Vibrionales during
larval development is in line with other studies on turbot larvae [44,45]. Although not all
Vibrionales strains cause infection in fish, some members of this order (e.g., Photobacterium
damselae, V. parahaemolyticus, V. anguillarum, and V. harveyi) are responsible for mass mortal-
ities in aquaculture systems [46,47]. Invertebrates are recognized as natural reservoirs of
Vibrio and, in enclosed aquaculture facilities, their administration as live feed is considered
one of the main causes of Vibrio infections in marine larvicultures [16,31,48]. This is why
many studies have investigated the potential of probiotics, prebiotics, postbiotics, and other
microbiome-modulating strategies to control Vibrio populations in live feed [15,16,44,49,50].
Here, we also observed that the order Rhodobacterales showed a stronger dominance in the
bacterial communities of the post-larval gut 30 DAH than in the whole larvae 10 DAH. This
enrichment was, furthermore, more pronounced for fish larvae fed rotifers enriched with
ER1 than with ER2. Overall, the majority of sequences assigned to the Rhodobacterales
order were assigned to members of the Roseobacter clade (Supplementary Table S1). The
Roseobacter clade is a paraphyletic group belonging to the Rhodobacterales order, with
several members known to possess antagonistic activity against Vibrio spp. and other
aquaculture pathogens, e.g., Phaeobacter inhibens, P. gallaeciensis, P. piscinae, Ruegeria sp., and
Sulfitobacter sp. [51–53].

In this study, the bacterioplankton was dominated by the orders Flavobacteriales and
Rhodobacterales at both sampling points (10 and 30 DAH), with a high abundance of order
Oceanospirillales at 10 DAH and Pseudomonadales at 30 DAH (Figure 3). All orders except
Pseudomonadales have been previously found to be abundant in the rearing water of RAS
for adult turbot [54]. The most abundant ASVs of order Flavobacteriales were most similar
(>98%) to sequences in the NCBI database identified as belonging to genera Polaribacter,
Winogradskyella, or Meridianimaribacter (Supplementary Table S1). All these genera are
commonly found in marine settings, including aquaculture systems [54–57]. The most
abundant ASVs assigned to the Oceanospirillales order were assigned to family Nitrinco-
laceae and had very low similarity (<93%) with type strains of the NCBI database. Members
of the Nitrincolaceae family are heterotrophic bacteria usually found as core members of
bacterioplankton communities and involved in nitrogen and carbon cycling following
phytoplankton blooms [58,59]. The enrichment of Pseudomonadales in the rearing water
30 DAH was mainly due to the enrichment of two ASVs (ASVs 10 and 13; Supplementary
Table S1) assigned to Paraperlucidibaca baekdonensis (Supplementary Table S1). This specie
was first isolated from marine waters [60], but was later found to be a core member of
the bacterioplankton of marine aquacultures. However, its potential functional roles in
aquaculture systems remain unknown [61,62].
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Figure 3. Taxonomic composition at order level for feed, larval, and water samples in tanks fed
rotifers enriched with different commercial products (ER1 and ER2) at 10 and 30 DAH. ART (artemia);
GW (green water (i.e., mature culture of Tetraselmis sp.)); Rot_ER1 and Rot_ER2 (rotifer); ER1L10
and ER2L10 (whole larvae 10 DAH); ER1L30 and ER2L30 (post-larval gut 30 DAH); ER1W10 and
ER2W10 (rearing water 10DAH); and ER1W30 and ER2W30 (rearing water 30 DAH). Small letters
indicate tank-replicates. Data are present as relative abundances of the ten most abundant orders for
individual tank-replicates.

A more in-depth pairwise analysis preformed on the six most abundant orders in
the dataset showed that larvae 10 DAH had a significant and higher abundance of Vibri-
onales than all the other groups analyzed (Supplementary File S3, EMMEANS: p < 0.05;
Figure 4). Our results also showed that the abundance of this order was significantly
higher in fish fed rotifers enriched with ER2 (88.384 ± 1.728% in larvae 10 DAH and
55. 919 ± 20.682% in the post-larval gut 30 DAH) than with ER1 (70.52 ± 1.187% in lar-
vae 10 DAH and 22.033 ± 17.74% in the post-larval gut 30 DAH). Among the 50 most
abundant ASVs, all those assigned to order Vibrionales were also assigned to the Vibrio
genus (Supplementary Table S1). Interestingly, a Venn diagram analysis showed that about
92 ASVs detected in rotifers (combined ER1 and ER2) were also detected in the bacterial
communities of the post-larval gut and/or in the bacterioplankton 30 DAH, algae, and
artemia (Supplementary Figure S2). We also observed that 51 of these ASVs were either
present in fish guts’ bacterial communities alone or in both the fish guts’ bacterial commu-
nities and the bacterioplankton. This suggests that these ASVs may have a more specific
association with the turbot post-larval gut. The relative abundance analysis showed that the
majority of these ASVs belonged to the rare biosphere and only sixteen ASVs had relative
abundances exceeding 0.1% (Supplementary File S4). Ten of these sixteen ASVs were classi-
fied to genus Vibrio (ASV 51, 52, 53, 56, 57, 61, 62, 65, 69, and 76) and the remaining to genera
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Litoribacillus (ASV 59), Peptoniphilus (ASV 68), Paraperlucidibaca (ASV 10), Conchiformibius
(ASV 75), and Thalassolituus (ASV 81). In general, members of Litoribacillus, Paraperlu-
cidibaca, and Thalassolituus are often associated with marine bacterioplankton [60,63,64],
while Conchiformibius and Peptoniphilus were previously found to be associated with oral
cavities [65] and the gut of animal hosts [66,67], respectively. ASV-51 (Vibrio sp.) was the
only ASV to have a relatively high abundance in both diets (ER1 and ER2). In general, ASVs
related to Vibrio were less abundant in the bacterial communities of the post-larval gut fed
rotifers enriched with ER1. Our results suggest that rotifer diets contribute to colonization
by Vibrio members in the gut of turbot post-larvae, and the degree of colonization depends
on the type of enrichment used.
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Figure 4. Relative abundances of the six most abundant bacterial orders for larval and water samples
in rotifer-enriched feeds with different commercial products (ER1 and ER2). ER1L10 and ER2L10
(whole larvae 10 DAH); ER1L30 and ER2L30 (post-larval gut 30 DAH); ER1W10 and ER2W10 (rearing
water 10 DAH); and ER1W30 and ER2W30 (rearing water 30 DAH).

The Vibrio genus is known to comprise both non-pathogenic and pathogenic strains,
with the latter being a major concern for the aquaculture sector [46,47]. Interestingly,
in line with the reduction in the relative abundance of Vibrio in ER1 samples, we also
observed that this diet increased the relative abundance of ASVs assigned to the genera
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Ruegeria (ASV 47) and Nautella (ASV 49) at 10 DAH and Sulfitobacter at 30 DAH (ASV-2;
Figure 5 and Supplementary Figure S3). Nonetheless, sequence similarity analysis using
the NCBI type strain database showed that ASV 49 had the highest similarity (100%)
with a strain previously identified as Nautella italica, but later reclassified as Phaeobacter
italicus (Supplementary Table S1; [68]). Ruegeria, Phaeobacter, and Sulfitobacter are bacterial
members of the Roseobacter clade [69] and are known to comprise several bacterial strains
with antagonistic activity against bacterial pathogens, including Vibrio species [52,70].
Interestingly, the lower Vibrio abundance and higher abundance of potential antagonistic
bacteria (Ruegeria, Phaeobacter and Sulfitobacter) detected in ER1 tanks was associated with
a significantly higher fish survival rate (8.0 ± 0.9%) in comparison to ER2 (4.34 ± 0.89%).
The survival rates reported here at 60 DAH are similar to previous studies of turbot
larviculture [14,71]. It has been recognized that the survival of the turbot larvae is often
lower than that of other marine fish [72], but in the past decades, larval survival has been a
major undertaking for hatchery management, with significant advances obtained through
improvements in the nutritional formulation of live feed enrichment [13,14].
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Figure 5. Relative abundance of ASVs assigned to the genera Phaeobacter, Sulfitobacter, Ruegeria,
and Vibrio in rotifer-enriched feeds with different commercial products (ER1 and ER2). ER1L10 and
ER2L10 (whole larvae 10 DAH); ER1L30 and ER2L30 (post-larval gut 30 DAH); ER1W10 and ER2W10
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(rearing water 10 DAH); and ER1W30 and ER2W30 (rearing water 30 DAH). * Genus Phaeobacter
includes all ASVs classified as Phaeobacter by the naïve Bayes classifier based using the SILVA database
of the 16S reference sequences at 99% similarity (version 138, released December 2019) and all ASVs
classified as Nautella but with high similarity (>99%) to type strains of the genus Phaeobacter in
sequence similarity search of the NCBI 16S database using the BLAST algorithm.

4. Conclusions

This study showed that different rotifer enrichments were associated with significant
differences in the bacterial community structure of turbot larvae 10 DAH but not with
post-larval gut communities 30 DAH. However, a more in-depth analysis showed that the
ER1 diet was associated with a lower abundance of Vibrio in whole larvae and post-larval
gut-associated communities, and a higher abundance of the ASVs related to potential Vibrio
antagonists (i.e., members of the Roseobacter clade). Overall, our findings indicate that
live feed enrichment formulas can have modulatory effects on fish communities during
their early stages of development with the potential to affect the balance of pathogenic
and antagonist microbes in larviculture. In addition to the above, different enrichments
potentially contribute to Vibrio colonization in the guts of post-larval turbot; the degree of
colonization may also vary depending on the enrichment used. Our findings highlight the
importance of analyzing the effects of differentially enriched rotifer feeds on the structural
composition of microbial communities in fish larviculture. Given the uniqueness of micro-
bial communities at different larviculture systems and the well-known effects of the host
microbiome on animal health and growth [73], aquaculture producers should consider the
strategy applied in the present study to evaluate and optimize larval fish diets.
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