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Abstract: Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of
pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect
the microbial community. The metabolites of these contaminants affect microbial diversity and their
metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating
the need to understand their composition and functions. In the present investigation, we studied
the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Tax-
onomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses
and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera
were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were
Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes
further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes
(CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded
CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated
by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system
> pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways
> ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids,
integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the tax-
onomies and functional abundances exhibited variation in relative abundances, with limited spatial
variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant micro-
bial communities and functional genes in the marine sediments of Kuwait as a baseline for future
biomonitoring programs.

Keywords: shotgun sequencing; environmental DNA; bacteria; functional annotation; biomonitor-
ing; archaea

1. Introduction

The effluents from wastewater treatment plants (WWTPs), power and desalination
(P&D) outfalls, and land-based pollutants from other sources have driven significant
changes in marine biodiversity [1]. Most WWTPs are not very efficient in capturing
pharmaceuticals in wastewater, resulting in the release of metabolites and xenobiotics into
coastal waters. The released pharmaceuticals negatively affect the diversity and functions
of vital microbial communities [2]. These pharmaceuticals in the aquatic environment
affect taxonomic profiles, gene abundances, and metabolic processes [3,4]. Several reports
suggest that these coastal sediments receiving pharmaceuticals discharge become enriched
in pathogenic microbes [2,5–7], posing a significant risk to marine organisms and the
human population [8,9].

The correlation between environmental microbes, trace metals, and persistent organic
pollutants has been established in a few studies [10–13]. Most of these studies used mi-
crobes and their genetic markers as indicators for environmental pollution, thus lacking
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information on whole community profiles. Advances in high-throughput sequencing have
revolutionized the detection of genes in complex environmental communities, offering a
more promising avenue for comprehensive genetic profiling. The taxonomic and functional
profiles of microbes have been reported from estuaries, rivers, lakes, coral reefs, mangroves,
sediments in coastal areas, and deep marine sediments using a high-throughput sequencing
approach [4,12,14–19]. Recently, more research has been focused on the environmental
DNA whole genome sequencing of sediments receiving pollutants, such as metals, oil
discharges, and industrial and domestic waste [12,20–25].

This study aims to generate baseline information on microbial diversity in the coastal
sediments of the northwestern Persian Gulf, which is a semi-enclosed shallow water
body [26] with reasonably high residence time [27–29]. Although most of the wastewater
in Kuwait is treated, the mean number of fecal and non-fecal coliforms far exceeds the
Brazilian legislation standards and thresholds of European coastal bathing water directives
(cBWD) [30,31]. Recent investigations have reported pharmaceuticals the treated waste
streams near and the emergency outfalls in the coastal waters of Kuwait [32,33]. Antimi-
crobial resistance genes have also been recorded in these environments [34–36]. Bottom
sediments act as sinks for these bioactive compounds and impose discerning pressure on
the aquatic biota. Mapping the microbiome is, therefore, imperative to assess the threats
and impacts associated with historical and contemporary pollutants entering the marine
streams of the Persian Gulf [37,38].

Hence, the characterization of microbes in marine/freshwater sediments is of high
scientific interest. This study presents the metagenomic profile of surface sediments near
emergency outfalls along Kuwait’s coastline. The sequence data were mined for taxonomic
distribution and the predominant metabolic functions carried out by the microbial commu-
nities. Antibiotic-resistant genes, plasmids, and integrons were also identified. The spatial
variations in the relative abundances of microbial communities and metabolic functions
were also studied.

2. Methods
2.1. Sample Collection and DNA Extraction

A total of 12 surface sediment samples (Figure 1) were collected along Kuwait’s coast-
line from September to October 2021. Each location’s GPS coordinates were plotted on the
Kuwait map using the ArcGIS software v 10.4.1 (Esri, Redlands, CA, USA). At each station,
a sediment profile of 10–15 cm (grab sample) was collected and packed in 50 mL sterile
centrifuge tubes (Corning® Glendale, AZ, USA), followed by transporting on ice to Kuwait
Institute for Scientific Research (KISR) laboratories. The samples were aliquoted and stored
frozen at −20 ◦C until DNA extraction [32]. All the sampled sites were in close vicinity
of storm outfalls, except S4 and S12. Both these locations were pristine and unaffected
by emergency waste disposal. The total DNA from each sample (0.25 g) was extracted
using a PowerSoil® DNA Extraction Kit (QIAGEN, Germantown, MD, USA). DNA was
extracted multiple times (n = 5) from each site and pooled to reach the desired concentration
(1000 ng for sequencing). The quantity and quality of the isolated DNA were evaluated
using a Qubit fluorometer (Thermo Fisher Scientific, USA) and agarose gel electrophoresis
(Bio-Rad, Darmstadt, Germany), respectively, before library preparation (Figure S1; Table
S1). Bacterial cell counts (total prokaryotic cells) per gram of samples were estimated for
each sample through a quantitative polymerase chain reaction (qPCR) [36]. The purified
DNA (ca.1 µg) was lyophilized (using FDB-8603 Operon, Gimpo, Republic of Korea) and
shipped to a sequencing facility for whole genome metagenomic sequencing.

2.2. Metagenomic Sequencing

Metagenomic sequencing was performed at Novogene, AIT Genomics, Singapore Ltd.
Prior to sequencing, the dried DNA was resuspended in nuclease free water (AmbionTM,
Carlsbad, CA, USA) and re-checked for quality and quantity, as mentioned above. The
DNA was fragmented by sonication and converted to sequenceable libraries through the
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NEBNext® UltraTM DNA (Illumina, San Diego, CA, USA) kit. Fragmented DNA was
processed through the steps of A-tailing, index ligation, and the addition of Illumina
adapters at both the 5′ and 3′ ends of the DNA segments. The libraries were purified using
the AMPure XP beads (Agencourt, Beckman Coulter Genomics) and quantified through
qPCR (Life Technologies, Carlsbad, CA, USA) [39]. Post-normalization, the libraries were
pooled and loaded at a 10.0 pM concentration on an Illumina NovaSeq 6000 platform
(Illumina, San Diego) for 2 × 150 bp paired-end sequencing [36].
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The raw reads were trimmed and aligned with Bowtie2 v 2.2.4 to remove host contami-
nation [40]. The reads were subjected to FASTQC for initial quality checks [41]. Clean reads
were assembled using MEGAHIT v1.0.4 into scaftigs. Scaftigs (≥500 bp) were used for ORF
(Open Reading Frame) prediction by MetaGeneMark v 2.10 [42]. The CD-HIT v 4.5.8 was
used to obtain the gene catalogue from the filtered ORFs (>100 nt) [43]. Gene abundance
was calculated based on the total number of mapped reads and gene length. Taxonomic
annotation was performed through DIAMOND v 0.9.9 by aligning the unigenes to the
microNR database version 2018-01-02 of NCBI (blast, −e 1e−5) [44]. The aligned sequences
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were further treated in MEGAN to filter matches < e value *10 [45]. Krona plots were
created using the web version of KRONA tools [46]. Differential heat maps were made by
applying the Wilcoxon Sum Rank test on median abundances; p < 0.05) [47] in Microbiome-
Analyst [48].

2.3. Functional Annotation

Genes were translated to proteins and aligned against the evolutionary genealogy of
genes: Non-supervised Orthologous Groups (eggNOG) version 4.1 [49], Carbohydrate-
Active enzymes (CAZy) version 2014.11.25 [50] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) [51–53] databases. The DIAMOND BLASTX (−e 1e−10, best hits re-
served) protocol was used to identify the pathways from the above databases. The identi-
fied KEGG Orthology (KO) genes were further annotated into different pathways based
on predefined collections in the KEGG database and quantified by reading counts. The
unigenes were also BLASTP against the standard Comprehensive Antibiotic Research
Database (CARD) database (e value ≤ 1e−5) to filter antibiotic resistance gene orthologues
(AROs) [54]. Plasmids, integrons, and insertion sequences were picked through alignment
with the integral, ISfinder, and plasmid databases v 2018 (−e 1e−10, BLASTN), respectively.

2.4. Statistical Analysis

A principal coordinate analysis (PCoA) and analysis of similarity (ANOSIM) were
performed in R (ade4 and vegan package, version 2.15.3) [48,55]. Non-parametric multidi-
mensional scaling (NMDS) was also performed on Bray–Curtis distances between relative
abundances of microbial communities [48,55]. Packages, including ggplot2 and gplots
in R and matplotlib in Python, were used for visualization purposes. Six alpha diversity
parameters (Observed, Chao1, ACE, Shannon, Simpson, and Fisher) were calculated on
rarified data [48,56].

3. Results

Twelve metagenomes generated an average of 6.44 Gb of raw data per sample with
a mean read count of 42,940,656. Adapter removal and quality filtering yielded 6.43 Gb
of usable data per sample for downstream processing, with an effective percentage of
99.85% (Table S2). The assembly of raw reads resulted in scaftigs ranging from 63,498,148
to 283,332,790 bp with an average N50 of 806 bp and N90 of 536 bp, respectively, that were
subsequently used for gene prediction (ORFs) (Tables S3 and S4). Scaftigs above 500 bp in
size were only used for ORF prediction, and ORFs less than 100 nt were removed to predict
unigenes (Figure 2a,b).
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3.1. Taxonomic Profiling

The taxonomic binning of the predicted ORFs revealed overwhelming abundances
of bacteria (86%). About 1% of the total ORFs accounted for the distribution of the ar-
chaeal communities (Figure 3a). The representation of viruses and Eukaryota was less in
all the samples (>0.001%), whereas other communities were 12%. The other communi-
ties are most likely to be the higher organisms. Taxonomic classification of the bacterial
domain revealed the dominance of Proteobacteria (62.69%) and Bacteriodetes (16.02%)
at the phylum level. Gammaproteobacteria (37.3%), Alphaproteobacteria (11.63%), and
Deltaproteobacteria (10.55%), were the most abundant classes. Order Chromatiales (20.5%)
was divided into Woesiaceae (11.84%) and Chromatiaceae (6.33%), which culminated into
genera Woesia (11.84%) and Marinobacter (1.82%) (Figure 3b). Both these genera exhibited
maximum RA and were hence considered the most dominant. Among the archaea, the
highly prevalent phyla were Thaumarchaeota (41.72%), followed by Euryarchaeota (29.33%)
and Bathyarcheota (18.87%). The majority of the archaea remained unclassified at lower
taxonomic levels. Among the classified forms, the top three were Nitrosopumilus (8.58%),
Candidatus Nitrosoarchaeum (2.98%), and Cenarchaeum (2.74%) (Figure 3c). Fungi were the
supreme domain of Eukaryota, with the greatest abundances shown by phyla Mucoromy-
cota (28.34%), Chytridiomycota (17.6%), and Basidiomycota (17.44%). The topmost fungal
genus was Rhizophagus (10.4%) (Figure 3d). The shotgun metagenomic approach was able
to capture even the low-abundant viral sequences. These sequences originated from the
Myoviridae (14.75%), Podoviridae (9.16%), Siphoviridae (8.95%), Polydnaviridae (2.28%),
Mimiviridae (0.82%), and Baculoviridae (0.69%) families. A significant proportion (63.12%)
of unclassified viruses were also recorded in these samples. T4 virus (2.51%), Bracovirus
(2.28%), Gaiavirus (0.9%), Hokovirus (0.82%), and Alphabaculovirus (0.69%) were the only
viral genera recorded in the present samples. Sequencing at a higher depth generating
12 Gb of data per sample is recommended to capture microbial communities with lower
abundances. The relative abundances (RA) of all the discovered taxa are provided in
Table S3 and Figure S2a–l.

3.2. Functional Profiles

To infer the functional potential of the sediment samples, the predicted ORFs were
aligned against the eggNOG, CAZy, and KEGG databases. The eggNOG database identified
24 clusters of orthologous genes (COGs) categories. COGs matching amino acid transport
and metabolism (E-type), and energy production and conversion (C-type) were very high.

A total of 83,706 genes also matched with the CAZy database (carbohydrate-active
enzymes). Ubiquitous classes were AA-Auxiliary activities (1408), CBM-carbohydrate-
binding modules (15,745), CE-carbohydrate esterase (4319), GH-glycoside hydrolases
(33,070, GT-glycosyl transferases (27,107), and PL-polysaccharide lyases (1427) (Figure 4b).

Within the KEGG database, the genes mapped to five level 1 functions of Cellular Pro-
cesses (92,418), Environmental Information Processing (111,807), Human Diseases (65,387),
Metabolism (92,399), and Organismal Systems (32,395) (Figure 5a). Level 2 functions
under Metabolism involved xenobiotics biodegradation (26,468), nucleotide metabolism
(64,114), metabolism of terpenoids and polyketides (21,112), metabolism of other amino
acids (40,143), metabolism of cofactors and vitamins (81,902), lipid metabolism (38,919),
glycan biosynthesis and metabolism (23,362), energy metabolism (109,427), carbohydrate
metabolism (137,792), biosynthesis of other secondary metabolism (24,826), and amino
acid metabolism (14,283). Genetic Information Processing included functions such as trans-
lation (50,274), transcription (6024), replication and repair (39,283), folding, sorting, and
degradation (31,527). Under Environmental Information Processing, sub-processes such
as signaling molecules and interaction (185), signal transduction (51,566), and membrane
transport (60,056) were common. Human Diseases included genes related to the functions
of substance dependence (467), neurodegenerative diseases (4107), infectious diseases
(viral—2370, parasitic—1646, and bacterial—9598), immune diseases (648), endocrine and
metabolic diseases (7792), drug resistance (antineoplastic—6899 and antimicrobial—15,698),
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cardiovascular diseases (4036), and cancers (specific types—3542 and overview—8684).
Under the category Cellular Processes, sub-processes such as transport and catabolism
(8218), cellular community (prokaryotes—49,467; eukaryotes—95), cell motility (14,160),
and cell growth and death (20,458) were recorded. The Organismal System comprised
functions such as the sensory system (33), nervous system (3164), immune system (2260),
excretory system (1348), environmental adaptation (2979), endocrine system (12,044), di-
gestive system (1540), development (25), circulatory system (1316), and ageing (7686). The
RA of Metabolism was highest, followed by Genetic information Processing > Environ-
mental Information Processing > Cellular Processes > Human Diseases and Organismal
Systems. Like CAZy and eggNOG, the RA of the KEGG pathways also varied from S1
to S12 (Figure 5b). The chief level 3 KEGG functions (n = 10) in the current investigation
were ko00230 (purine metabolism), ko02010 (ABC transporters), ko00190 (oxidative phos-
phorylation), ko02020 (two-component signal transduction system), ko00240 (pyrimidine
metabolism), ko00620 (pyruvate metabolism), ko02024 (quorum sensing), ko00720 (car-
bon fixation pathways in prokaryotes), ko03010 (ribosome), and ko00630 (glyoxylate and
dicarboxylate metabolism) (Figure 5c).
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(25–75%), upper and lower whiskers −10–90%; dashed black lines are median abundances. Dots are
the abundance.
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3.3. Resistome and Mobilome Profiling

Alignment against the integral, ISfinder, plasmid, and CARD databases returned
256,099, 12,857, 283,165, and 25,014 sequences, respectively. These databases filtered
integrons (INT), insertion sequences (ISQ), plasmids (PLS), and antibiotic resistance genes
(ARGs), respectively. PLS sequences were maximum, followed by INT, ARGs, and IS.
These sequences were annotated into 1782 ISQs, 1567 PLS, 609 ARGs, and 167 INTs. The
numbers of all the antibiotic-resistance elements differed spatially. The maximum number
of PLS, INTs, and ISQs were recorded at S1 and the minimum at S12. ARGs were highest
at S6 (169) and lowest at S11 (57). Further interpretations of the gene type, drug classes,
and metabolic action of these resistance elements is important. (Figure 6). Apart from the
numbers, more intriguing and interesting is the presence of the mobile genetic elements
(MGEs) and ARGs indicating the persistence of a mobilome and resistome in the marine
environment of Kuwait. Further, we matched the source of ARGs and bacterial species and
recorded around 109 genes to have a similar origin (Table S4). This suggests the distribution
of ARGs in other microbial species and communities. However, the question of whether
this is due to horizontal or vertical gene transfer requires our further attention.
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Figure 6. Antibiotic resistance gene elements detected in surface sediments of Kuwait. The circles
from outermost to innermost represent the integrons (INT), plasmids (PLS), insertion sequences (ISQ),
and antibiotic-resistant genes (ARGs), respectively. The sampling locations are color-coded. A color
index is given at the bottom.
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3.4. Spatial Variations

In the present investigation, the sites S4 and S12 (Group B) were less impacted com-
pared to the others (S1–S3, S5–S11—Group A); therefore, we explored the spatial variations
between these groups. Sites S4 and S12 clustered together on a heat map suggesting a
similar metagenome prevailing at these locations. The hierarchical clustering at domain
level identified the primacy of viruses and archaea at S12 and S4 (Figure 7a). A functional
hierarchical map also placed S4 and S12 nearby. A higher pervasiveness of level 2 KEGG
pathways was seen at S12 (Figure 7b).
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3.4.1. Alpha Diversity Analysis

Alpha diversity was measured to examine the species richness (number of taxonomic
groups) and evenness (abundance distribution) at each sampling site. Alpha diversity
indices are also suggestive of intra-sample diversity. Data rarefaction was performed before
estimating the alpha diversity indices. The observed alpha diversity ranged between 3923 to
4785 among S1–S12. Chao1 and ACE were comparable with observed indices. Shannon
diversity was highest at station S2 (4.07) and lowest at station S4 (3.83). A Shannon index
above 1 indicated higher species richness and evenness. Simpson was near 0.77 and Fisher
ranged between 1351 and 1731 (Table 1). Pairwise comparisons of all the indices returned
p values > 0.05 (non-significant), indicating the alpha diversity to be evenly distributed at
all the sampling locations.

Table 1. Alpha diversity indices of microbial diversity in marine sediment samples.

Sample ID Observed Chao 1 ACE Shannon Simpson Fisher

S1 3923 4269 4272 3.94 0.776 1352
S2 4645 4953 4888 4.07 0.782 1647
S3 4774 5051 5036 4.05 0.787 1609
S4 4457 4707 4711 3.83 0.772 1470
S5 4677 4907 4887 3.85 0.764 1598
S6 4785 5065 5026 3.84 0.752 1731
S7 4721 5006 4990 3.90 0.768 1576
S8 4763 5038 4979 4.01 0.796 1590
S9 4478 4828 4717 4.11 0.789 1433
S10 4613 4880 4857 3.94 0.781 1493
S11 4394 4645 4590 3.96 0.788 1351
S12 4452 4696 4666 3.86 0.772 1440

Observed, Chao 1, and ACE- account for the species richness; Chao 1 and ACE also take into consideration counts
of unobserved species; Shannon, Simpson, and Fisher account for both richness and evenness.

3.4.2. Beta Diversity Analysis

Principal coordinate analyses (PCoA) were used to predict if any community structure
existed in these sediments. Although microbial communities were seen as three clusters
on the PCoA plot (Figure 8a), the analysis of similarity (ANOSIM) returned an r2 of 0.05
(p < 0.273). This was suggestive of a weak population structure. The variations were 46.4%
at PC1 and 27.5% at PC2. Sampling at a higher frequency is recommended to obtain more
meaningful conclusions regarding the population structure of these metagenomes. We
also noticed that Station S1 appeared as an outlier. Station 1 is in the close vicinity of a
major network of hospitals in Kuwait. This outfall receives emergency hospital waste
on a daily basis; therefore, unique metagenomes are expected at this site. Interestingly,
stations S4 and S12 were also closer to each other. Their pristine locations justify the
nearness of their metagenomes. The rest of the stations were grouped as a single large
cluster. Our results were further supported by the Shannon and Simpson diversity indices
(Figure 8b). Clustering of KEGG level 1 pathway abundance also yielded similar grouping
(Figure 8c,d). An ordination analysis was also performed on the RA of ARGs. Unlike
the previous clustering, four groups were seen on the PCoA plot. However, sample S1
stayed aloof and S4 and S12 congregated along with S10 (Figure 8e). Locations S9 and
S2 also formed a distinct clan and were closer to sample S1. The variation across the first
axis was 21.1%, and the second axis was recorded as 16.9%. In parallel with the PCoA, a
dendrogram analysis also distributed the stations into four clusters. The samples in each
cluster differed (Cluster I: S9-S2-S10; Cluster II: S8-S5-S3-S7; Cluster III: S6-S1; Cluster IV:
S4-S12-S10) (Figure 8f).
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Figure 8. Spatial variations at taxonomic and functional levels. (a) Ordination analysis on RA of
microbial taxa. The colors represent the three clusters (b) Alpha diversity indices of Shannon and
Simpson. (c) Dendrogram and (d) Cluster of KEGG level 1 RA. Stations S4 and S12 are shown as blue
lines. (e) Ordination analysis based on RA of ARGs. The four clusters are shown in different colors
(f) Dendrogram based on RA of ARGs filtered from the marine sediments of Kuwait.

4. Discussion

Shotgun metagenomic sequencing was employed to study the microbial and func-
tional composition of the coastal sediments of Kuwait receiving emergency waste. Next-
generation sequencing has gained immense popularity since 2010 for comprehensively
profiling microbial populations in polluted environments [57]. The high throughput se-
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quencing approach employed in the present investigation successfully captured microbes
from bacterial, archaeal, fungal, and viral domains [18,58,59]. This is the first study re-
porting the taxonomic profiles of all four microbial communities in the coastal sediments,
suggesting the validity of shotgun sequencing in comprehensive biomonitoring. In addition
to the taxonomies, we also present the functional profile of these microorganisms. The
findings provide baseline information on the metabolic potential of these anthropogenically
affected marine environments in Kuwait.

Bacteria (79–92%) were the prime microbial components, followed by archaea > eu-
karyote > virae. A considerable proportion was denoted (12%) as other. Bacterial, archaeal,
and eukaryotic DNA was reported in oil-exposed coastal sediments of the Baltic Sea, with
the majority of eukaryotic DNA belonging to the fungal domain [60]. This was similar to
our observation, where 99% of eukaryotes were fungi [61,62] and their abundances were
lesser than bacteria and archaea. Bacteria and archaea were reported in polluted sub-surface
sediments of Priolo Bay receiving industrial waste [20]. Bacteria and archaea dominate
the ocean’s biomass and play a crucial role in the production and degradation of organic
compounds [57]. Fungi, although of a lower abundance, are known to play an important
role in the recycling of nutrients [60,61]. Viruses are a less explored sediment community.
Breitbart et al. [63] reported that viruses are extremely abundant in marine sediment, and
most of them are double-stranded DNA phages. Danovaro et al. [64] reported the overall
biomass of the top 50 cm of the ocean seafloor (1.74 pg C; 1.5 ± 0.4 × 1029) to originate
from bacteria (78%; 3.5 ± 0.9 × 1028 cells), archaea (21% 1.4 ± 0.4 × 1028 cells), and viruses
(<1%; 9.8 ± 2.5 × 1028). Bacterial counts ranging between 103 to 109 per g of a sample have
previously been reported in these sediments [36]. The bathymetric patterns showed that
the abundance and biomass of bacteria decreased with depth, whereas viruses and archaea
were not affected [64]. This creates further interest in examining the microbes present along
the sediment profile of Kuwait Bay, which has numerous outfalls and high sedimentation
rates [65–67]. Apart from sediments, bacteria and archaea have been found in the surface
waters of the South China Sea [68], urban backwaters of Muttukuda (TN), India [1], and
deep-sea sediments of Hadal Mariana Trench [69].

Kuwait’s marine area receives a variety of pollutants through local and regional
sources. The main discharges are oil-based, sewage-based, desalination activities, ship
waste dumping, and dredging, to name a few [70]. The most abundant bacterial phyla
observed in the sub-surface marine sediments of Kuwait were Proteobacteria (42–59%).
Similar observations were recorded in metal-contaminated sediments of Liuli river [25],
and hydrocarbon-polluted coastal marine basin sediments of Priolo Bay [20] and the
Northern Adriatic Sea [71]. Microplastic is also a known contaminant in the water bodies
of Kuwait [72,73]. This also accounts for the prevalence of species involved in hydrocarbon
degradation, such as Marinobacter and Woeseia [74]. Genera similar to the present study were
reported from polluted marine sediments in Italy [20]. Euryarchaeota and Thaumarcheota
terminating in the genus Nitrosopumilus were also among the most dominant archaeal
community in oil-contaminated coastal sediments of the Baltic Sea [60]. Unlike Ascomycota
and Basidiomycota reported in sea sediments of the Antarctic Ocean, in the present samples,
Mucormycota was the most common fungal phyla [21]. The T4 virus of Myoviridae is a
bacteriophage and most probably infects the inherent bacterial communities [75,76].

Due to extensive nutrient input both from land-based sources and atmospheric depo-
sition, the oceanic productivity in the northern Gulf is quite high [74,77–79]. A recent study
conducted by the Centre of Environment, Fisheries and Aquaculture Sciences (CEFAS)
reported an increase in dissolved nutrient concentrations in the past three decades [37].
Effluent discharges through storm outlets introduce a variety of metabolites that act as mul-
tiple stressors/nutrients for the inherent microbial community [32,80]. A high abundance
of genes (eggNOG) involved in energy production and conversion, as well as amino acid
transport, were thus documented in this study. These results were corroborated by our
observations on high abundances of GH and GT enzymes (CAZymes), the vital components
of cellular metabolism and carbon cycling [81]. Similar results were recorded in the Brazos-
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Trinity Basin subsurface sediments [82] and Hadal Biosphere at the Yap trench [22]. This
suggests the involvement of microbes in heterotrophic processes, such as the degradation of
carbohydrates, hydrocarbons, and aromatics. Further, the dominance of proteins involved
in signal transduction, mobilome, and defense mechanisms is attributed to the involvement
of microbes in swarming motility, antibiotic resistance, virulence, conjugal plasmid transfer,
and biofilm formation [83].

KEGG annotations revealed the involvement of microbial species in a complex of
level 3 metabolic processes. Effluent discharges in the marine environment are responsible
for unique geochemistry [84], empowering the enrichment of certain metabolic pathways.
The purine and pyrimidine metabolism pathways can be linked to DNA synthesis [24], as
the microbes might be involved in replication and multiplication. The ABC transporters
couple with the ATP hydrolysis to actively transport nutrients by sensing environmental
changes [85]. The two-component signal transduction system is activated in changing envi-
ronmental conditions and initiates processes such as enzymatic catalysis, gene expression,
and protein–protein interactions [86]. The pyruvate metabolism is particularly active in
bacteria in states of excess carbon, where they use pyruvate as a substrate to generate
acetate to recycle NAD+ and coenzyme A [87]. Aerobic organisms carry out oxidative
phosphorylation to oxidize nutrients and release energy in iron-limited conditions [88].
Quorum sensing in marine microbes has been associated with processes linked with the
h-carbon cycle and trophic interactions through anthropogenic changes such as ocean
acidification and rising sea temperatures [89]. Carbon fixation pathways in marine prokary-
otes are also linked to global carbon cycling [90]. Ribosomes play a major role in genetic
information processing and protein translation. Carter et al. reported the role of the 30S
subunit of ribosome in the decoding and translocation of antibiotics [91]. The glyoxylate
and dicarboxylate metabolism essentially maintain the gain or loss of hydrogen ions in a
buffered environment. These pathways were also observed in the sediments and surround-
ing seawaters of the Qinhuangdao mariculture coastal area in North China [24], and in the
backwaters of Muttukadu, Tamil Nadu, India, receiving domestic sewage and industrial
effluents [1].

In addition to the above, we also detected ARGs at all the sampling locations. We
believe their prevalence is due to the selective force imposed by the pharmaceuticals and
antibiotics discharged into the ocean through wastewater streams [32,33,36,58]. Analogous
findings were reported in polluted marine environments of the South China Sea [2], the Gulf
of Kathiawar, and the Arabian Sea [18,19,58]. ARG abundances associated with mangrove
sediments were predicted to be higher in Asian countries [19]. The presence of plasmids,
insertion sequences, and integrons, along with ARGs, generates further concern due to
their roles in disseminating ARGs across the marine ecosystem via horizontal gene transfer
(HGT) [92–94]. Pathogens recurrently acquire new resistance genes from environmental
species [95]. More intriguing is the presence of these genetic elements at clean beaches not
receiving significant waste discharges. The preponderance of proteins such as AcrB [96]
and InsO [97] involved in muti-drug efflux systems and mobilomes also requires deeper
investigation into the resistors and mobiles of these environments, with a focus on their
roles in horizontal and vertical gene transfer.

The effluent discharges into marine streams and the geochemical characteristics at
each sampling location shape the microbial community structure [84]. Variations in the
relative abundances of microbial communities were thus observed. However, the species
richness and evenness were at comparable levels between different sites (measured through
the alpha diversity analysis). The community structure in the present samples followed a
weakly heterogeneous pattern (ANOSIM r2 < 0.1; p > 0.05). One possibility of the limited
genetic diversity among the microbial communities is the small sample size collected from
a narrow coastline of 499 km/310 mi. Another determining factor might be the multiple
stressors arriving and residing at the offshore sediments through the storm outlets [32,33,98].
As expected, station S1 appeared as an outgroup in the close vicinity of major hospitals in
Kuwait. This site previously recorded the highest concentrations of pharmaceuticals and
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antibiotics [32]. Stations S4 and S12 are grouped together. Both these stations were away
from the outfalls and relatively pristine. Conducting a comprehensive survey with more
samples collected in different seasons would be prudent.

5. Conclusions

Shotgun metagenome analysis is a powerful tool to gain knowledge on the microbial
community composition, metabolic potential, and resistance profile of natural environ-
ments. The prevailing environmental conditions and effluent discharge define the com-
munity composition in the present samples. The spatial variations are attributed to the
physicochemical status defined by the contaminant deposition at each site. Further analysis
could be focused on implementing pollution metrics and the socio-economic status of the
region on the diversity of microbes and their functions. The concept of seasonality should
also be incorporated.
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