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Abstract: The genus Streptomyces is a representative group of actinomycetes and one of the largest taxa
in bacteria, including approximately 700 species with validly published names. Since the classification
was mainly based on phenotypic characteristics in old days, many members needed to be reclassified
according to recent molecular-based taxonomies. Recent developments of molecular-based analysis
methods and availability of whole genome sequences of type strains enables researchers to reclassify
these phylogenetically complex members on a large scale. This review introduces reclassifications
of the genus Streptomyces reported in the past decade. Appropriately 34 Streptomyces species were
transferred to the other genera, such as Kitasatospora, Streptacidiphilus, Actinoalloteichus and recently
proposed new genera. As a result of reclassifications of 14 subspecies, the genus Streptomyces
includes only four subspecies at present in practice. A total of 63 species were reclassified as
later heterotypic synonyms of previously recognized species in 24 published reports. As strong
relationships between species and the secondary metabolite-biosynthetic gene clusters become
clarified, appropriate classifications of this genus will not only contribute to systematics, but also
provide significant information when searching for useful bioactive substances.
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1. Introduction

The genus Streptomyces is a representative group of actinomycetes. This genus is
aerobic, Gram stain-positive, non-acid fast and multicellular bacteria that form extensively
branched substrate and aerial mycelia with complex lifecycles. The aerial mycelium
forms chains of three to many spores at maturity. Streptomycetes can be isolated in high
numbers from soil, which is their primary natural habitat, and play an important role in
the decomposition of organic matter such as leaf litters in soil, contributing to the fertility
of soil. Although this genus includes plant pathogens and human pathogens, it is mainly
characterized by the potential to produce a large variety of chemically different secondary
metabolites, such as antibiotics.

The genus Streptomyces is the largest taxa among prokaryotes. As of March 2005,
487 species and 39 subspecies with validly published names had been approved. A total
of 533 species are described in Bergey’s Manual of Systematic Bacteriology (Second Edition,
Volume Five, The Actinobacteria, Part B) issued in 2012. The number increased year by
year because several dozen species were newly proposed every year (Figure 1). According
to the List of Prokaryotic names with Standing in Nomenclature (LPSN), the number of
species with validly published and correct names was 699 as of January 2023. If this
number is not limited to those with a correct name, but also includes synonyms, the
number is 846. Streptomyces members are well known and expected as a rich source for
pharmacologically useful bioactive compounds due to their production of complex and
diverse secondary metabolites. Approximately two-thirds of all known antibiotics are
produced by actinomycetes, mainly by Streptomyces members [1]. Streptomyces strains have
been extensively isolated and screened to search for novel bioactive substances because they
are a promising source of commercially and medically important secondary metabolites.
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Consequently, this genus includes a large number of species, which makes taxonomic
characterization and identification difficult.
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Figure 1. Annual numbers of newly proposed Streptomyces species with validly published names.
The numbers are based on lists that are annually published in the SAJ News of Actinomycetologica
(https://www.actino.jp/journal/index.html, accessed on 20 October 2022) No. 1 as the List of new
scientific names and nomenclatural change in the phylum Actinobacteria (Actinomycetota from 2022)
validly published in each year.

Early classification of Streptomyces species mainly relied on morphological obser-
vations [2–4]. Morphological characteristics such as spore color, spore chain morphology,
melanoid pigment production, spore wall ornamentation and the utilization pattern of nine
different sugars as a carbon source in physiological tests were recognized as constant and
reliable features in classifications. The International Streptomyces Project (ISP) published
reliable descriptions of type strains of 458 Streptomyces species based on the standard criteria
to determine species [5–8]. Later, other basic phenotypic markers such as physiological
and biochemical properties, chemotaxonomy and DNA–DNA hybridization (DDH) of total
chromosomal DNA were employed for classification. In particular, DNA–DNA relatedness
(DNA–DNA reassociation) in DDH is the gold standard for species identification because
a clear and objective numerical threshold, 70%, is given and widely recognized as the
species boundary [9,10]. In the 1980s, 16S rRNA gene sequence analysis was applied
for bacteria systematics. Phylogenetic analysis based on 16S rRNA gene sequences and
determination of the sequence similarities are nowadays carried out as the first step in
identification. These methods do not have sufficient resolution to delimit Streptomyces
species. In actinomycetes, strains showing less than 99% similarities in their 16S rRNA gene
sequences can be considered to be different species [11]. In contrast, even if 16S rRNA gene
sequence similarity exceeds 99% between two strains, it is unclear whether they belong
to the same species or not. It is often reported that some species share a high 16S rRNA
gene sequence similarity, such as 100% and 99.9%, even though they are clearly separated
as different species by DNA–DNA relatedness [12]. Hence, it is hard to differentiate two
species by 16S rRNA gene sequences alone in many cases. In the current taxonomic criteria,
we need to examine DNA–DNA relatedness by DDH for type strains of closely related
species showing high 16S rRNA gene sequence similarities. In the genus Streptomyces, many
species are included as members showing >99% similarities. As DDH is labor-intensive
and needs to be repeated several times due to its low reproducibility, it is not practical
to conduct using many closely related reference strains. This makes the classification
more difficult.

There were (and may still be) many species and subspecies whose taxonomic positions
needed to be re-evaluated in the genus Streptomyces. For example, Tamura et al. revealed
that S. caeruleus belongs not to the genus Streptomyces, but to the genus Actinoalloteichus,
and reclassified S. caeruleus to A. cyanogriseus based on the data of phylogenetic analysis
of 16S rRNA gene sequences, diagnostic cell-wall diamino acid and DDH in 2008 [13]. In
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2010, Kumar and Goodfellow revealed that S. hygroscopicus subsp. angustmyceticus and
S. hygroscopicus subsp. decoyicus are not S. hygroscopicus, but independent species, by
analyses of 16S rRNA gene sequences and phenotypic properties, and then reclassified
these two subspecies to S. angustmyceticus and S. decoyicus, respectively [14]. Kim et al.
revealed that S. fimicarius and S. setonii belong to the same species based on 16S rRNA gene
and gyrB sequences, and reclassified S. fimicarius as a synonym of S. setonii according to
the rules on nomenclature in 2012 [15]. S. caeruleus, S. hygroscopicus subsp. angustmyceticus,
S. hygroscopicus subsp. decoyicus and S. fimicarius were published in 1958, 1956, 1959
and 1948, respectively, when molecular approaches such as 16S rRNA gene sequence
analysis had not been developed. Similarly, taxonomists often notice the presence of many
species that need to be reclassified based on the current criteria in classifications when
they review taxonomic positions of species proposed in old days by molecular analysis.
However, since classifications of Streptomyces members are not easy as stated above, review
and reclassification of such species have not gone well until recently. To enable such
reclassifications, advances in molecular taxonomy were demanded [16,17].

Very recently, whole genome sequences (WGSs) of many type strains became available
due to cost-effective high-throughput whole genome-sequencing platforms and massive
whole genome-sequencing projects [18]. Published WGSs of Streptomyces strains remarkably
increased in numbers from 2014 [19]. WGSs are useful and the ultimate information for
taxonomy. They can be used for determination of the overall genome relatedness index
(OGRI) [20] and phylogenomic analysis. Despite the increasing number, published WGSs
were unfortunately not immediately, effectively and extensively used to reclassify known
Streptomyces species. However, reports on reclassifications of Streptomyces strains increased
very recently, and they often include significant insights. This review summarizes and
introduces the progress in this decade to update our understanding of the taxonomy of
Streptomyces members.

2. Developments of Molecular Identification Methods

Members of the genus Streptomyces had been classified mainly based on phenotypes
such as morphologies of colonies and spores, and physiological characteristics in early
days. Currently, taxonomy of Streptomyces members relies on polyphasic combinations
of phenotypic, chemotaxonomic and genotypic characteristics. In the 1980s, 16S rRNA
gene sequence analysis became a standard method in bacteria systematics. In this analysis,
16S rRNA genes are amplified by PCR, and subsequently the amplicons are sequenced by
the Sanger method. The retrieved gene sequence is analyzed by BLAST to search for closely
related species. The sequence is also used to reconstruct a phylogenetic tree to clarify the
phylogenetic position among close neighbors. In 2012, Labeda et al. determined the almost
complete 16S rRNA gene sequences of a wide variety of Streptomyces members, including
almost all described species, and reconstructed a comprehensive phylogenetic tree to clarify
relationships between type strains of closely related Streptomyces species, demonstrate the
diversity of the species and allow selection of representative strains for further studies in a
collaborative study [21]. However, the resolution of 16S rRNA gene sequence analysis is
known to be too low to identify strains at the species level. The 16S rRNA gene sequence
similarity value of 99% is a cut-off to classify as a novel species when compared with the
phylogenetically closest neighbors with validly published names [11]. However, there is no
guarantee for strains showing more than 99% to belong the same species, although those
showing less than 99% in the similarity on 16S rRNA gene sequences can be considered as
different species [22].

As alternatives to 16S rRNA gene sequence analysis, sequence analyses of protein-
coding housekeeping genes were developed for higher resolutions. Kasai et al. employed
gyrB gene sequences to study intrageneric relationships among Micromonospora species. A
gyrB segment about 1.2 kb long was amplified by PCR using universal primers, and the
sequence was determined. It is reported that a genetic distance of about 0.0014, roughly
equivalent to 98.5% similarity, in a gyrB gene sequence corresponded to 70% DNA–DNA re-
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latedness. Furthermore, strains with approximately 97% or higher gyrB sequence similarity
and similar phenotypes in a clade exhibited DNA–DNA relatedness of >65%, an acceptable
value for proposal of a single species [23]. Hatano et al. used gyrB gene sequences in a
taxonomic re-evaluation of whorl-forming Streptomyces species. They amplified 1.2 kb of
gyrB using primers, different from those of Kasai et al., by PCR and the amplicons were
sequenced. Consequently, a correlation between the sequence similarities of the gyrB gene
and DNA–DNA relatedness by DDH was also observed in these members. They stated
that strains with 95.5–96.5% gyrB sequence similarity and similar phenotypes in a clade
exhibited DNA–DNA relatedness of 59–75%.

Multilocus sequence analysis (MLSA) has been demonstrated as a valuable tool for
assessing species assignments in prokaryote taxonomy. The resolution is significantly
improved by using multiple gene sequences compared to those based on a single gene
sequence [24]. Guo, Rong, Huang et al. reported MLSA for the genus Streptomyces. They
amplified five housekeeping genes, atpD, gyrB, recA, rpoB and trpB, by PCR, sequenced
the amplicons and used DNA sequences of 496 bp (or 495 bp), 423 bp (or 422 bp), 504 bp,
540 bp and 573 bp (or 567 bp) from these five genes, respectively [25,26]. Phylogenetic
trees using the concatenated five gene sequences of 2526 bp (or 2534 bp) showed robust
phylogenetic relationships. The evolution distance of 0.007 in this MLSA corresponded
to DNA–DNA relatedness of 70% [26]. Phylogenetic analysis based on MLSA is very
useful to find closely related reference strains based on their phylogenetic relationships.
DNA–DNA relatedness by DDH is the gold standard for species identification. There
are many cases that DDH needs to be conducted, not only for the closest reference, but
also for many references, because 16S rRNA gene similarities are higher among closely
related species in the genus Streptomyces. However, since DDH experiments with many
combinations are not practical. MLSA is also useful to determine the most closely related
references that need to be compared in detail. The potential of MLSA in bacterial species
definition was strongly endorsed by the ad hoc committee of the International Committee
on Systematics of Prokaryotes [17], given that whole-genome sequencing was not accessible
to most microbial taxonomists at that time. MLSA has been demonstrated as a valuable
tool for assessing species assignments in the genus Streptomyces [25–30]. It can be utilized
as a replacement for DDH [24].

The availability of WGSs allows us to choose many housekeeping genes for MLSA.
Nowadays, MLSA using many housekeeping gene sequences can be carried out because lots
of Web tools are available [31–35] Many of them automatically extract housekeeping gene
sequences from WGSs and reconstruct the phylogenetic trees based on the concatenated
sequences. MLSA is more phylogenetically sensible and can be a good alternative to check
conclusions derived from the overall genome relatedness index (OGRI) [20].

DNA–DNA relatedness had been determined by DDH experiments before. The
microplate hybridization method developed by Ezaki et al. [36,37] was often applied to
determine DNA–DNA relatedness. However, DDH experiments have a problem in their
reproducibility. Nowadays, whole genome sequencing is affordable in general laboratories.
WGSs of many type strains are accessible due to a massive whole genome sequencing
project focusing on type strains of bacterial species [18]. Furthermore, since in order to
propose new species in Int. J. Syst. Evol. Microbiol., researchers have to sequence the whole
genome of its type strain and deposit it to GenBank/ENA/DDBJ for publication, WGSs
of recently proposed new species become available immediately. DDH experiments can
be easily replaced by determination of OGRI such as average nucleotide identity (ANI)
and DNA–DNA relatedness based on digital DDH (dDDH). As these methods are not
experiments in a wet lab, but in silico analyses, the results are reproducible and objective.
It is also feasible to determine these values easily even for many strain pairs by using a
personal computer. ANI represents a mean of identity values between multiple sets of
orthologous regions shared by two genomes [38]. Based on comparative studies between
ANI and DNA–DNA relatedness based on DDH, ANI values equivalent to 70% DNA–DNA
relatedness are 95–96% [39,40]. Software such as JSpecies, ANI calculator and OrthoANI are
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available for ANI [40,41]. On the other hand, the Genome-to-Genome Distance Calculator
(GGDC) is a Web service used to calculate DNA–DNA relatedness, called a DDH estimate,
by dDDH [42] and can be used instead of DDH experiments. ANI and DDH estimates by
the GGDC are representative OGRI to indicate how similar two genome sequences are [43].
TYGS, a Type (Strain) Genome Server, was developed as a user-friendly high-throughput
Web server for genome-based prokaryote taxonomy and is available on the Web. When
users submit a job by uploading a WGS(s) as a query (queries) on the site, TYGS provides
many data, such as results on the identification, a phylogenetic tree based on 16S rRNA
gene sequences, a tree based on WGSs and pairwise comparisons to close known species.
Although this analysis is state-of-the-art [44], users need to note that WGSs of some of the
closely related species have not been made available or registered in the dataset.

G + C content of genomic DNA is historically essential in bacterial taxonomy and was
determined by experiments using HPLC. Nowadays, the precise content can be calculated
from WGS(s).

3. Materials and Methods

Reclassified Streptomyces strains stated in this review were searched from the List of
new scientific names and nomenclatural change in the phylum Actinobacteria
(Actinomycetota from 2022) validly published in each year of the annually published SAJ
News of Actinomycetologica No. 1 (https://www.actino.jp/journal/index.html accessed on
20 October 2022). Phylogenetic trees were reconstructed by ClustalX 2.1. Representative
species of each Streptomyces group listed in the Table 11 titled ‘List of Streptomyces species
(including Kitasatospora and Streptacidiphilus species) arranged according to the grouping
given in Figure 21’ in the Genus Streptomyces of Bergey’s Manual of Systematics of Archaea
and Bacteria were included in the figure of Section 4.1 to show the comprehensive phyloge-
netic positions of Streptomyces members. Subspecies with validly published names in the
genus Streptomyces were searched using LPSN to reconstruct a phylogenetic tree shown
in Section 4.2.

4. Recent Reclassification of Members in the Genus Streptomyces

Members in the genus Streptomyces reclassified in the past decade are grouped into
three categories: (i) transferred from the genus Streptomyces to the other genera, (ii) sub-
species, and (iii) unified as synonyms of other species. They are overviewed in the following
sections with list tables (Tables 1–3, respectively).

4.1. Transfer to Other Genera

In 2017, Labeda et al. reconstructed a large phylogenetic tree of members in the family
Streptomycetaceae based on MLSA using atpD, gyrB, recA, rpoB and trpB gene sequences.
The tree includes type strains of approximately 590 Streptomyces species and subspecies,
six Kitasatospora species and four Streptacidiphilus species with validly published names.
This analysis phylogenetically clarified the distinctiveness of the genera Kitasatospora and
Streptacidiphilus, which are closely related to the genus Streptomyces. Furthermore, nine Strep-
tomyces species were transferred into the genus Kitasatospora: S. aburaviensis, S. albolongus,
S. aureofaciens, S. avellaneus, S. cinereorectus, S. herbaricolor, S. misakiensis, S. psammoticus
and S. purpeofuscus were reclassified to K. aburaviensis comb. nov., K. albolonga comb. nov.,
K. aureofaciens comb. nov., K. aureofaciens, K. cinereorecta comb. nov., K. herbaricolor comb.
nov., K. misakiensis comb. nov., K. psammotica comb. nov. and K. purpeofusca comb.
nov., respectively, as they are now included in a clade specific to members in the genus
Kitasatospora (Table 1). Since S. aureofaciens and S. avellaneus were not discriminated as two
independent species, the same species name, K. aureofaciens, was given to them [45].

In 2018, Nouioui et al. reported WGS-based reclassification of the phylum Actinobacteria.
In this report, already published draft genome sequences of a large collection of actinobac-
terial type strains were used to reconstruct phylogenomic trees. Mainly based on the
phylogenomic relationships, many members of not only the genus Streptomyces, but also
other genera, were reclassified in this study. As transfers from the genus Streptomyces to
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other genera, S. indigoferus and S. xanthocidicus were transferred to the genus Kitasatospora,
and, consequently, new combinations Kitasatospora indigofera comb. nov. and Kitasatospora
xanthocidica comb. nov. were proposed, respectively. S. scabrisporus and S. aomiensis were
transferred to new genera, Embleya gen. nov. and Yinghuangia gen. nov., respectively [46].
Until then, the family Streptomycetaceae was composed of only four genera: Allostreptomyces,
Kitasatospora, Streptacidiphilus and Streptmyces. By establishing the new genera Embleya
and Yinghuangia, this family included six genera. This study mainly relied on massive
phylogenomic analyses. In contrast, characteristics specific to each established taxon appear
to be less focused on. Whole genome sequence-based reclassification may be a recent trend
of actinomycetal systematics.

In the next year, Nouioui et al. transferred S. griseoplanus to the genus Streptacidiphilus
because the authors noticed that S. griseoplanus is not Streptomyces, but belongs to the genus
Streptacidiphilus by phylogenetic analysis based on 16S rRNA gene sequences when propos-
ing a novel Streptacidiphilus species, Streptacidiphilus bronchialis sp. nov. [47] Komaki et al.
transferred S. catbensis and S. seranimatus to the genus Yinghuangia as Yinghuangia catbensis
comb. nov. and Yinghuangia seranimata comb. nov., respectively [48], by phylogenetic
analysis of 16S rRNA gene sequences and morphological, physiological, biochemical and
chemotaxonomic data, since these two species had been left in the genus Streptomyces in
the report by Nouioui et al. [46].

In 2020, Komaki et al. proposed Embleya hyalina sp. nov. by transfer of “S. hyalinum”, a
Streptomyces species without a validly published name, to the genus Embleya. This is the
second species in the genus Embleya. In this study, the authors sequenced the whole genome
of “S. hyalinum” NBRC 13850T and examined its characteristics, such as chemotaxonomic,
biochemical and physiological features, in detail [49]. Embleya sp. NF3 is a steffimycin
producer [50] and its whole genome sequence is published in GenBank/ENA/DDBJ. Al-
though this strain is registered as E. scabrispora NF3 in GenBank/ENA/DDBJ, it is not
E. scabrispora because the DNA–DNA relatedness between Embleya sp. NF3 and E. scabrispora
DSM 41855T is 31%, much lower than the threshold for species delineation. As Embleya sp.
NF3 is also not E. hyalina, since its DNA–DNA relatedness to E. hyalina NBRC 13850T is
54% (unpublished), Embleya sp. NF3 should be proposed as a new independent species,
although a species description based on specific characteristics is required. Reports on
bioactive substances from this genus are increasing in recent years [51,52]. Thus, members
of the genus Embleya will attract attention as a rich source for new bioactive secondary
metabolites, and, consequently, more new species will be discovered.

In 2021, Teo et al. transferred S. caeruleus to the genus Actinoalloteichus and then named
Actinoalloteichus caeruleus comb. nov. in a study proposing novel genera by phylogenomic
analyses [53]. Actinoalloteichus cyanogriseus, proposed by Tamura et al. in 2000 [54], is a
synonym of A. caeruleus. Volpiano et al. reclassified S. thermoautotrophicus to a novel genus,
the genus Carbonactinospora gen. nov., and named it Carbonactinospora thermoautotrophica
comb. nov. In this report, a novel family, the family Carbonactinosporaceae fam. nov., was
also proposed, including the genus and species derived from S. thermoautotrophicus [55].

In 2022, Madhaiyan et al. transferred a group of 12 Streptomyces species (S. yeochonensis,
S. acididurans, S. alni, S. bryophytorum, S. epipremni, S. glauciniger, S. guanduensis, S. oryziradicis,
S. paucisporeus, S. rubidus, “S. soli”, S. yanglinensis), “S. gilvigriseus”, “S. cattleya” and two
species (S. vitaminophilus and S. tyrosinilyticus) to newly proposed genera Actinacidiphila
gen. nov., Mangrovactinospora gen. nov., Streptantibioticus gen. nov. and Wenjunlia gen.
nov., respectively, based on phylogenomic analyses coupled with phenotypic comparisons,
citing previous reports. They also proposed two other new genera, Peterkaempfera gen.
nov. and Phaeacidiphilus gen. nov., through the reclassification of three Streptacidiphilus
species. Consequently, the family Streptomycetaceae includes 12 genera at present [56]. High
resolutions of whole genome sequence-based classifications enable us to subdivide the
genus Streptomyces with closely related taxa although these taxa are large and complicated.
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Table 1. Streptomyces species transferred to other genera.

Species Reclassified to Reference

S.aburaviensis Kitasatospora aburaviensis comb. nov. Labeda et al., 2017 [45]
S. albolongus Kitasatospora albolonga comb. nov.
S. aureofaciens Kitasatospora aureofaciens comb. nov.
S. avellaneus Kitasatospora aureofaciens
S. cinereorectus Kitasatospora cinereorecta comb. nov.
S. herbaricolor Kitasatospora herbaricolor comb. nov.
S. misakiensis Kitasatospora misakiensis comb. nov.
S. psammoticus Kitasatospora psammotica comb. nov.
S. purpeofuscus Kitasatospora purpeofusca comb. nov.

S. indigoferus Kitasatospora indigofera comb. nov. Nouioui et al., 2018 [46]
S. xanthocidicus Kitasatospora xanthocidica comb. nov.
S. scabrisporus Embleya scabrispora gen. nov., comb. nov.
S. aomiensis Yinghuangia aomiensis gen. nov., comb. nov.

S. griseoplanus Streptacidiphilus griseoplanus comb. nov. Nouioui et al., 2019 [57]

S. catbensis Yinghuangia catbensis comb. nov. Komaki et al., 2019 [48]
S. seranimatus Yinghuangia seranimata comb. nov.

“S. hyalinum” Embleya hyalina sp. nov. Komaki et al., 2020 [49]

S. caeruleus Actinoalloteichus caeruleus comb. nov. Teo et al., 2021 [53]

S. thermoautotrophicus Carbonactinospora thermoautotrophica gen. nov., comb. nov. Volpiano et al., 2021 [55]

S. yeochonensis Actinacidiphila yeochonensis, gen. nov., comb. nov. Madhaiyan et al. 2022 [56]
S. acididurans Actinacidiphila acididurans comb. nov.
S. alni Actinacidiphila alni comb. nov.
S. bryophytorum Actinacidiphila bryophytorum comb. nov.
S. epipremni Actinacidiphila epipremni comb. nov.
S. glauciniger Actinacidiphila glaucinigra comb. nov.
S. guanduensis Actinacidiphila guanduensis comb. nov.
S. oryziradicis Actinacidiphila oryziradicis comb. nov.
S. paucisporeus Actinacidiphila paucisporea comb. nov.
S. rubidus Actinacidiphila rubida comb. nov.
“S. soli” Actinacidiphila soli sp. nov.
S. yanglinensis Actinacidiphila yanglinensis comb. nov.
“S. gilvigriseus” Mangrovactinospora gilvigrisea gen. nov., sp. nov.
“S. cattleya” Streptantibioticus cattleyicolor gen. nov., sp. nov.
S. vitaminophilus Wenjunlia vitaminophila gen. nov., comb. nov.
S. tyrosinilyticus Wenjunlia tyrosinilytica comb. nov.

A phylogenetic tree based on 16S rRNA gene sequences was reconstructed to overview
the phylogenetic positions of these Streptomyces species transferred to other genera
(Figure 2). This tree includes thirteen genera. Actinoalloteichus is a genus of the family
Pseudonocardiaceae, whereas the remaining twelve are those of the family Streptomycetaceae.
Members of the genus Actinoalloteichus formed an independent clade, which is supported
by a bootstrap value of 100%. Eleven genera of the family Streptomycetaceae formed a
large clade with a 99% bootstrap value, but Carbonactinospora thermoautotrophica was un-
expectedly not included in it and, rather, located at a position like an outgroup, although
C. thermoautotrophica has been reported as a member of the family Streptomycetaceae. Among
ten species transferred to the genus Kitasatospora, nine formed a clade with Kitasatospora
setae, the type species of this genus, but Kitasatospora cinereorecta was not included in this
clade. The taxonomic positions of C. thermoautotrophica and K. cinereorecta may need to be
re-evaluated in further studies.
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Figure 2. Phylogenetic tree of type strains of Streptomyces species transferred to other genera based
on 16S rRNA gene sequences. In addition to the members in Table 1, type strains of 35 Streptomyces
species, Kitasatospora setae, four Streptachidiphilus species, Allostreptomyces psammosilienae and four
Actinoalloteichus species are included as references. Numbers on branches indicate the percentage
bootstrap values of 1000 replicates; only values >50% are indicated.
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4.2. Reclassification of Subspecies

The genus Streptomyces once included at maximum 39 subspecies. Among them
17 subspecies were reclassified to independent new species or synonyms of already rec-
ognized species before 2011 (gray in Figure 3). However, many subspecies remained
unreviewed before this decade, although seven subspecies pairs (or trios) were not phylo-
genetically close (as connected by light blue lines with double arrows in Figure 3).
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Figure 3. Phylogenetic tree of all Streptomyces subspecies with validly published names based on
16S rRNA gene sequences. Subspecies indicated in gray were reclassified to species before 2011,
as shown after each gray arrow. Twenty-three subspecies present in 2012 are indicated in black.
Subspecies pairs (or trios) within the same species are connected by light blue lines with double
arrows in this figure. Numbers on branches indicate the percentage bootstrap values of 1000 replicates;
only values >50% are indicated. Kitasatospora setae NBRC 14216T (AB184576.2) is used for an outgroup
(not shown) to indicate the root of this tree.

In 2014, Labeda et al. elevated S. albus subsp. pathocidicus to Streptomyces pathocidicus
sp. nov. as an independent species (Table 2). They used MLSA for taxonomic evaluation
of Streptomyces albus and related taxa. S. albus subsp. pathocidicus and S. albus subsp. albus
were phylogenetically distant and concluded to be discriminable as different species [28].
Three years later, Labeda et al. expanded their MLSA-based classification from a specific
group to the entirety of the genus Streptomyces, including other genera such as Kitasatospora
and Streptacidiphilus in the family Streptomycetaceae. In this report, S. chrysomallus
subsp. fumigatus was transferred to the genus Kitasatospora and elevated as an independent
species, “Kitasatospora fumigate” comb. nov., but the name is not validly approved yet [45].
From 2013, available whole genome sequences of Streptomyces strains increased in num-
ber [19], but whole genome sequences of many type strains in this genus remain unread
and/or unpublished yet. Komaki et al. sequenced whole genomes of nine subspecies
type strains whose WGSs had not been sequenced or published and reviewed their taxo-
nomic positions. Consequently, seven subspecies, namely S. rimosus subsp. paromomycinus,
S. diastaticus subsp. ardesiacus, S. achromogenes subsp. rubradiris, S. albosporeus subsp.
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labilomyceticus, S. cacaoi subsp. asoensis, S. cinereoruber subsp. fructofermentans and
S. hygroscopicus subsp. ossamyceticus were reclassified to independent and new species
because they did not belong to other species [47,58,59]. S. rutgersensis subsp. rutgersensis,
S. hygroscopicus subsp. glebosus and S. libani subsp. rufus, and S. libani subsp. libani were
revealed to be later heterotypic synonyms of known species with validly published names:
S. diastaticus, S. platensis, and S. nigrescens, respectively [59,60]. Consequently, there are only
five subspecies in the genus Streptomyces. However, MLSA suggested that S. albosporeus
subsp. labilomyceticus and S. lavendulae subsp. grasserius should be reclassified to indepen-
dent and new species, as shown in gray in Figure 4, after sequencing their whole genomes.
To propose a new species, the whole genome sequence of the type strain needs to be pub-
lished. In practice, only S. thermoviolaceus comprised definite subspecies, S. thermoviolaceus
subsp. thermoviolaceus and S. thermoviolaceus subsp. apingens, as of the end of 2021 [47].

Subsequently, Komaki et al. reviewed the taxonomic positions of S. sporocinereus,
which was a later heterotypic synonym of S. hygroscopicus, in comparison with strains such
as Streptomyces sp. N11-34, S. hygroscopicus TP-A0867 and S. hygroscopicus NBRC 16556.
Consequently, strains in S. hygroscopicus were divided into two independent subspecies:
S. hygroscopicus subsp. hygroscopicus and Streptomyces hygroscopicus subsp. sporocinereus
subsp. nov. S. hygroscopicus subsp. hygroscopicus includes the type strain of S. endus as a
later heterotypic synonym. S. hygroscopicus subsp. sporocinereus includes the type strain
of S. sporocinereus, S. demainii as a later heterotypic synonym, and three strains that they
examined [61]. In actuality, this is the second subspecies pair of the genus Streptomyces.
Only subspecies within S. hygroscopicus and S. thermoviolaceus have been phylogenetically
confirmed at present, as shown in Figure 4.

Table 2. Reclassification of subspecies in the genus Streptomyces.

Taxa Reclassified to Reference

S. albus subsp. pathocidicus S. pathocidicus sp. nov. Labeda et al., 2014 [28]

S. chrysomallus subsp. fumigatus “Kitasatospora fumigate” comb. nov. Labeda et al., 2017 [45]

S. rimosus subsp. paromomycinus S. paromomycinus sp. nov. Komaki et al., 2019 [58]

S. diastaticus subsp. ardesiacus S. ardesiacus sp. nov Komaki et al., 2020 [59]

S. achromogenes subsp. rubradiris S. rubradiris sp. nov. Komaki et al., 2021 [47]
S. albosporeus subsp. labilomyceticus S. labilomyceticus sp. nov.
S. cacaoi subsp. asoensis S. asoensis sp. nov.
S. cinereoruber subsp. fructofermentans S. fructofermentans sp. nov.
S. hygroscopicus subsp. ossamyceticus S. ossamyceticus sp. nov.

S. rutgersensis subsp. rutgersensis synonym of S. diastaticus Komaki et al., 2020 [59]

S. hygroscopicus subsp. glebosus synonym of S. platensis Komaki et al., 2020 [60]
S. libani subsp. rufus synonym of S. platensis
S. libani subsp. libani synonym of S. nigrescens

S. sporocinereus S. hygroscopicus subsp. sporocinereus subsp. nov. Komaki et al., 2022 [61]
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Figure 4. Phylogenetic tree of the members in Figure 3 with updated names based on 16S rRNA
gene sequences. As members reclassified as synonyms and a new subspecies (S. hygroscopicus
subsp. sporocinereus) were removed and added, respectively, this tree includes only the present type
strains. The genus Streptomyces still includes seven subspecies at present, shown as boldfaced. Since
S. albosporeus subsp. labilomyceticus and S. lavendulae subsp. grasserius are likely two novel independent
species, Streptomyces labilomyceticus sp. nov. and Streptomyces grasserius sp. nov., respectively, as
shown in gray [47], there are indeed only four subspecies in this genus. Type strains of S. albidoflavus,
S. anulatus, S. aurantiacus, S. cyaneofuscatus, S. hiroshimensis, S. microflavus, S. nigrescens and S. platensis
are not included in the same manner as Figure 3 to highlight the results by current reclassifications.
The other footnotes, such as descriptions on the numbers on branches and the outgroup, are the same
as those in Figure 3.

4.3. Synonym

Overclassification is a problem in the taxonomy of Streptomyces. Most species with
validly published names were proposed before molecular-based methods are employed.
In 2012, Labeda et al. reported phylogenetic relationships among type strains of almost
all Streptomyces species. In this report, many synonymies between or among different
species were suggested. However, as stated by the authors, to reclassify them as synonyms,
emended descriptions are required after examining DNA–DNA relatedness to ensure them
to be the same species. Thus, Labeda et al. did not reclassify them in this report. Rather,
this study provided a road map for planning future genome sequencing for type strains
whose whole genome sequences were not available yet [21].

Several research groups reclassified distinct species to synonyms in this decade, as
listed in Table 3. In 2012, Kim et al. sequenced 16S rRNA genes and gyrB of type strains
of 22 species that are phylogenetically close to S. griseus and re-evaluated their taxonomic
positions. Consequently, S. albovinaceus and S. griseinus were reclassified as synonyms of
S. globisporus, whereas S. fimicarius was reclassified as that of S. setonii [15].

In 2014, Labeda et al. investigated taxonomic relationships among S. albus and its
related species [28], which showed high 16S rRNA gene sequence similarities in their
previous report [21], by MLSA. Consequently, S. almquistii, S. flocculus, S. gibsonii and
S. rangoonensis were reclassified as synonyms of S. albus [28].

In 2017, Labeda et al. evaluated taxonomic relationships of members included in the
clade of S. hirsutus [21] by MLSA, whole genome sequencing and dDDH. Consequently
S. bambergiensis, S. cyanoalbus and S. emeiensis were reclassified to synonyms of S. prasinus,
S. hirsutus and S. prasinopilosus, respectively [62]. Komaki et al. sequenced WGSs of
type strains of S. endus, S. hygroscopicus subsp. hygroscopicus and S. sporocinereus and
examined ANIs among the three. As the values exceeded the cut-off for species delin-
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eation, S. endus and S. sporocinereus were reclassified as synonyms of S. hygroscopicus
subsp. hygroscopicus [63]. As the taxonomic position of S. sporocinereus was re-evaluated in
our further study [61], the synonymy between S. sporocinereus and S. hygroscopicus subsp.
hygroscopicus is not included in Table 3. Wink et al. reclassified S. canchipurensis as a
synonym of S. muensis. This synonymy was found in a study to determine the taxonomic
position of “S. caelicus” DSM 40835T, whose species name was not validly published.
“S. caelicus”, as well as S. canchipurensis, was finally reclassified to S. muensis [64]. Goodfel-
low et al. reclassified S. ghanaensis as a synonym of S. viridosporus. This relationship was
revealed in a study characterizing their isolates and proposing Streptomyces asenjonii sp.
nov. S. ghanaensis and S. viridosporus were the most closely related species [65].
Idris et al. reclassified S. melanogenes to a synonym of S. noboritoensis. This study aimed to de-
termine the taxonomic status of their isolate, for which Streptomyces aridus sp. nov. is given.
S. melanogenes and S. noboritoensis were closely related species to S. aridus. Since the MLSA
and phenotypic data showed that S. melanogenes and S. noboritoensis belong to a single
species, this synonymy was also reported [66]. Kämpfer et al. reclassified S. phaeopurpureus
to a synonym of S. griseorubiginosus. As the large number of species with validly pub-
lished names remains a major practical obstacle in an overall genotypic reclassification of
streptomycetes, which can only be resolved by total genome sequence comparisons, the
authors sequenced whole genomes of type strains of these two species by focusing on their
relationship. MLSA, OGRI analyses and phenotypic comparisons suggested that the two
species belong to the same species [67].

Similarly, Kämpfer et al. reclassified S. ciscaucasicus to a synonym of S. canus in 2018,
by conducting whole genome sequencing of the type strains, MLSA, OGRI calculations and
phenotypic comparisons [68]. In 2018, Nouioui et al. conducted taxonomic classification
using already published WGSs of 1142 strains of the phylum Actinobacteria to provide
an improved framework for the classification of actinobacteria based on the principles
of phylogenetic systematics. In this study, according to high DNA–DNA relatedness by
dDDH, ten Streptomyces species were reclassified as synonyms of other species, as shown
in Table 3 [46]. However, some synonymies had been reported prior to Nouioui et al., as
noted in the footnote of Table 3.

In 2019, Cortés-Albayay et al. reclassified S. helvaticus to a synonym of S. chryseus.
because these two species were found to have 100% 16S rRNA gene sequence similarity
with DNA–DNA relatedness by dDDH and ANI values of 95.3% and 99.4 %, respectively,
while analyzing the phylogenetic position of an isolate, for which a novel species name
was given [69].

In 2020, Komaki et al. sequenced WGSs of type strains of eight species in their three
studies and reclassified S. castelarensis and S. sporoclivatus, S. gougerotii, and S. fulvissimus to
synonyms of S. antimycoticus, S. diastaticus and S. microflavus, respectively, based on phylo-
genetic relationship, OGRI and phenotypic comparisons [59,70,71]. In reference [71], the
taxonomic positions of two other WGS-published strains were examined. S. violaceusniger
NRRL F-8817 was reclassified to S. antimycoticus. S. violaceusniger Tü 4113, a spirofungin
producer, was revealed to be a new genomospecies distinct from S. violaceusniger. Although
these two are not type strains, updating their taxonomic positions appropriately is signif-
icant to prevent the incorrect identification, which confuse researchers, from spreading.
The authors reviewed relationships among ANI, DNA–DNA relatedness by dDDH, and
MLSA evolutionary distance. Consequently, clear correlations were observed among them.
This is the first report indicating a numerical relationship between MLSA evolutionary dis-
tance and OGRI [71]. In references [59,70], the authors analyzed biosynthetic gene clusters
(BGCs) of secondary metabolites such as polyketides and nonribosomal peptides in whole
genome sequences. Strains reclassified to the same species (synonyms) harbored the same,
or quite similar, sets of polyketide synthase (PKS) and nonribosomal peptide synthetase
(NRPS) gene clusters in their genomes. In contrast, strains belonging to different species
possessed different sets of clusters, even if they showed high 16S rRNA gene sequence
similarity, such as 100% and 99.9% [59,70]. These results support the idea reported in the
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previous study [72]. Saygin et al. reclassified S. galilaeus to a synonym of S. bobili in a study
proposing Streptomyces cahuitamycinicus sp. nov. S. galilaeus and S. bobili were included in
phylogenetic analyses of S. cahuitamycinicus as related strains, and then their synonymy
was noticed. Based on phylogenetic relationships, MLSA evolutionary distance, OGRI
determined by dDDH and ANI analysis, the two species were revealed as synonyms [73].
Madhaiyan et al. analyzed taxonomic relationships between the type strains of Streptomyces
species that showed high 16S rRNA gene sequence similarity. Based on OGRI such as
ANI, dDDH value and AAI using published WGS data, S. griseofuscus, S. kasugaensis,
S. luridiscabiei, S. pharetrae and S. stelliscabiei were reclassified to synonyms of S. murinus,
S. celluloflavus, S. fulvissimus, S. glaucescens and S. bottropensis, respectively [74].

In 2021, Komaki et al. investigated taxonomic relationships between S. cinnamonensis
and S. virginiae, among S. spororaveus, S. xanthophaeus and S. nojiriensis and between
S. vinaceus and S. cirratus because 16S rRNA gene sequence similarities in these pairs
and trio are 100%, respectively. The authors sequenced the whole genomes of four
type strains whose WGSs had not been published, and revealed synonymy between
S. cinnamonensis and S. virginiae based on OGRI such as ANI and dDDH value, reported phe-
notypes and BGCs of polyketides and nonribosomal peptides in their genomes. In contrast,
synonymy was observed neither among S. spororaveus, S. xanthophaeus and S. nojiriensis nor
between S. vinaceus and S. cirratus [75]. Next, Komaki examined taxonomic relationships
among S. costaricanus, S. graminearus, S. murinus and S. phaeogriseichromatogenes, sharing the
same 16S rRNA gene sequences, by MLSA, ANI analysis, dDDH and reported phenotypes.
Consequently, S. costaricanus, S. murinus and S. phaeogriseichromatogenes were reclassified
to the same species, whereas S. graminearus was not. This report included data on PKS
and NRPS gene clusters [76]. Komaki also studied taxonomic relationships of phyloge-
netically complicated members showing high 16S rRNA gene sequence similarities, such
as >99.9%, in three clades by MLSA, dDDH and described characteristics. As a result,
S. enissocaesilis, S. geysiriensis, S. plicatus and S. vinaceusdrappus were reclassified as syn-
onyms of S. rochei; S. luteus, S. flavoviridis, S. asterosporus and S. viridodiastaticus as synonyms
of S. mutabilis, S. pilosus, S. calvus and S. albogriseolus, respectively; and S. erythrogriseus and
S. variabilis, S. griseorubens and S. matensis, and S. coelescens, S. humiferus and S. violaceolatus
as synonyms of S. griseoincarnatus, S. althioticus, and S. anthocyanicus, respectively. This
report also introduced many cases showing whether strains with >99.9% 16S rRNA gene
sequence similarity were the same species or not, including results previously reported
in his research group [12], which may be useful to review the cut-off value of 16S rRNA
gene sequence similarity to discriminate species. Li et al. found higher OGRI between type
strains of S. calvus and S. aureorectus than the cut-off of species boundaries during a study
of the diversity of endophytic and rhizospheric actinomycetes. Through a comprehensive
comparison of phenotypic, chemotaxonomic and physio-biochemical characteristics as well
as MLSA and whole genome sequencing, S. aureorectus was reclassified to synonym of
S. calvus [77]. Saygin investigated taxonomic relationships and genome features of members
in the S. aurantiacus clade based on MLSA, OGRI and phenotypic and biochemical charac-
teristics. Consequently, S. ederensis and S. glomeroaurantiacus were reclassified to synonyms
of S. umbrinus and S. aurantiacus, respectively [78]. Hu et al. reclassified S. michiganensis
as a synonym of S. xanthochromogenes in a study proposing Streptomyces genisteinicus sp.
nov. for an isolate producing genistein. The authors noticed the close relationship between
S. michiganensis and S. xanthochromogenes in phylogenetic trees of the isolates and selected
members. The phenotypic, chemotaxonomic and genotypic comparisons revealed the
synonymy between the two species [79].

In 2022, Komaki et al. reclassified S. demainii and S. endus to synonyms of S. hygroscopicus
subsp. sporocinereus and S. hygroscopicus subsp. hygroscopicus, respectively, according
to MLSA evolutionary distance and signature sequences in housekeeping genes when
they proposed Streptomyces hygroscopicus subsp. sporocinereus subsp. nov. [61]. Next,
Komaki reclassified S. anthocyanicus and S. tricolor as synonyms of S. violaceoruber, which
was revealed by MLSA after resequencing housekeeping genes as well as phenotypic
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comparison [80]. This report reminds us about the importance to check whether used
sequences are correct, even if they are available from public databases.

Table 3. Reclassified taxa as later heterotypic synonyms.

Taxa Reclassified to a Synonym of Reference

S. albovinaceus S. globisporus Kim et al., 2012 [15]
S. fimicarius S. setonii
S. griseinus S. globisporus

S. almquistii S. albus Labeda et al., 2014 [28]
S. flocculus S. albus
S. gibsonii S. albus
S. rangoonensis S. albus

S. bambergiensis S. prasinus Labeda et al., 2016 [62]
S. cyanoalbus S. hirsutus
S. emeiensis S. prasinopilosus

S. endus S. hygroscopicus subsp. S. hygroscopicus Komaki et al., 2017 [63]

S. canchipurensis S. muensis Wink et al., 2017 [64]

S. ghanaensis S. viridosporus Goodfellow et al., 2017 [65]

S. melanogenes S. noboritoensis Idris et al., 2017 [66]

S. phaeopurpureus S. griseorubiginosus Kämpfer et al., 2017 [67]

S. ciscaucasicus S. canus Kämpfer et al., 2018 [68]

S. citreofluorescens S. anulatus Nouioui et al., 2018 [46]
S. fluorescens S. anulatus
S. avellaneus 1 S. aureofaciens
S. ciscaucasicus 2 S. canus
S. phaeopurpureus 3 S. griseorubiginosus
S. griseolus S. halstedii
S. spheroides S. niveus
S. californicus S. puniceus
S. floridae S. puniceus
S. emeiensis 4 S. prasinopilosus

S. helvaticus S. chryseus Cortés-Albayay et al., 2019 [69]

S. castelarensis S. antimycoticus Komaki et al., 2020 [71]
S. sporoclivatus S. antimycoticus

S. gougerotii S. diastaticus Komaki et al., 2020 [59]

S. fulvissimus S. microflavus Komaki et al., 2020 [70]

S. galilaeus S. bobili Saygin et al., 2020 [73]

S. griseofuscus S. murinus Madhaiyan et al., 2020 [74]
S. kasugaensis S. celluloflavus
S. luridiscabiei S. fulvissimus
S. pharetrae S. glaucescens
S. stelliscabiei S. bottropensis
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Table 3. Cont.

Taxa Reclassified to a Synonym of Reference

S. cinnamonensis S. virginiae Komaki et al., 2021 [75]

S. costaricanus S. murinus Komaki, 2021 [76]
S. phaeogriseichromatogenes S. murinus

S. enissocaesilis S. rochei Komaki, 2021 [12]
S. geysiriensis S. rochei
S. plicatus S. rochei
S. vinaceusdrappus S. rochei
S. luteus S. mutabilis
S. flavoviridis S. pilosus
S. asterosporus S. calvus
S. erythrogriseus S. griseoincarnatus
S. variabilis S. griseoincarnatus
S. griseorubens S. althioticus
S. matensis S. althioticus
S. viridodiastaticus S. albogriseolus
S. coelescens S. anthocyanicus
S. humiferus S. anthocyanicus
S. violaceolatus S. anthocyanicus

S. aureorectus S. calvus Li et al., 2021 [77]

S. ederensis S. umbrinus Saygin, 2021 [78]
S. glomeroaurantiacus S. aurantiacus

S. michiganensis S. xanthochromogenes Hu et al., 2021 [79]

S. endus S. hygroscopicus subsp. hygroscopicus Komaki et al., 2022 [61]
S. demainii S. hygroscopicus subsp. sporocinereus

S. anthocyanicus S. violaceoruber Komaki, 2022 [80]
S. tricolor S. violaceoruber

1, The synonymy between S. avellaneus and S. aureofaciens was reported by Labeda et al. in 2017 and these two
were already transferred to the genus Kitasatospora as shown in Table 1; 2, The synonymy between S. ciscaucasicus
and S. canus was reported by Kämpfer et al. in the same year; 3, The synonymy between S. phaeopurpureus and
S. griseorubiginosus was already reported by Kämpfer et al. in 2017; 4, The synonymy between S. emeiensis and
S. prasinopilosus was already reported by Labeda et al. in 2016.

A phylogenetic tree based on 16S rRNA gene sequences was reconstructed to show
relationships between/among species reclassified to the same species as synonyms (Left
panel, Figure 5). It is obvious that species with high 16S rRNA gene sequence similarities
were reclassified as synonyms because branch lengths are short. Nowadays, members
shown in gray can be removed from phylogenetic trees of type strains because they are not
type strains with correct names. Consequently, phylogenetic trees will be less complicated
than before as a result of the reclassifications stated above (Right panel, Figure 5).
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Figure 5. Phylogenetic trees of the type strains of species or subspecies listed in Table 3. Left
panel (before 2012): type strains of later heterotypic synonyms are shown in gray. Scientific names
with priority (correct names) are in black. Right panel (after 2022): strains identified as later het-
erotypic synonyms were removed. Numbers on branches indicate the percentage bootstrap values of
1000 replicates; only values >50% are indicated. Nocardia terpenica IFM 0706T (JABMCZ010000003) is
used for an outgroup (not shown) to indicate the root of this tree.

5. Further Perspectives

Reviewing classifications based on the latest criteria is essential to prevent taxonomic
confusions in systematics. Molecular identification methods using WGSs have improved
remarkably in the postgenomic era. This decade was a period that taxonomists applied
these methods with initiative and devotedly contributed to Streptomyces reclassification,
which had not been sufficiently updated despite some molecular studies that suggested
its necessity before. Consequently, many species that needed to be re-evaluated are be-
coming well-organized, as introduced here. In this decade, eight new genera in the family
Streptomycetaceae were proposed through transfers of Streptomyces species. Most subspecies
were appropriately reclassified to independent species or synonyms of known species.
Identical species with different names were reclassified to synonyms as shown in Table 3
and Figure 5. However, the genus Streptomyces may still include species that are unre-
viewed by molecular data, since this genus is composed of about 700 species and it is
not easy to find species with nonupdated names. As 16S rRNA gene sequence analysis
may not be sufficient to find synonymous species that have not been reviewed and WGS
comparison is not yet feasible for comprehensive analysis, alternative methods are required
to accelerate reviewing and updating the classification. Komaki reported a possibility that
trpB gene sequence similarities can substitute for dDDH [80]. It may be useful to look for
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species that need to be re-evaluated comprehensively. This is because sequence analysis of
a single housekeeping gene is easier and fits comprehensive analysis better than MLSA and
OGRI analysis.

Streptomyces strains are a rich source for pharmacologically useful bioactive com-
pounds, but their secondary metabolites are not focused on in the taxonomy because it
is believed that there is no relationship between taxonomic classification and their prod-
ucts. It is not feasible to explain the relationship because products of a strain often differ
when the strain is cultured in different conditions. In contrast, there are many species
known to produce specific secondary metabolites. For instance, S. griseus, S. avermitilis
and S. tsukubensis are well known as producers of streptomycin, avermectin and tacrolims,
respectively. As the other species may produce these compounds, the products cannot be
considered as a taxonomic characteristic specific to the species.

When Yamamura et al. proposed a new species, they briefly compared the secondary
metabolite-biosynthetic gene clusters (smBGCs) encoded in its whole genome with those
of the closest neighbor in their report [81]. To the best of my knowledge, this is the
first taxonomical report including data on smBGCs. Subsequently, our research group
often employed more detailed analysis of smBGCs, focusing on PKS and NRPS gene
clusters in taxonomic studies. Consequently, it was revealed that strains within an iden-
tical species harbor the same or very similar sets of PKS and NRPS gene clusters. This
is suggestive that the strain-diversities of these gene clusters are not so high within a
species. In contrast, strains belonging to different species never harbor the same or very
similar sets of these gene clusters, even if the strains are phylogenetically close, such as
taxonomic neighbors [59–61,70,72,75,76,82–84]. An example is shown as Figure 6 (unpub-
lished). The conservation rate of PKS and NRPS gene clusters correlates to DNA–DNA
relatedness between strains in general [84]. If strains within an identical species were
observed to harbor different sets of PKS and NRPS gene clusters, or if strains of different
species possess the same or quite similar sets of these gene clusters, we need to doubt
classification of these species (Komaki et al., submitted). Similarly to morphological, physi-
ological, biochemical and chemotaxonomic features, smBGCs such as PKS and NRPS gene
clusters in genomes may also become a characteristic to classify Streptomyces strains at the
species level in the near future.
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not S. griseus, but S. anulatus, because its DNA–DNA relatedness to S. griseus DSM 40236T, S. anulatus 
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Figure 6. PKS and NRPS gene clusters on linear chromosomes of three strains showing 100%
16S rRNA gene sequence similarity. Red, PKS gene cluster; blue, NRPS gene cluster; green, hybrid
PKS/NRPS gene cluster; open circle, conserved between different species; closed circle, specific
to each species; star, strain-specific. The same gene clusters are connected by colored lines. All
19 clusters of S. anulatus NBRC 3122 are conserved in S. anulatus NBRC 13369T. Between the two
S. anulatus strains, only two clusters are specific to strain NBRC 13369T. Among the 19 to 21 and
18 clusters of the S. anulatus strains and S. setonii NBRC 13085T, respectively, only eight are conserved
between the two species. Between the two species, 11 to 13 are specific to S. anulatus whereas 10
are specific to S. setonii. Although strain NBRC 3122 is published as S. griseus in the NBRC Culture
Catalog, it is not S. griseus, but S. anulatus, because its DNA–DNA relatedness to S. griseus DSM
40236T, S. anulatus NBRC 13369T and S. setonii NBRC 13085T is 48.7%, 91.5% and 44.3%, respectively,
by dDDH.
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