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Damir Kapetanović, Mohammad
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Abstract: Contributions of fungal and oomycete communities to freshwater carbon cycling have
received increasing attention in the past years. It has been shown that fungi and oomycetes constitute
key players in the organic matter cycling of freshwater ecosystems. Therefore, studying their interac-
tions with dissolved organic matter is crucial for understanding the aquatic carbon cycle. Therefore,
we studied the consumption rates of various carbon sources using 17 fungal and 8 oomycete strains
recovered from various freshwater ecosystems using EcoPlate™ and FF MicroPlate™ approaches.
Furthermore, phylogenetic relationships between strains were determined via single and multigene
phylogenetic analyses of the internal transcribed spacer regions. Our results indicated that the studied
fungal and oomycete strains could be distinguished based on their carbon utilization patterns, as
indicated by their phylogenetic distance. Thereby, some carbon sources had a higher discriminative
strength to categorize the studied strains and thus were applied in a polyphasic approach. We con-
cluded that studying the catabolic potential enables a better understanding of taxonomic relationships
and ecological roles of fungal vs. oomycete strains.

Keywords: carbon cycling; catabolic potential; eco-physiology; freshwater fungi; freshwater oomycetes;
phylogeny; polyphasic taxonomy

1. Introduction

Freshwater ecosystems are highly dynamic as they constantly interact with their
terrestrial surroundings. In particular, they receive substantial loads of organic matter (OM)
from the surrounding vegetation, e.g., plant debris [1,2]. As soon as OM enters the water,
the process of humification is initiated, in which OM will be exposed to various biochemical
processes (by freshwater microbial communities), which results in the degradation as well
as transformation of big plant-originated polymers to more recalcitrant compounds such as
high molecular weight (HMW) humic substances (HS). Both the quality and quantity of
HS are believed to have a stabilizing effect on freshwater ecosystems as they contribute
to disease suppression, water and nutrient retention, and growth enhancement [3,4]. The
most accepted theory states that the transition from OM to HMW HS usually occurs
via two separate pathways. In one path, polymeric-based HMW OM such as lignin,
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cellulose, hemicellulose, pectin (plant-derived), and chitin (animal-derived) are gradually
disintegrated into HS precursors [5]. Unlike bacteria, fungal communities facilitate the
production of such precursors due to their exceptional ability to produce a variety of
extracellular enzymes and subsequently transform these precursors into HS [6,7]. In
the other path, however, low molecular weight (LMW) compounds are leached from
OM and are easily utilized by a wide range of microorganisms. Generally, LMW OM
accounts for <20% of the entire carbon pool and contributes to biogeochemical processes in
two different ways [8]. Firstly, they accelerate the humification process by providing an
instant energy source to microbial communities to degrade the more recalcitrant polymers.
Secondly, regardless of their role as an available energy source, LWM OM compounds
such as sugars and amino acids are part of the humification processes as they constitute
intermediate molecules.

Despite the involvement of fungal communities in the degradation of HMW OM
macromolecules, knowledge of their interactions with LMW OM compounds is scarce.
These interactions are of great ecological importance since the abundance, diversity, and
sustainability of fungal communities could be correlated with the available LWM OM
compounds in their corresponding ecosystems [9,10]. Therefore, natural or human-made
fluctuations in the composition of such compounds can potentially perturb spatiotemporal
patterns of fungal communities as well. To better understand the relevance of fungal
interactions with LWM OM, more studies are required to determine the significance of LMW
OM composition on fungal communities. It is still questionable whether fungal members
can be distinguished by their utilization patterns of various LMW OM compounds.

The order Saprolegniales (Oomycota) represents another eukaryotic group of microor-
ganisms with similar physiological traits to fungi. A large body of evidence suggests
that Saprolegniales are dominantly associated with various OM compounds in freshwater
ecosystems [11,12]. However, due to their destructive impact on some aquatic animals
such as fish and crayfish [13,14], most studies focus only on their pathogenicity and ignore
other ecological contributions. Our previous investigations suggest that Saprolegniales differ
from many fungi in lignin degradation, i.e., the inability to produce enzymes related to
plant-derived OM processing [15,16]. However, it remains unclear whether Saprolegniales
strains can be physiologically separated from other oomycete and fungal taxa via their
utilization patterns of LMW OM. In fact, one could hypothesize that Saprolegniales, similar
to other eukaryotic and prokaryotic microorganisms, compete over LMW OM (as a labile
source of carbon) by utilizing some compounds more efficiently than others [16]. Therefore,
it needs to be determined whether/to what extent LMW OM influences communities of
Saprolegniales in in a given environment.

The combination of morphometric data and nucleotide sequences with eco-physiological
features (known as the polyphasic taxonomic approach) to characterize fungal species
has led to a more congruent taxonomic framework [17]. A lack of nucleotide sequences,
misassigned sequences, inaccurate/incomplete morphological descriptions, the high vari-
ability of morphometric features, and the absence of congruency between DNA sequences
and the morphology of many fungal taxa justify why additional eco-physiological traits
should be considered when designing a more reliable taxonomy [18,19]. For example,
polyphasic taxonomy has been used in large, heterogeneous, and cosmopolitan genera
such as Cladosporium (Pers.) Link, Penicillium Link, and Aspergillus P. Micheli to better
resolve their taxonomy [20–22]. Eco-physiological features in fungal taxa such as the source
of isolation, lifestyle, associations with other organisms, and tolerance to environmental
parameters have been used to discriminate individual strains of closely related taxa [23–26].
One of the most promising features in studying fungi is their ability to utilize a variety
of organic matter sources with different degrees of bioavailability. Such utilization ability
shows whether and/or to what extent specific fungal taxa are involved in carbon and
nutrient cycling. Yet, fungal interactions with organic matter remain largely unknown,
mainly because a well-established tool for comparative investigations is lacking.
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EcoPlate™ is a practical tool used mainly for microbial community analysis. The
result of inoculating any given sample in EcoPlate™ plates (with 31 individual carbon
sources) will be unique carbon-utilization patterns. These data are used for analyzing
(dis)similarities among samples and to identify any probable correlations with their cor-
responding environments [27,28]. Later, Filamentous Fungi (FF) MicroPlate™, a similar
product to EcoPlate™ (with 95 individual carbon sources), was introduced to determine
fungal taxonomy from the carbon-utilization pattern of individual strains. However, its
application remained limited to mainly community-level physiological profiling [29–31].
Therefore, a combined approach is required in which both carbon-utilization potentials and
taxonomic affiliation are studied simultaneously.

Recently, EcoPlate™ and FF MicroPlate™ have been used to address restrictions
in determining both the function and taxonomy of fungi and oomycetes. In particular,
they have been mainly used to examine whether the inter- and intra-species catabolic
versatility of fungal and oomycete strains reflect their DNA sequence-based phylogenetic
relationships [17]. Determining the metabolic potential of individual fungal strains to
utilize specific carbon sources will promote our understanding of the fungal involvement
in ecological functions related to nutrient and carbon cycling within the freshwater realm.

We used EcoPlate™ and FF MicroPlate™ tools to investigate the eco-physiological
capacity of 17 fungal and 8 oomycete strains isolated from two freshwater ecosystems.
In addition, single and multigene phylogenies of the tested strains were constructed to
examine whether the strains’ DNA- and eco-physiological-based categorizations match.
Our study has important implications for understanding the (dis)similar ecological roles of
fungi and oomycetes in freshwater nutrient cycling and their taxonomic variability.

2. Materials and Methods
2.1. Isolation of Fungal and Saprolegniales Strains

Sampling was conducted in Lake Stechlin, Northeastern Germany, and Anzali lagoon,
Northern Iran. Plant debris was collected from the shoreline, transported into the lab,
rinsed with sterilized water, cut into equal pieces, and placed in Petri dishes containing a
piece of moist cotton towel. The Petri dishes were kept at room temperature and checked
for fungal growth. As soon as mycelia or a fungal organ emerged, they were transferred to
a potato dextrose agar (PDA) medium (4, 20, and 15 g/L of infused potatoes, dextrose, and
agar, respectively). The hyphal tipping method was applied to obtain pure isolates. The
cultures were kept at 4 ◦C for the follow-up experiments [32].

The same materials were used to isolate Saprolegniales strains. Approximately equal
pieces of plant debris (5 × 5 cm) were placed in Petri dishes containing boiled sterilized
hemp seeds as baits. The Petri dishes were monitored daily for any sign of hemp seeds’
colonization by Saprolegniales strains. As soon as the mycelia were observed, some small
pieces were transported to cornmeal agar (CMA) medium (2 and 15 g/L of infused cornmeal
and agar, respectively) using a sterilized needle. The colony grown on the CMA medium
(amended with fluconazole and ketoconazole) were sub-cultured at least two times to
minimize the risk of fungal and bacterial contaminations. The final cultures were kept at
4 ◦C for the follow-up experiments [33].

2.2. DNA Extraction, PCR and Sequencing

DNA was extracted following the protocol suggested by Montero-Pau et al. [34].
Briefly, sterilized 1.5-mL tubes containing 100 µL of alkaline lysis buffer (NaOH 25 mM/L,
disodium ETDA 0.2 mM/L, pH 8.0) were prepared, followed by adding a clot of mycelia
and one round of centrifugation for 30 min at 9000 rpm. After a 30-min incubation period
at 95 ◦C, the tubes were cooled on ice for 5 min. At last, 100 µL of neutralizing solution
(Tris-HCl 40 mM/L, pH 5.0) was added to each tube and they were stored at −20 ◦C for
the sequencing. Then, ribosomal internal transcribed spacer (ITS) and large subunit (LSU)
regions were amplified using the ITS1/ITS4 and LR0R/LR5 primer pairs and the respective
PCR conditions [35–37] in a thermocycler (Analytikjena, Jena, Germany). The PCR ampli-
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fication products were then sent to Marcogen company (Amsterdam, The Netherlands)
for Sanger sequencing. The accession numbers of sequences were obtained by editing
the resulting sequences in BioEdit software [38] and submitting the improved versions
to GenBank.

2.3. Phylogenetic Analyses

Alignments and phylogenetic analyses of ITS, LSU, and ITS+LSU rDNA sequences
using maximum parsimony and maximum likelihood were constructed as described in
Masigol et al. [39]. Table S1 summarizes all used strains, their corresponding sequences,
and GenBank accession numbers.

2.4. Consumption Rates of Various Carbon Sources

Due to higher isolation frequency, all Cladosporium spp. and Penicillium spp. strains
were inoculated in FF MicroPlate™ to make the comparison of their utilization patterns of
LMW compounds reliable. However, Saprolegniales strains could not be examined using
FF MicroPlate™ as their zoospores died after inoculation to wells. The FF MicroPlate™
contains 95 unique carbon source wells and one well containing water as the control.
According to Atanasove and Druzhinia [40], carbon sources are categorized into 15 classes:
amino acids (12 substrates), glucosides (11), oligosaccharides (10), others (10), polyols (9),
hexoses (8), polysaccharides (6), sugar acids (6), TCA-cycle intermediates (5), heterocyclic
amines (4), hexosamines (4), pentoses (4), aliphatic organic acids (3), peptides (2), and
heptose (1) (Figure S1). This classification was used to determine which classes can better
separate Cladosporium spp. and Penicillium spp. strains.

Spore suspensions were prepared for inoculation in FF MicroPlate™ plates. For
fungal strains, 20 mL of FF Inoculating Fluid (Biolog part number 72106) were poured into
Petri dishes containing 5–7 days old colonies to facilitate the detachment of propagules.
The suspension of propagules was then transferred to falcon tubes for each strain. A
hemocytometer was used to create an approximately similar concentration of spores per
strain (103 to 105 propagules per 100 µL). Finally, we homogenously transferred 100 µL
from the Falcon tubes containing correct concentration of propagules to each well of the
plates. The plates were sealed using Parafilm, placed into plastic bags containing moist
paper towels, and incubated at 25 ◦C. The activity in the plates was measured using a
microplate reader set for absorbance at 490 nm at 2, 12, 24, 48, 60, 72, 84, 96, and 108 h after
inoculation. A reduction in iodonitrophenyltetrazolium redox dye amended in each carbon
source well results in the formation of a purple color with maximum absorbance at 490 nm.
The measurement was then used to calculate the activity of each strain for each carbon
source: difference between the OD of the carbon source containing carbon source wells and
the control well at 490 nm.

We used another similar tool named EcoPlate™ for less frequently isolated fungal
strains, including species of Aspergillus, Fusarium (two strains), Paecilomyces, Plectosphaerella,
Sarocladium, and Volutella. Moreover, EcoPlate™ was used for two Saprolegniales isolated
genera, namely Achlya (three strains) and Dictyuchus (five strains), as they could produce vi-
able zoospores in wells. Additionally, 31 carbon sources were classified into five categories:
amines/amides, amino acids, carbohydrates, carboxylic and ketonic acid, and polymers
(Figure S2).

The inoculation of fungal and Saprolegniales strains into EcoPlate™ plates was sim-
ilar to the process explained above (Section 2.4), with some differences as follows: For
Saprolegniales strains, the method by Unestam [41] was used to yield spore suspension.
Briefly, a small piece of agar from the pure cultures was transferred to new Petri dishes
containing 5 mL of liquid PG1 medium. After four days of incubation at 18 ◦C, 2 mL
of autoclaved natural water was used to wash hyphal biomass grown on the medium
three times. The hyphal biomass was then transferred to another Petri dish containing
4 mL of autoclaved natural water for 24 h at 18 ◦C. As soon as zoospores emerged in the
liquid and the target concentration was reached, they were transferred to wells of plates.
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The activity in the plates was measured using the microplate reader set for absorbance
at 590 nm at 0, 24, 48, 72, 96, 120, 168, 192, and 216 h after inoculation. Reducing the
iodonitrophenyltetrazolium redox dye amended in each carbon source well results in the
formation of a purple color with maximum absorbance at 590 nm. The measurements were
the same as explained above.

2.5. Statistical Analysis

The activity of fungal and Saprolegniales strains in each carbon source well at different
time points was measured using a microplate reader to determine the difference between
the optical density of the carbon-source-containing wells and the control well as explained
above. Each measurement was repeated three times for EcoPlate™ (in the same 95 well
plate) and twice for FF MicroPlate™ (in two separate 95 well plates). Moreover, SPSS 16.0
software was used to run linear discriminant analysis to determine whether/how carbon
sources (separately and together) (95 and 31 variables in EcoPlate™ and FF MicroPlate™,
respectively) can separate fungal and Saprolegniales strains (5 and 15 classes in EcoPlate™
and FF MicroPlate™, respectively) in accordance with their phylogenetic relationships.
The analysis resulted in two linear dimensions (LD1 and LD2), which illustrate how many
percentages of variance in the activity of strains on each/a group of carbon sources can
be explained by their phylogenetic relationships. The last five measurements (average
from the replicates) were incorporated in all analyses (activity at 60, 72, 84, 96, and 108 h
after inoculation for FF MicroPlate™ and 120, 144, 168, 192, and 216 h after inoculation for
EcoPlate™). The same data set was also used for constructing the dendrogram based upon
31 and 95 carbon sources in EcoPlate™ and FF MicroPlate™, respectively.

3. Results
3.1. Taxonomy and Phylogeny of Fungal and Saprolegniales Strains

The amplified regions of ITS and LSU were used to determine the phylogenetic po-
sition of fungal and Saprolegniales strains (only ITS) (Figures 1A,B and 2A). Accordingly,
Cladosporium spp. strains FBPD2, FB11, FB12, and FB7 were associated with Cladosporium
herbarum (Pers.) Link and Cladosporium allicinum (Fr.) Bensch, U. Braun and Crous in the
C. herbarum complex while Cladosporium sp. FBL81 and FBP8 were more closely related
to Cladosporium cladosporioides (Fresen.) G.A. de Vries in the C. cladosporioides complex.
Additionally, Penicillium spp. strains FBP5, FBP7, and FBP81 had the closest similarity to
Penicillium brevicompactum Dierckx and strain FBSL1 to Penicillium crustosum Thom. More-
over, the strains Sarocladium sp. RT1, Fusarium sp. (RT3 and RT18), Volutella sp. RT4, Plec-
tosphaerella sp. RT5, Paecilomyces sp. RT10, and Aspergillus sp. RT16 were phylogenetically
associated with Sarocladium kiliense (Grütz) Summerb., an unknown Fusarium taxa, Volutella
citronella (Cooke and Massee) Seifert, unknown Plectosphaerella taxa, Paecilomyces variotii
Bainier, and Aspergillus aculeatus Iizuka, respectively (Figure 2A). Saprolegniales strains were
associated with Achlya (three strains) and Dictyuchus taxa (five strains) (Figure 2A).

Additionally, Figure 2 showed that the constructed dendrogram based on the utiliza-
tion rate of 31 carbon sources in EcoPlate™ could well separate most strains phylogenet-
ically assigned to fungi and Saprolegniales (Table S1, measurements related to the mean
difference between the OD of the carbon source containing wells and the control well for
the last five time points (60, 72, 84, 96, and 108 h after inoculation)). In particular, all Sapro-
legniales were grouped with the exception of two Achlya spp. strains, creating a separate
group. Similarly, five fungal strains were placed in one group, except for Aspergillus sp.
RT16 and Peacilomyces sp. RT10, which showed carbon utilization capabilities more similar
to Saprolegniales.
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A B

Figure 1

Figure 1. Phylogram of the best ML trees revealed by RAxML from an analysis of the combined
ITS–LSU for Cladosporium (A) and Penicillium (B) strains isolated in this study (lnL = −3527.0288 and
−4195.2300, respectively). Fusarium proliferatum (CBS 240.64) was considered the outgroup. ML and
MP bootstrap supports above 50% were given at the first and second positions, respectively, above or
below the branches. Red marks are strains Cladosporium and Penicillium isolated in this study.

Achlya sp. O962-13
Achlya sp. O963-13
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Aspergillus sp. RT16

Paecilomyces sp. RT10

Dictyuchus sp. O961-3

Dictyuchus sp. O963-5

Dictyuchus sp. O962-14

Dictyuchus sp. M963-8A

Dictyuchus sp. T963-33B

Achlya sp. F962-15

0 05 10 15 20 25

Dendrogram based on utilization 
of 31 carbon sources 

ITS-based phylogeny of fungal 
and Saprolegniales strains

Fungal 
strains 

Saprolegniales
strains 

Figure 2

A B

Figure 2. Phylogram of the best ML trees (lnL = −4501.7999) revealed using RAxML from an analysis
of ITS (A) and the dendrogram (B) based on utilization of 31 carbon sources of seven fungal and eight
oomycete strains and related taxa. The analyses for constructing the dendrogram were performed
based on the last five measurements (average from the replicates). Blue and red circles represent
Saprolegniales and fungal strains isolated in this study. ML and MP bootstrap supports above 50%
were given at the first and second positions, respectively, above or below the branches.
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3.2. Carbon Utilization Using Cladosporium spp. and Penicillium spp. Strains in
FF MicroPlate™

Figure 3 provides a comparison of the average utilization rate of 95 substrates (cat-
egorized in 15 classes) using the tested Cladosporium spp. and Penicillium spp. Strains
(Table S2; measurements related to the mean difference between the OD of the carbon
source-containing wells and the control well for the last five time points at 490 nm (120, 144,
168, 192, and 216 h after inoculation). In general, glucosides, oligosaccharides, and heptose
were the most favorable carbon source categories, as their utilization rate, by all strains of
Cladosporium and Penicillium species, were above average. In contrast, the utilization rate of
pentoses and heterocyclic amines were below average by all strains (except for Penicillium
brevicompactum FBP5 and FBP7). Penicillium spp. strains showed higher utilization rates
than Cladosporium spp. concerning seven categories, including amino acids, polysaccha-
rides, sugar acids, TCA-cycle intermediates, heterocyclic amines, aliphatic organic acids,
and peptides. Cladosporium spp. and Penicillium spp. strains differed the most from each
other by their utilization rate of Aliphatic organic acids.
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A
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C. herbarum com.* FB7
C. herbarum com. FB11
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Different types of carbon sources

Figure 3

Figure 3. The average utilization rate of 15 classes of carbon sources after 108 h using Cladospo-
rium spp. and Penicillium spp. strains inoculated to the commercial FF MicroPlate™ plates (See
Figure S1 for more details about carbon sources) based upon the categorization style of Atanasove
and Druzhinia [40] (*com. = complex, error bars = standard error) (* = Optical density (OD) of carbon
source wells inoculated with strains—OD of the control well at 590 nm).

Cladosporium cladosporioides FBP8 and P. crustosum FBSL1 were the most active strains:
while the level of utilization in C. cladosporioides FBP8 was the highest with respect to
four categories (oligosaccharides, hexoses, pentoses, and heptose), six other categories
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(amino acids, polyols, polysaccharides, sugar acids, TCA-cycle intermediates, and aliphatic
organic acids) were utilized most by P. crustosum FBSL1. Moreover, C. herbarum FB11 and
P. brevicompactum FBP81 were the least active strains: while the utilization rate in C. herbarum
FB11 was the lowest with respect to three categories (sugar acids, heterocyclic amines, and
aliphatic organic acids), pentoses were utilized the least by P. brevicompactum FBP81.

Additionally, the degree of the metabolic overlaps, with respect to the utilization
rate of 95 substrates, was studied. Figure S3 reveals strong differences in both intra- and
inter-genus levels. The average utilization rate of strains FBPD2, FB11, FB12, and FB7
(phylogenetically placed in the C. herbarum complex) were compared against FBL81 and
FBP8 (phylogenetically placed in the C. cladosporioides complex) (Figure S3A). The same
comparison was conducted between strains FBP5, FBP7, and FBP81 (phylogenetically
identified as P. brevicompactum) and FBSL1 (phylogenetically identified as P. crustosum)
(Figure S3B). Finally, all Cladosporium spp. Strains were compared against the Penicillium
spp. Strains. Both Cladosporium spp. And Penicillium spp. Strains showed diverse average
utilization rates for 15 classes of substrates; moreover, they showed a range of utilization
rates with respect to the substrates in each class (S3C).

3.3. Carbon Utilization Using Fungal vs. Saprolegniales Strains in EcoPlate™

Figure 4 illustrates the utilization level of five categories of carbon sources using
seven fungal and eight Saprolegniales strains. The levels of utilization of polymers and
amines/amides were the highest and lowest regarding both fungal and Saprolegniales
strains, respectively. In general, Saprolegniales were more active than fungal strains con-
sidering all carbon source categories. Among Saprolegniales, Achlya sp. O963-13 and
Dictyuchus sp. O962-14 were the most and least active strains, respectively. Moreover,
Aspergillus RT16 and Fusarium RT3 showed the highest and lowest levels of substrate
utilization among all fungal strains, respectively. Moreover, the degree of the metabolic
overlaps, with respect to the utilization rate of 31 substrates, was studied. The differences
between Achlya spp. and Dictyuchus spp. strains as well as fungal and Saprolegniales strains,
are presented in Figure S4A,B.
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Figure 4. The activity of fungal and Saprolegniales strains inoculated to the EcoPlate™ plates after
216 h (see Figure S2 for more details about the specific carbon sources) (* = Optical density (OD) of
carbon source wells inoculated with strains—OD of the control well at 590 nm).

3.4. Discriminative Potential of Carbon Source Categories in FF MicroPlate™

Based on Atanasove and Druzhinia [40] categorization, amino acids, oligosaccharides,
and polysaccharides were the most promising categories in discriminating fungal strains
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according to their carbon utilization pattern. In contrast, peptides, pentoses, and sugar
acids categories showed the weakest potential to discriminate strains correctly (Figure 5).
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Figure 5. Discriminative ability of pentoses (the worst discriminator) (A) and amino acids (the
best discriminator) (B) in separating six and four Cladosporium spp. and Penicillium spp. strains,
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3.5. Discrimination Potential of Carbon Source Categories in EcoPlate™

The discrimination ability of carbon source categories was investigated firstly for
fungal strains, then for Saprolegniales strains, and finally for both together. For fungal and
Saprolegniales strains, the categories of carbohydrates and carboxylic and ketonic acids
showed the best discrimination ability, respectively. When analyzed together, fungal and
Saprolegniales strains were separated the best and worst by amid/amines and carbohy-
drates, respectively (Figure 6).

Categorization of strains based on phylogenetic relationship (the combined tree) and
carbon utilization capabilities (95 sources in FF MicroPlate™) resulted in a similar grouping.
Cladosporium spp. strains were divided into two groups according to their carbon utilization
capabilities, similar to the phylogenetic trees which separated Cladosporium spp. strains
into two clades. Moreover, the phylogenetic separation of Penicillium sp. FBSL1 (assigned
to P. crustosum) from three others (FBP5, FBP81, and FBP7 assigned to P. brevicompactum)
was confirmed by the dendrogram that divided Penicillium spp. strains similarly (Figure 7).
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4. Discussion

This study investigated the contribution of fungal and Saprolegniales strains in the
utilization of carbon sources using two recently developed tools, EcoPlate™ and FF Mi-
croPlate™. Accordingly, we drew two important conclusions: Firstly, we showed that fungi
and Saprolegniales strains prefer some LMW carbon sources over others, even though most
of these sources are easily accessible in freshwater ecosystems. Secondly, we illustrated
that EcoPlate™ and FF MicroPlate™ could be complementary tools for systematic and
phylogenetic studies of fungi and Saprolegniales.

The humification of dissolved organic matter occurs in three stages: (I) initial de-
composition of labile carbon sources, (II) slow decomposition, and (III) direct genesis
and degradation of more recalcitrant compounds [42]. While only fungi and a few other
microorganisms are involved in the latter two stages [15,16,43], diverse communities (both
prokaryotes and eukaryotes) use labile carbon as easily accessible sources of energy. In our
study, fungal strains utilized labile sources differently in terms of the utilization rate and di-
versity of consumed OM sources, which might suggest a niche partitioning through source
availability. Similarly, Hanson et al. [44] showed that fungal communities are changed in
response to various labile carbon sources (such as glycine and sucrose) and may specialize
in breaking down particular OM compounds. In other words, LMW carbon sources from
various OM sources might alter fungal communities.

LMW OM includes both natural sources (such as LMW drainage from natural land-
scapes and its production by microbial biomass) [45] and anthropogenic sources (e.g., out-
flows from urbanized and intensively farmed agricultural landscapes) [46]. Some of these
compounds might be toxic for some fungi but favorable for others. Therefore, fluctuations
in LMW carbon sources potentially cause micro-niches, in which some fungal communities
dominate the others. Chigineva et al. [47] demonstrated that, after adding sucrose as a labile
carbon source, the relative abundance of Cladosporium and Penicillium taxa increased and
decreased, respectively. Such an alteration in the abundance and diversity of fungal commu-
nities influenced by labile carbon sources has also been shown by Ren et al. [48]. Therefore,
it can be argued that, similar to the previously observed impact of dissolved OM on fungal
distribution and diversity [49,50], the composition of labile carbon sources also changes the
functional structure and competitive ability of saprotrophic fungal communities.

Additionally, based upon a rather limited number of strains in this study, we could
confirm that both Ecoplate™ and FF MicroPlate™ tools are practical in the taxonomy of
fungal strains. Some labile carbon sources, such as amino acids and carbohydrates, are
useful in separating strains within and between taxa. Moreover, the dendrograms of fungal
strains based upon the utilization rate of all 31 and 95 carbon sources were generally in
accordance with the constructed phylogenetic trees. In contrast to our study, where phy-
logeny and ecology based categorizations of Cladosporium spp. and Penicillium spp. strains
greatly matched, Kubicek et al. [51] and Barrera et al. [52] showed that carbon utilization
patterns of 10 Cladorrhinum spp. and 21 Trichoderma spp. strains did not correspond to the
taxonomic delimitation of the species, respectively. Therefore, an approach which contains
both phylogeny and ecology must be tested on larger sets of fungal strains for a better
taxonomic resolution. Moreover, it must be clarified that fungal strains isolated in this
study do not fall into the classical definition of “freshwater fungi” as most of them have a
cosmopolitan nature. Therefore, it is important to address, firstly, whether they are active
players within the boundaries of freshwater ecosystems and, secondly, how abundant they
are. These two aspects will determine how scholars might deal with cosmopolitan fungal
species in freshwater ecosystems.

Oomycetes were considered a fungal group for more than a century due to many
similarities in morphology and lifestyle. These similarities, however, were the result of
convergent evolution and not their evolutionary relatedness to each other. Oomycetes and
fungi have distinct cellular traits and evolutionary history as they are currently placed in
distant lineages in the tree of life [53]. Here, we suggested that, despite the co-occurrence of
Saprolegniales with fungi in various freshwater habitats [54], they tend to minimize competi-
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tion over labile carbon sources. This was proven by separating most of our Saprolegniales
from fungal strains based on their carbon utilization patterns, which also reflects their
distant phylogenetic relationship. Therefore, the contrasting role of oomycetes and fungi in
the degradation of large recalcitrant polymers such as lignin [15] should be extended to la-
bile organic matter. Nevertheless, more studies are needed, particularly in other unstudied
Iranian freshwater ecosystems [55], as our results were limited to only two Saprolegniales
genera, Achlya and Dictyuchus.

5. Conclusions

Fungal and oomycetes constitute a major fraction of heterotrophic microbial commu-
nities in freshwater ecosystems. These communities are key carbon and nutrient cycling
regulators due to their close association with organic matter and energy flow in freshwater
food webs. We showed that, although fungi and oomycetes have both colonized freshwater
ecosystems for millions of years, they behave differently with respect to the utilization of
labile carbon sources. Such a different behavior might originate from their distant phylo-
genic relationship. Our findings have both ecological and taxonomic implications which
need to be addressed in the future: (I) It seems that fungal and oomycete communities
tend to minimize their competition for labile organic matter by utilizing various types of
carbon sources and, as a result, receive enough energy to proceed with their contribution
in the decomposition of more recalcitrant organic matter. This is how these communities
serve their ecosystem by fueling entire food webs and carrying energy to all trophic levels.
Assuming the distinct utilization of labile carbon sources by fungi vs. oomycetes, one
could argue that fluctuations in the environmental parameters of freshwater ecosystems
(i.e., origin, type, and quantity of labile carbon source) might eventually cause a shift in
the spatio-temporal distribution of fungal and oomycete communities. (II) In our study,
we observed intra-taxa variability in both fungal and oomycete strains for their interaction
with labile organic matter. In particular, Cladosporium and Penicillium strains from fungi and
Achlya and Dictyuchus strains from oomycetes showed intra-taxa variability even though
they were phylogenetically similar. This highlights the use of eco-physiological traits of
fungi and oomycetes to overcome the inconsistencies regarding their taxonomy. Thus, a
robust tool is required to enable comparative studies. We propose that EcoPlate™ and
FF MicroPlate™ are able to reflect eco-physiological differences between various strains,
especially ecologically diverse cosmopolitan genera, and can be established as valuable
eco-taxonomic tools for further studies.
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