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Abstract: Widespread and inappropriate use of antibiotics has been shown to increase the spread
of antibiotics and antimicrobial resistance genes (ARGs) in aquatic environments and organisms.
Antibiotic use for the treatment of human and animal diseases is increasing continuously globally.
However, the effects of legal antibiotic concentrations on benthic consumers in freshwater environ-
ments remain unclear. In the present study, we tested the growth response of Bellamya aeruginosa to
florfenicol (FF) for 84 days under high and low concentrations of sediment organic matter (carbon
[C] and nitrogen [N]). We characterized FF and sediment organic matter impact on the bacterial
community, ARGs, and metabolic pathways in the intestine using metagenomic sequencing and
analysis. The high concentrations of organic matter in the sediment impacted the growth, intesti-
nal bacterial community, intestinal ARGs, and microbiome metabolic pathways of B. aeruginosa.
B. aeruginosa growth increased significantly following exposure to high organic matter content sedi-
ment. Proteobacteria, at the phylum level, and Aeromonas at the genus level, were enriched in the
intestines. In particular, fragments of four opportunistic pathogens enriched in the intestine of high
organic matter content sediment groups, Aeromonas hydrophila, Aeromonas caviae, Aeromonas veronii,
and Aeromonas salmonicida, carried 14 ARGs. The metabolic pathways of the B. aeruginosa intestine
microbiome were activated and showed a significant positive correlation with sediment organic
matter concentrations. In addition, genetic information processing and metabolic functions may be
inhibited by the combined exposure to sediment C, N, and FF. The findings of the present study
suggest that antibiotic resistance dissemination from benthic animals to the upper trophic levels in
freshwater lakes should be studied further.

Keywords: florfenicol; intestinal microbiota; antibiotic resistance genes; pathogenic host; metabolism

1. Introduction

Antibiotics are used extensively in therapeutic medicines, disease prevention treat-
ments, and as animal growth promoters [1–3], and their use continues to increase. Recent
research has shown that global antibiotic consumption increased by 65% and antibiotic
consumption in China increased by 79% between 2000 and 2015, and such a growth is
projected to continue until 2030 [4]. It has been demonstrated that antibiotic residues in
aquatic environments can pose ecological threats to aquatic organisms [5,6]. The presence of
antibiotics can promote the emergence of antibiotic-resistant bacteria (ARB) and antibiotic
resistance genes (ARGs) in aquatic environments [7,8]. In addition, the human-induced
lake eutrophication increased microbial activity and antibiotic residue content, as well as
the spread of ARB and ARGs [9,10], which increase the risk of bacterial drug resistance in
aquatic organisms and in humans. According to predictions based on the current rates of
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antibiotic-resistance-associated deaths, there would be one such death every three seconds
by the year 2050 [11]. Therefore, over the past few decades, the number of research articles
addressing the topic has increased globally, with shifts in the intestinal microbiome being
the current focus of research.

Pathogenic bacteria, such as Microbacterium, Parachlamydiaceae, and Plesiomonas, pro-
liferate in the intestine of Oreochromis niloticus following feeding on oxytetracycline [12].
Previous studies have examined the effect of residual antibiotics in the aquatic environment
on intestinal microbiology and ARGs in aquatic organisms [13]. The effects of common
antibiotics, such as oxytetracycline, tetracycline, sulfamethoxazole, and FF, on the intestines
of fish have been studied previously [12–17]. However, our understanding of how the
intestinal microbes and ARGs of aquatic organisms respond to the combined effects of
sediment and antibiotics remains limited. The intestine has the greatest microbial diversity
in organisms. Intestinal microbes are essential for digestion, metabolism, and immune ac-
tivities in all animals [18–22]. In addition, aquatic environments are continuously exposed
to antibiotics owing to persistent residues in the environment [23,24]. The resulting devel-
opment of drug-resistant microbes, which are the primary ARG hosts, and ABR bacteria
development in aquatic environments, increase the risks of gastrointestinal illnesses caused
by such bacteria [25]. Both symbiotic and pathogenic microbiota are affected by antibiotic
exposure [26]. It has been reported that water input is a primary factor influencing micro-
bial community structure in the intestine of Poecilia reticulata in the Uberabinha River, Brazil,
with a positive correlation between ARGs and the dominant genera in intestinal samples,
and most microbes are potential ARG hosts [26]. Low-dose florfenicol (FF) exposure causes
dysbiosis in host microbiota [21]. With growing concerns over the presence of antibiotics
and ARGs in aquatic environments globally, the use of most antibiotics in aquaculture
is no longer permitted [14]. Currently, FF is one of the most commonly used antibiotics
in aquaculture in most countries [27]. However, FF has been detected in aquaculture
environments in recent years in China, for example, in Taihu Lake [28], coastal seawater in
Dalian [29], and in the Guangzhou aquaculture area [30]. Therefore, FF was selected as a
representative antibiotic in the present study. Bellamya aeruginosa is widespread in lakes
and ponds in the middle and lower reaches of the Yangtze River. Nearly 30,000 tons of B.
aeruginosa is harvested annually in Chaohu Lake, China, where it is mainly used as human
food and for crab farming [31]. B. aeruginosa is a freshwater snail that is and play the role
of primary consumer in aquatic food web [32]. However, to the best of our knowledge,
the consequences of FF exposure, particularly on B. aeruginosa and its intestinal health and
ARGs, has not been investigated comprehensively.

In the present study, B. aeruginosa was exposed to legal doses of FF for 12 weeks.
The objective of the present study was to investigate the effect of FF and sediment with
different nutrients on B. aeruginosa growth, as well as changes in intestinal health and ARG
abundance in the host, using metagenomics. We report the impact of organic sediment
matter, low-dose antibiotic residues, ARGs, and pathogenic hosts on the B. aeruginosa intesti-
nal microbiome structure and function. The findings of the present study could enhance
our understanding of food availability to aquatic organisms and antibiotics abundance in
natural lakes, in addition to facilitating health risk assessments.

2. Materials and Methods
2.1. Antibiotics and Exposure

FF was purchased from Shandong Dexin Biology Science and Technology Co., Ltd.,
(Binzhou, China) and commercial feed was purchased from Cangzhou Zhengda Biological
Products Co., Ltd. (Gangzhou, China). We collected approximately 800 B. aeruginosa indi-
viduals from Liangzi Lake, Hubei province, China. These organisms were acclimated in
four 80-L tanks with dechlorinated water. B. aeruginosa in each tank received oxygen and
were fed a commercial feed (Table S2). We also collected sediments from Liangzi Lake to lay
out in the experiment tanks. The initial properties of the sediment were 3.01 ± 0.79 mg/g
organic phosphorus (P), 0.00 ± 0.01 mg/g organic nitrogen (N), and 16.60 ± 2.11 mg/g
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organic carbon (C). According to the methods in a previous study [33], submergent and
emergent plants from Liangzi lake were oven dried (105 ◦C), ground, and then rewetted
and used as organic matter to be added to the sediment. Two sediment treatments were
set up, including one with high organic matter concentration (1.51 ± 0.32 mg/g organic N
and 30.46 ± 2.83 mg/g organic C) and one with initial concentrations (0.00 ± 0.01 mg/g
organic N, and 16.60 ± 2.11 mg/g organic C). There was no statistically significant change
in organic P levels between the two sediment treatments following the aforementioned sed-
iment treatment. Treated sediments (5-cm layer) were put in tanks (40 cm × 40 cm × 50 cm).
The tanks were then placed in an open area, supplemented with 40 L of dechlorinated
water, and allowed to settle for seven days.

B. aeruginosa with an initial mean weight of 1.18 ± 0.19 g were separated randomly
into 20 tanks with 10 B. aeruginosa individuals per tank. The added FF was 10 mg/g body
weight. The control and experimental groups were as follows: five tanks for FF added with
high sediment organic C, organic N (HA), five control tanks with high sediment organic C,
organic N (HN), five tanks for FF added with low sediment organic C, organic N (LA), and
five control tanks with low sediment organic C, organic N (LN).

Over an 84-day study period, B. aeruginosa were fed commercial feed (once every fort-
night). Considering that plants have the ability to absorb antibiotics, floating, leaf-floating,
submerged plants, and attached algae on tank walls were removed daily throughout the
study period. The pH, dissolved oxygen, total N (TN), and total P (TP) were maintained at
8.92 ± 0.57, 10.55 ± 1.76 mg/L, 1.57 ± 1.17 mg/L, and 0.01 ± 0.00 mg/L.

2.2. Sample Collection and Chemical Analysis

All surviving B. aeruginosa were collected at the end of the experiment and the number
of survivors per tank and their final body weights were determined, which were used
to calculate the survival rates and weight gain, respectively. The intestinal contents of
B. aeruginosa were extracted and stored at −80 ◦C for DNA analysis. In addition, water
samples were collected from each tank for antibiotic analysis.

FF concentration was determined using liquid chromatography–mass spectrometry
(Waters Xevo TQ-S, Milford, MA, USA). The FF standards were purchased from Dr. Ehren-
storfer GmbH (Augsburg, Germany). Water samples (500 mL) were filtered through a
0.45-m membrane filter before being applied to an Oasis HLB cartridge (200 mg, 6 mL,
Waters, Milford, MA, USA) for solid-phase extraction, as previously described [34]. The
eluates were then exposed to a gentle N stream (Termovap Sample Concentrator, NK200-18,
MIULAB, Hangzhou, China). A final volume of 1 mL was obtained by adding 10% ace-
tonitrile. The samples were then analyzed using a Xevo TQ-S tandem quadrupole mass
spectrometer (Waters, Milford, MA, USA).

Sediment organic carbon was pretreated with 1 mol/L HCL; then we used an ele-
mental analyzer (Flash 2000, ThermoFisher Scientific, Waltham, MA, USA) to determine
its value [35]. Sediment organic nitrogen represented the total nitrogen because organic
nitrogen makes up ≥90% of the total N [36]. Organic P was measured by the content
difference of the burned sample at high temperatures (550 ◦C) minus unburned sample
detected in UV spectrophotometry [37].

2.3. DNA Extraction and Metagenomic Sequencing

The E.Z.N.A.® Soil DNA Kit was used to extract metagenomic DNA, according to
the manufacturer’s instructions (Omega Bio-Tek, Norcross, GA, USA). The DNA sample
purity and concentration were evaluated using a NanoDrop2000 UV-Vis spectrophotometer
(ThermoFisher Scientific) and a TBS-380 fluorometer (Turner Biosystems, Sunnyvale, CA,
USA), respectively. DNA integrity was examined by electrophoresis on 1% agarose gel.
Amplicon libraries were created after the DNA was broken up, using the Nexflex Rapid
DNA-Seq Kit (Bioo Scientific, Austin, TX, USA). Amplicons were sequenced on an Illumina
NovaSeq platform (Wuhan Baiaoweifan Biotechnology Co., Ltd., Wuhan, China).
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Fastp (https://github.com/OpenGene/fastp, version 0.20.0) was used to remove reads
of <50 bp, quality < Q20, and bases beginning with N. BWA (http://bio-bwa.sourceforge.net,
version 0.7.9a, accessed on 18 November 2022) was used to remove reads from the host
genome. MEGAHIT (https://github.com/voutcn/megahit, version 1.1.2) was used to
assemble the optimized reads. Contigs with lengths ≥100 bp were selected for use in
gene prediction and annotation. Taxonomic annotations of amino acid sequences from
non-redundant gene sets were compared to the RefSeq non-redundant proteins database
using Diamond (http://www.diamondsearch.org/index.php, version 0.8.35, accessed on
21 November 2022). ARG access data were obtained from the Comprehensive Antibiotic
Resistance Gene Database (version 3.0.9).

2.4. Statistical Analysis and Network Analysis

The results of the experiment were expressed as the mean ± standard error of the mean.
A t-test was used to determine whether there were any significant differences between
treatments. R (version 4.0.3) was used to visualize the data. Diversity was assessed and
displayed using the R vegan package. The R software (v. 4.0.3) was used to create bar
plots, heatmaps, circular bar plots, circular plots, and to perform the correlation analysis.
Reads per kilobase per million mapped reads (RPKM) were used to calculate the relative
abundances of bacteria and ARGs. Statistical significance was determined at p ≤ 0.05 for
the aforementioned analyses.

3. Results
3.1. Effect of Dietary Florfenicol and Sediments on B. aeruginosa Growth

The growth of B. aeruginosa was not significantly affected by dietary FF after 12 weeks
of antibiotic treatment. Exposure to FF (HA and LA) did not significantly slow growth
performance when compared with the controls (HN and LN) (Table 1). However, B. aerugi-
nosa in the two sediment groups differed significantly in terms of weight gain (Table 1). B.
aeruginosa grew slowly in sediment with low organic matter.

Table 1. Effects of two sediment types and florfenicol diets on Bellamya aeruginosa growth.

HN HA LN LA

Initial weight (g) 1.222 ± 0.186 1.199 ± 0.194 1.143 ± 0.197 1.163 ± 0.157
Final weight (g) 1.826 ± 0.265 a 1.843 ± 0.261 a 1.488 ± 0.242 b 1.527 ± 1.0.305 b

Weight gain (%) 49.745 ± 15.663 a 53.569 ± 8.395 a 30.363 ± 16.9 b 31.451 ± 17.67 b

Survival rate (%) 97.000 ± 0.0270 a 99.000 ± 0.0220 a 97.500 ± 0.035 a 95.500 ± 0.037 a

Data are expressed as the mean ± standard error of the mean (n = 10). A significant difference (p < 0.05) is
indicated by the superscript in the same row.

3.2. B. aeruginosa Intestinal Microbiome Structure after Treatments

Proteobacteria, Firmicutes, Tenericutes, Bacteroidetes, and Actinobacteria were the
top five most abundant phyla in the annotation results of all exposure groups following
treatment (Figure 1A). To further explore the changes in the microbial structure, the relative
abundances at the genus level were determined (Figure 1B). The most abundant species
at the genus level included Aeromonas, Bacillus, Clostridium, Dechloromonas, Mycoplasma,
Polynucleobacter, Proteocatella, Pseudomonas, Tolumonas, and Vibrio. All treatment groups
could be divided into two groups, with the microbial communities of the HN and HA
exposure groups placed in one category, with more abundant species. LN and LA ex-
posure groups were placed in other category, with less abundant species. The microbial
communities differed at the phylum and genus levels between the high organic matter
content sediment (HN and HA) and the low organic matter content sediment (HN and HA)
exposure groups, but not between the no-FF (HN and LN) and FF (HA and LA) exposure
groups. Aeromonas, in particular, was detected in all groups and was greatly enriched in the
high organic matter content sediment exposure group (HN and HA). It was categorized as

https://github.com/OpenGene/fastp
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a Proteobacterium at the phylum level, whereas at the species level, the genus Aeronomas
contains numerous pathogens.

Figure 1. Intestinal microbiota composition of Bellamya aeruginosa at the phylum level (A) and genus
level (B).
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3.3. B. aeruginosa Intestinal Antibiotic Resistome Structure after Treatments

A total of 286 antibiotic ARG subtypes were detected in the intestines of B. aeruginosa
and classified into 23 types. Organic matter in the sediments altered the ARG distribution in
the intestine significantly (Wilcoxon test, p < 0.05), with an increase in the number of ARGs
(Figure 2A). Figure 1B shows the 21 types of ARGs, namely aminoglycoside, bacitracin,
beta-lactam, bleomycin, carbomycin, chloramphenicol, fosfomycin, fosmidomycin, kasug-
amycin, macrolide-lincosamide-streptogramin (MLS), multidrug, polymyxin, puromycin,
quinolone, rifamycin, sulfonamide, tetracenomycin_C, tetracycline, trimethoprim, van-
comycin, and unclassified ARGs. The top ARG types of all samples were multidrug and
MLS ARGs. When compared with that in the LN and HN samples, the relative abundance
of ARG types did not change significantly following FF exposure (LA and HA). In addition,
the relative abundances of ARG types did not differ significantly between the high and low
nutrient organic matter level in the sediment treatments. ARG abundance was enriched in
HA and HN at the ARG subtype level following nutrient treatments (Figure 2C). Among the
top 50 detectable ARGs, MLS and multidrug ARGs were the most frequently detected types.
There were 10 ARGs and 13 ARGs classified as MLS and multidrug ARGs, respectively.

Figure 2. Diversity and abundance of different antibiotic resistance genes (ARGs). (A) Shannon index
of ARG alpha diversity (Wilcoxon test, p < 0.05, the significance of the difference was indicated by
letters). (B) The relative abundances of different ARG types. (C) The profile of the top 50 ARGs
obtained by metagenomic sequencing.
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3.4. Pathogenic Hosts of ARGs in B. aeruginosa Intestines

ARG-carrying genes (1618) were identified in the intestinal bacteria of B. aeruginosa.
ARGs encoding resistance to aminoglycoside, bacitracin, beta-lactam, carbomycin, chloram-
phenicol, fosmidomycin, kasugamycin, MLS, multidrug, polymyxin, sulfonamide, tetra-
cenomycin_C, tetracycline, trimethoprim, and vancomycin were among the top 50 genes.
ARG-carrying genes were annotated as fragments of Proteobacteria in the HN, HA, and LN
groups (54%, 76%, and 100%, respectively). Additionally, 92% of the ARG-carrying genes in
the LA group were annotated as Firmicute fragments (Figure 3). Using the pathogen–host in-
teractions database and a previously summarized pathogen list [38], 13 ARG-carrying genes
were identified as pathogen-host-carried genes (Table 2). The pathogen fragments carry-
ing ARGs included aac6-I, aadE, chloramphenicol_exporter, cat_chloramphenicolacetyltransferase,
macB, vatB, vatE, tcmA, bcrA, and mexT. Two pathogen fragments carried an ARG that en-
coded resistance to chloramphenicol, two pathogen fragments carried an ARG that encoded
resistance to aminoglycoside, and six pathogen fragments carried an ARG that encoded
resistance to MLS. The remaining three ARG-carrying pathogen pieces encoded resistance
to bacitracin, multidrug, and tetracenomycin_C, respectively. Notably, Aeromonas hydrophila,
which was grouped in the HN and HA groups, was often found in the B. aeruginosa intestine.
A. hydrophila is a notoriously difficult-to-treat pathogen that can cause severe disease and
infection in the intestines of aquatic organisms.

Figure 3. Annotation of antibiotic resistance gene-carrying hosts at the phylum level. Here, only the
50 most abundant genes are shown. (A) HN group (B) HA group (C) LN group (D) LA group.
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Table 2. Annotation of the top 50 antibiotic resistance gene-carrying genes at the species level.

Gene_Id Species ARGs Carried Treatment

3.300787_5 Aeromonas hydrophila aminoglycoside~aac6-I HN
3.233839_2 Aeromonas hydrophila aminoglycoside~aadE HN

3.88430_7 Aeromonas hydrophila chloramphenicol~
chloramphenicol_exporter HN

2.254851_21 Aeromonas hydrophila chloramphenicol~
cat_chloramphenicol_acetyltransferase HN

2.49360_53 Aeromonas hydrophila MLS~macB HN
2.57139_23 Aeromonas hydrophila MLS~macB HN
3.55596_20 Aeromonas hydrophila MLS~vatB HN
2.237501_4 Aeromonas hydrophila tetracenomycin_C~tcmA HN
3.60413_2 Aeromonas caviae bacitracin~bcrA HA
3.55596_20 Aeromonas hydrophila MLS~vatB HA
4.467441_4 Aeromonas veronii MLS~vatE HA
2.49360_53 Aeromonas hydrophila MLS~macB HA
3.59927_2 Aeromonas salmonicida multidrug~mexT LN

3.5. High Organic Matter Content Sediments Altered the Intestinal Microbe Function

Different intestinal bacterial metabolic pathways produce different metabolites that
influence all aspects of host physiological functions. The functional pathways of the
microbial communities were inferred using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database to understand the functional profiles of the intestinal bacterial community
after treatment. In total, 8322 functional pathways were identified in the intestine of
S. aeruginosa, (Figure 4). The four groups shared the majority of the functional pathways.
Upon calculating the fold difference between the high (HA and HN) and low organic matter
content groups (HN and LN), 27 functions were observed to be upregulated (Figure 4A).
When the fold difference between no FF exposure (LN and HN) and FF exposure (LA and
HA) was calculated, all functional pathways showed no significant differences (Figure S1).
Sediment organic matter levels caused functional changes in the intestinal flora rather than
FF. Twenty-seven altered functional pathways from 14 categories were selected for the
analysis of two treatment factors (Figure 4B). Folding, sorting and degradation function,
glycan biosynthesis and metabolism function, and protein families: genetic information
processing function were significantly positively correlated with sediment organic matter,
whereas the replication and repair function was significantly negatively correlated with the
sediment organic matter level. Two unclassified functions (genetic information processing
and metabolism) were significantly negatively correlated with FF exposure.
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4. Discussion

Food sources and environmental conditions can influence the growth of benthic
consumers. The vast majority of benthic consumers consume surface sediment [39]. C
and N from food can theoretically be stored at homeostatic states in body tissues [40].
Sedimentary organic matter fuels the benthic food chain and is an important recycler in
lake ecosystem energy flows, as well as the C and N cycles [41,42]. In the present study,
exposure to low-nutrient sediments suppressed B. aeruginosa weight gain. Conversely,
exposure to FF in the diet at legal doses did not result in such a phenomenon, which is
consistent with the findings of some studies on aquatic animals, such as Gadus morhua [43],
Oreochromis sp. [44,45], and Oreochromis niloticus [46]. In addition, FF can be degraded in
an open area by water temperature (10 ◦C), electrolytes, and UV processes [47–49]. This
implies that B. aeruginosa growth may be affected more by sediment organic matter (C and
N) than by the low doses of antibiotics applied in the present study.

B. aeruginosa inhabits the sediment–water interface [50]. It uses organic matter (par-
ticularly C and N) in sediments to facilitate energy exchange and growth [40,51]. The
composition of the diet shapes the composition of intestinal microbiota and can integrate
new genes into the microbiota of the intestine [52]. For example, Eriocheir sinensis intestinal
microbiota were composed of bacteria harbored by its food source [53]. Based on these
findings, diet modulation could be a potential treatment for dysbiosis caused by antibiotic
exposure, such as supplying bee pollen in food to develop the intestinal tract of African
catfish [54]. In the present study, organic matter sediment influenced intestinal microbiota
community abundance. Microbial community alteration is the major driver of ARG distri-
bution [55]. The present findings showed a potential correlation between Proteobacteria
abundance and increased ARG abundance, which is consistent with previous research
that discovered Proteobacteria as potential ARG hosts [56]. An increase in Proteobacteria
abundance, moreover, is an indicator of dysbiosis. Furthermore, changes in intestinal
microbiota may influence various physiological processes [57]. ARGs (aac6-I, aadE, chloram-
phenicol_exporter, cat_chloramphenicol_acetyltransferase, macB, vatB, and tcmA) were found in
the Proteobacteria fragments in the present study. A. hydrophila, Aeromonas caviae, Aeromonas
veronii, and Aeromonas salmonicida were detected as ARG-carrying pathogens and are fairly
resilient pathogens. They can produce enterotoxins, posing a significant challenge to host
microbiota stability and resilience [58,59]. Such hosts can spread ARGs to confer resistance
to antibiotics via horizontal gene transfer and mutational events [60,61], resulting in the
spread of ARB and increasing the economic burdens in aquaculture [62].
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Increased organic matter concentration in sediments is undesirable. In our study,
high organic matter sediment enhanced Proteobacteria abundance at the phylum-level
and Aeromonas abundance at the genus level. The frequency of pathogen detection in the
intestine increases dramatically following exposure to high-nutrient sediments. ARGs
in the gut are under selective pressure from organic matter from food, in addition to
microbial interactions and effects [63]. It has been demonstrated that sediment organic
C influences resistance gene distribution in benthic animals [64]. In another study, the
intestinal microbiota in two species of wild crabs served functions comparable to those of
sediment [65]. The two ARGs most frequently observed in our samples were MLS and mul-
tidrug ARGs. Eutrophic lakes have also been shown to contain a range of ARGs, primarily
multidrug ARGs [66]. ARGs can co-occur, and co-selection is likely to enrich the resistance
of ARB to unrelated antibiotics [67,68]. Therefore, antibiotic resistance in eutrophic water
environments may pose a significant challenge for manipulating the microbiota against
ARB. Additionally, our results demonstrate that the metabolic activity of intestinal bacteria
increases with an increase in organic matter contents. Three functions actively related to
protein processing and lipid metabolism demonstrated a strong correlation with C and N,
suggesting that B. aeruginosa has undergone certain dietary adaptations [69–74]. Similarly,
oyster gut microbiomes respond to higher nutrient levels in the diet by upregulating certain
glucose and lipid metabolism activities [75]. However, because sediment C and N have
the capacity to suppress DNA transcription, the rise in sediment C and N in the present
study has the potential to result in DNA damage. In our study, the metabolic expression of
resistance was unaffected by short-term exposure to low-dose FF. Following exposure to
our experimental conditions, the metabolic function pathways of the gut microbiota did
not significantly change [76]. Furthermore, two unidentified processes associated with the
processing of genetic information and metabolism were inhibited following exposure to
FF under increasing sediment C and N. Further research should be conducted on the joint
effects of eutrophication and antibiotic exposure on microbial structures and their functions.

5. Conclusions

In conclusion, the organic matter in the sediment facilitated B. aeruginosa proliferation.
High organic matter sediments affected the intestinal microbiota and metabolic expression
of B. aeruginosa, according to metagenomic sequencing analysis results. Some processes
were activated to adjust to the dietary organic materials. However, exposure to sediment
C, N, and FF may disrupt several processes involved in metabolism and processing of
genetic information. Additionally, exposure to high levels of organic material dramatically
enhanced the presence of pathogens harboring ARG, which was linked to increases in
the abundance of the genus Aeromonas. The findings of the present study enhance our
understanding of the risks that antibiotics and eutrophic sediments pose to aquatic life. Fur-
thermore, additional experimental validation can be performed to determine the impact of
the combined exposure to sediments C, N, and FF on benthic animal intestinal functioning.
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