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Abstract: Marine bacteria are a significant source of bioactive compounds for various biotechnologi-
cal applications. Among these, actinomycetes have been found to produce a wide range of secondary
metabolites of interest. Saccharopolyspora is one of the genera of actinomycetes that has been recog-
nized as a potential source of these compounds. This study reports the characterization and genomic
analysis of Saccharopolyspora sp. NFXS83, a marine bacterium isolated from seawater from the Sado es-
tuary in Portugal. The NFXS83 strain produced multiple functional and stable extracellular enzymes
under high-salt conditions, showed the ability to synthesize auxins such as indole-3-acetic acid, and
produced diffusible secondary metabolites capable of inhibiting the growth of Staphylococcus aureus.
Furthermore, when Phaeodactylum tricornutum was co-cultivated with strain NFXS83 a significant
increase in microalgae cell count, cell size, auto-fluorescence, and fucoxanthin content was observed.
Detailed analysis revealed the presence of clusters involved in the production of various secondary
metabolites, including extracellular enzymes, antimicrobial compounds, terpenes, and carotenoids in
the genome of strain NFXS83. Ultimately, these findings indicate that Saccharopolyspora sp. NFXS83
has a significant potential for a wide range of marine biotechnological applications.
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1. Introduction

Marine environments harbor diverse and rich bacterial populations, which play key
roles in several aspects of marine ecology and global nutrient cycles [1]. Amongst marine
microorganisms, actinobacteria are of special interest due to their relevant impacts in ma-
rine ecosystems and increased ability to synthesize a wide variety of secondary metabolites
and bioactive compounds of biotechnological interest, including antibiotics, antitumoral
agents, pigments, and enzymes [2–5]. Marine actinobacteria are found in several marine
environments, including surface waters [6], sediments [7,8], and even adhered to the sur-
faces of other marine organisms, such as macroalgae [9] and marine invertebrates [10].
These bacteria play a role in the cycling of nutrients in marine ecosystems and can interact
with other marine organisms in a wide range of trophic interactions. For example, some
actinobacteria have been shown to produce compounds that inhibit the growth of harmful
algae, potentially affecting their abundance and distribution in the ocean [11]. On the
other hand, some actinobacteria producing antimicrobial compounds may have a mutual-
istic relationship with marine organisms such as corals, protecting these organisms from
pathogens and other predators [12].

The stressful nature of marine environments (e.g., high salinity, fluctuating tempera-
tures and light intensity, low nutrient concentrations, competition) greatly impacts their
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associated microorganisms, including marine actinobacteria. This leads to strong adapta-
tions (genetic and phenotypic) to stress conditions by these microorganisms, favoring the
biosynthesis of unique bioactive compounds [13]. Recent studies have revealed the biotech-
nological properties of some marine actinobacteria [5], however, due to their increased
genetic and phenotypic diversity much of their biotechnological potential is still untapped.

Saccharopolyspora are gram-positive, aerobic, non-motile actinobacteria that are largely
distributed throughout the terrestrial and marine environments with half of their species
described as halophilic or halotolerant [14]. Moreover, Saccharopolyspora are one among
the various genera of actinomycetes recognized as a potential source of novel bioactive
compounds [14]. For example, some species of Saccharopolyspora are known to produce
several antibiotics, including erythromycin [15,16].

In this work, the marine actinomycete Saccharopolyspora sp. NFXS83, a bacterium
isolated from the seawater surface (photic zone) in the Sado estuary, Portugal, is charac-
terized in detail and its genome sequence is analyzed and discussed. The results obtained
herein bring new insights into the role of Saccharopolyspora in marine environments and
their potential for use in a wide range of biotechnological applications, including the ability
to promote microalgae growth and their accumulation of valuable compounds, and the
production of several secondary metabolites of relevance.

2. Materials and Methods
2.1. Isolation and Identification of Strain NFXS83

Strain NFXS83 was isolated as part of an effort to characterize the microalgae and
bacterial communities of Portuguese marine waters. For this, seawater was collected and
used for the isolation of microorganisms. The surface seawater from the photic zone was
collected from the Sado estuary, Portugal, in June 2021 and immediately transported to the
lab. The water was filtered using sterile cellulose filters (5 µm) and used for the isolation of
bacteria by spreading 50 mL of filtered seawater in Marine Agar (MA, Condalab, Spain)
plates. The plates were incubated at 26 ◦C in the dark for 12 days. After the incubation
period, individual colonies were selected and streaked until pure cultures were obtained.
Strain NFXS83 was isolated, maintained in MA plates and grown in Marine Broth (MB,
Condalab, Spain) whenever necessary. The strain was kept at glycerol stocks at −80 ◦C
until further use.

The strain NFXS83 16S rRNA gene sequencing was conducted following genomic
DNA extraction from an overnight culture (in MB) using the PureLink™ Genomic DNA
kit (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions. The
obtained DNA was analyzed for its purity and integrity using a Nanodrop® (ND-1000,
Thermo Scientific, Waltham, MA, USA) and was used for the PCR amplification reaction.
The 16S rRNA gene was amplified using primers 27F and 1492R following the conditions
described elsewhere [17]. The near complete 16S rRNA sequence of strain NFXS83 was
obtained following its sequencing, which was performed using an external service provided
by Eurofins Genomics (Germany).

Saccharopolyspora type strains and other related bacteria 16S rRNA genes were obtained
from the NCBI database (https://www.ncbi.nlm.nih.gov/ accessed on February 2023) and
aligned using MUSCLE [18]. The 16S rRNA-based phylogenetic analysis was conducted in
MEGA X [19], using the Maximum Likelihood (ML) method and General Time Reversible
(GTR) model (discrete gamma distribution and invariable rate variation model) with a
bootstrap of 500 replicates.

2.2. Characterization and Biotechnological Potential of Saccharopolyspora sp. NFXS83
2.2.1. Production of Extracellular Lytic Enzymes

A colony of strain NFXS83 was picked into a 50 mL Falcon tube containing 10 mL of
MB and incubated at 26 ◦C, 180 rpm for 3 days. After this period, 10 µL of the bacterial
inoculum were directly inoculated (spots) onto marine basal solid media (3 g/L yeast
extract, 5 g/L peptone and 15 g/L agar in natural seawater; pH 7.6) supplemented with
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different substrates (2 g/L; cellulose, chitin, starch, alginate, pectin, skimmed milk, respec-
tively) (tributyrin, 10 mL/L; olive oil, 30 mL/L), in duplicate and incubated for 72 h at
26 ◦C. The enzymatic activities were determined on plates using Lugol’s Iodine Solution
(prepared with 1 g I2 and 2 g KI in 300 mL of bi-distilled water), two days after inocula-
tion. The degradation halos were measured in centimeters using the image processing
tool ImageJ [20].

2.2.2. Biosynthesis of Indole-3-Acetic Acid (IAA) and Other Indolic Compounds

Strain NFXS83 ability to produce IAA (indole-3-acetic acid), IPA (indole-3-propionic
acid) and IBA (indole-3-butyric acid) was tested using the methodology based on the use
of the Salkowski’s reagent described by Glickman and Dessaux [21]. The NFXS83 strain
was pre-cultured in 10 mL of MB at 26 ◦C and 180 rpm shaking for 72 h, and posteriorly
inoculated (10 µL) in a test tube containing 2.5 mL of MB supplemented with 0.5 g/L
of Tryptophan (Sigma-Aldrich, Burghausen, Germany), in duplicate. The tubes were
incubated at 26 ◦C and 180 rpm for 72 h. Culture samples of 1 mL were centrifuged at
7500× g rpm for 1 min and culture supernatants were recovered for analysis. To detect
the indolic compounds, the supernatants were mixed (1:1 v/v) with the Salkowski reagent
(4.5 g/L of FeCl3 in 10.8 M H2SO4) and added to polystyrene cuvettes. After a 5 min
incubation period at room temperature and protected from light, the spectra between
400 and 600 nm was measured using an UV-Vis Spectrophotometer (Ultrospec 2100 pro,
Biochrom, Holliston, MA, USA). The concentration of indolic compounds in the samples
was determined based on the comparison with standard curves generated with known
amounts of IAA, IPA, and IBA (range) that posteriorly received the Salkowski’s reagent as
described above. The production of the three auxins tested was calculated based on the
maximum absorbance wavelength of each of the compounds: 535 nm (IAA), 455 nm (IBA),
and 460 nm (IPA) [21].

2.2.3. Screening for Antimicrobial Activity

For the screening of the antimicrobial activity, strain NFXS83 was grown in 10 mL of
Luria Broth medium (LB, 10 g/L tryptone, 5 g/L yeast extract and 5 g/L NaCl) at 30 ◦C
and 150 rpm for 72 h. After this period, four spots of 10 µL of the NFXS83 bacterial solution
were applied to LB agar plates and incubated for 72 h at 30 ◦C. A culture of Staphylococcus
aureus ATCC 6538 grown overnight in LB medium was adjusted to an optical density at
600 nm (OD600) of 0.1 and streaked into the plates containing the NFXS83 strain grown in
spots. After incubation at 30 ◦C for 24 h the halo of inhibition was measured. The screening
was performed in duplicate.

2.2.4. Microalgae (Phaeodactylum tricornutum CCAP 1055/1) Growth Promotion Assay

The microalga Phaeodactylum tricornutum CCAP 1055/1 was acquired from the Culture
Collection of Algae and Protozoa (CCAP, Scotland, UK), and maintained axenic in MA
plates. The microalga was cultivated in 2 L Schott flasks containing 1.2L of F/2 medium
(seawater supplemented with 20 mL/L of Guillard’s -F/2- Marine Water Enrichment
Solution) (Sigma-Aldrich, St. Louis, MO. USA), submitted to aeration of 0.2 L/min, at
a temperature of 22 ◦C and in the presence of LED light at 70 µmol/s/m2 and a 16:8 h
day/night cycle. The cultivation was carried out for 7 days. After the growth period,
P. tricornutum cells were centrifuged at 3500× g rpm and 20 ◦C for 15 min and resuspended
in F/2 medium.

The strain NFXS83 was grown in MB medium at 30 ◦C and 150 rpm for 72 h. The
bacterial inoculum was centrifuged at 7500× g rpm and 4 ◦C for 8 min and the pellet
resuspended in F/2 medium.

The microalga-bacteria co-cultivation assay was carried out in 6-well cell culture plates
(VWR®, Leuven, Belgium), where 700 µL of the inoculum of P. tricornutum and NFXS83
were added to F/2 medium, for a total of 7 mL per well. The plates contained microalgae
at a final concentration of 1 × 106 cells/mL and a NFXS83 bacterial solution adjusted to
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a final OD600 = 0.1. The plates were incubated under LED lights, with a light intensity
of 70 µmol/s/m2 on a 16:8 h light/dark cycle, with a temperature of 22 ◦C and agitation
of 130 rpm. Samples were taken 5 and 10 days after inoculation and analyzed by flow
cytometry (Muse® Cell Analyzer, Luminex, Northbrook, IL, USA) and visualized under a
microscope (Zeiss AX10, Kesselsdorf, Germany). Flow cytometry provided data on cell
count, cell relative size by forward scattering (FSC), and cell auto-fluorescence (Red). A
total of six replicates were conducted for each treatment (axenic P. tricornutum; axenic P.
tricornutum + NFXS83 inoculation).

Furthermore, at the end of the assay, the fucoxanthin content of microalgae cells was
quantified by analyzing methanol extracts of the culture samples by high-performance
liquid chromatography (HPLC) as described by Wang et al. [22] with slight modifications.
Briefly, 5 mL of culture samples were centrifuged (5000× g, 5 min), and the resulting pellets
were resuspended in 5 mL of pure methanol, vortexed vigorously for 30 s and left in the
dark for 24 h. The efficacy of the extraction was determined by confirming the pellets were
completely white. Afterwards, the extracts were centrifuged to remove cell debris and
directly used for HPLC analysis, which was performed Waters Alliance Separations Module
e2695 (Waters, Dublin, Ireland) coupled with Photodiode Array Detector Module e2998
(HPLC-PDA). Separation of Fucoxanthin was achieved using a C18 reverse phase column
(Phenomenex Luna 3u C18 (2) 100A 75´4.60mm) and a gradient elution at a constant flow
rate of 1 mL/min with the following profile: 65% acetonitrile (ACN) and 35% milli-Q
water (MQ) from 0 to 8 min, increasing until 90% ACN and 10% MQ from 8 to 11 min and
maintained until 14 min, and then decreasing to 65% ACN and 35 % MQ from 14 to 20 min.
The temperature of the column oven was 40 ◦C and the sample injection volume was 20
µL. The chromatogram was recorded using the PDA module at 445 nm. The quantification
of fucoxanthin was performed by peak area integration and comparison to a calibration
curve performed using fucoxanthin analytical standard (Sigma-Aldrich, St. Louis, MO,
USA) prepared with pure methanol in the concentration range 0.05–0.6 ppm.

Statistical analyses were conducted by comparing means using the t-test function
(Student’s t-test) in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). The
differences were considered statistically significant when the p value was < 0.05.

2.3. Saccharopolyspora sp. NFXS83 Genome Sequencing and Analysis

The previously obtained NFXS83 DNA was used for genome sequencing, which was
performed by Macrogen Inc. (Seoul, South Korea). The DNA library was constructed
using the Illumina Nextera XT DNA Library Preparation Kit and was sequenced using
the Illumina Novaseq6000 platform (2 × 150, paired end reads), generating a total of
11,088,684 reads. The obtained reads were trimmed using Trimmomatic [23] and using
standard parameters (Sliding Window Trimming, window size 4, filter by quality, average
quality of 25), leading to a total of 10,528,520 surviving reads which were used for the initial
de novo genome assembly performed using Spades v.3.15.2 [24]. The assembly resulted in
70 contigs (>500 bp). The NCBI Prokaryotic Genome Annotation Pipeline [25] was used
for strain NFXS83 genome annotation. The genome assembly can be found in the NCBI
database under the accession number JAPFGB000000000.1.

The functional genome annotation was conducted using BlastKOALA [26] and BLASTp [27]
searches against the UNIPROT database (2022_04) [28] performed in the Geneious Prime
software [29]. Genes encoding carbohydrate active enzymes were predicted using the
dbCAN2 webserver [30] and the tools DIAMOND (E-value < 1 × 10−102, coverage > 0.35)
and HMMER (E-value < 1 × 10−15, coverage > 0.35). GH and other lytic protein domains
were predicted using the InterProScan tool [31] which is also in the Geneious Prime software.
Proteolytic enzymes were predicted using BLASTp searches against the MEROPS Peptidase
Database [32] in the Geneious Prime software, for the conditions of E-value < 1 × 10−15

and coverage > 0.35. Secondary metabolite production genes/clusters were predicted
using antiSMASH bacterial version v.6.0 [33] in relaxed mode. Phylogenomic analysis
were conducted by calculating the Average Nucleotide Identity (ANI) and the Digital
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DNA-DNA Hybridization (DDH) values between Saccharopolyspora genomes (type strains)
using OrthoANI [34].

3. Results and Discussion
3.1. 16S rRNA-Based Identification and Phylogenomic Analysis of Strain NFXS83

Phylogenetic analysis based on the 16S rRNA gene revealed that strain NFXS83 grouped
in a cluster closer with S. gloriosae DSM 45582T and S. gregorii NCIB 12823T. This cluster was
found grouping next to the S. hirsuta (type species of the genus) group of strains (Figure 1).
The S. gloriosae DSM 45582T was the closest relative of strain NFXS83 (16S rRNA shared
99.86% identity); however, phylogenomic analysis revealed that strain NFXS83 does not
belong to the S. gloriosae species. ANI analysis showed that the strain NFXS83 genome
presents 93% identity to the S. gloriosae DSM 45582T genome, a value that is below the 95%
ANI threshold that delimits the same species [35]. In addition, a DDH estimate (GLM-based)
of 52.90%, lower than the 70% DDH value used to delimit species [36], was obtained when
comparing both genomes. Ultimately, the obtained results indicate that strain NFXS83 is
a member of the currently described Saccharopolyspora genus, but does not belong to the
S. gloriosae species, therefore will be further identified as Saccharopolyspora sp. NFXS83.
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3.2. Characterization of Saccharopolyspora sp. NFXS83
3.2.1. Production of Extracellular Lytic Enzymes in Marine Media

To assess the extracellular lytic enzymatic activities of Saccharopolyspora sp. NFXS83,
an essay of degradation of different substrates added to a basal marine medium was
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performed. Degradation halos were detected in basal media supplemented with lipids
(tributyrin and olive oil), proteins (skimmed milk) and carbohydrates (chitin, alginate,
cellulase, starch, and pectin) (Figure 2). The size of the degradation halos was similar
between the different substrates tested (~2 cm, 72 h after inoculation). Interestingly, the
obtained results indicate that the enzymes produced by Saccharopolyspora sp. NFXS83 are
functional and stable under high salt conditions (~3%, seawater NaCl concentrations),
making them potential candidates for marine biotechnological applications.
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Figure 2. Lytic enzymatic activities observed for Saccharopolyspora sp. NFXS83 when cultivated in
marine basal medium supplemented with different substrates. Enzymatic activities measured by the
degradation halo diameter.

Saccharopolyspora strains are a known source of lytic enzymes, including several
thermostable extracellular enzymes, such as β-galactosidase, alkaline phosphatase, α-
amylase, and proteases of biotechnological interest [14]. For example, Chakraborty and
colleagues [37] showed that the marine haloalkaliphilic Saccharopolyspora sp. A9 produced
an extracellular α-amylase that was stable in the presence of wide range of NaCl concentra-
tions and laboratory surfactants, detergents, and oxidants. The reported amylase showed
novel properties that could lead to applications in detergent, food, and other industrial
processes involving high salt concentrations.

3.2.2. Synthesis of Indole-3-Acetic Acid (IAA) and other Indolic Compounds

Saccharopolyspora sp. NFXS83 presented the ability to synthesize IAA (6.25 ± 0.21 µg/mL),
IBA (62.12 ± 6.35 µg/mL), and IPA (40.95 ± 3.89 µg/mL) from tryptophan, suggesting
that this strain may influence auxin levels in marine environments/organisms. Previ-
ous studies have demonstrated that members of the Saccharopolyspora genus are able to
produce IAA. For example, Gangwar and colleagues [38], showed that strains Saccha-
ropolyspora sp. M13 and O9, isolated from medicinal plants in India, produced 11.1 µg/mL
and 17.2 µg/mL of IAA, respectively. Moreover, many other soil and rhizosphere actino-
mycetes have also shown potential to produce IAA and promote plant growth [39,40]. As
phytohormone-producing microorganisms, actinomycetes could also be potentially used to
promote microalgal growth. Kumsiri et al. [41] showed that the actinomycete Piscicocus
intestinalis WA3 could produce IAA as an algal growth promoting agent, leading to a
significant increase in Tetradesmus obliquus AARL G022 biomass production, chlorophyll a
content, and lipid productivity.

3.2.3. Antimicrobial Activity of Saccharopolyspora sp. NFXS83

Members of the Saccharopolyspora genus are known to synthesize a wide range of
antimicrobial compounds [16]; therefore, strain NFXS83 was tested for its ability to inhibit
the growth of the pathogen, Staphylococcus aureus. The antimicrobial activity of the strain
NFXS83 against S. aureus was confirmed by the visualization of an inhibition zone sur-
rounding the NFXS83 colony spots (Figure 3). These results indicate that strain NFXS83
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produces diffusible secondary metabolites, such as antibiotics, capable of inhibiting the
growth of S. aureus.
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Figure 3. Antimicrobial activity of Saccharopolyspora sp. NFXS83 against Staphylococcus aureus
ATCC 6538 in solid media. Halo measures ~1.39 cm.

3.3. Saccharopolyspora sp. NFXS83 Promoted the Growth of Phaeodactylum tricornutum
CCAP 1055/1

The co-cultivation assay showed that the inoculation of P. tricornutum CCAP 1055/1
with Saccharopolyspora sp. NFXS83 led to an increase of the microalgae cell count, red fluo-
rescence, size, and fucoxanthin accumulation when compared to the microalgae cultivated
under axenic conditions (Figure 4A–D).
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(cells/mL); (B) auto-fluorescence (Red); (C) front scatter (FSC); (D) fucoxanthin content (pg/cell) for
T10. Values are average of n = 6 ± standard deviations. * Statistically significant (p < 0.05).

The presence of Saccharopolyspora sp. NFXS83 led to a significant increase (31%) in
the microalgae cell number, and this effect was already observed 5 days after the initial
inoculation. The effect maintained leading to a 51% increase observed at 10 days after
inoculation (Figure 4A). In the same period, the increase of red fluorescence (Figure 4B)
and cell size (Figure 4C), 24% and 30%, respectively, was also significant. The amount of
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fucoxantin accumulated per cell was also calculated, leading to an increase of 24% of this
content when compared to the microalgae cultivated in axenic conditions (Figure 4D).

Microscope observations (Figure 5) showed that the NFXS83 bacterium promoted
the aggregation of P. tricornutum cells and the formation of films, which may facilitate the
possible exchanges of compounds that may occur between the microalga and the bacterium.
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growth of Saccharopolyspora sp. NFXS83; (C) P. tricornutum biofilm with Saccharopolyspora sp. NFXS83.

Several studies have showed the beneficial impacts of bacteria in the development of
several microalgae [42], including P. tricornutum [43,44]. Bacteria thrive in the microalgae
phycosphere; they feed on algal exudates while also producing biostimulant compounds,
such as IAA, and recycling nutrients [42,45]. The previously described results shown the
ability of the strain NFXS83 to produce different auxins (IAA, IBA and IPA), which could be
an explanation for the observed P. tricornutum growth improvement. In fact, several reports
have shown that bacterial-synthesized IAA positively impacted the growth of several
distinct microalgae [46,47]. Nevertheless, other factors may be involved in the beneficial
interaction between Saccharopolyspora sp. NFXS83 and P. tricornutum, and new studies are
necessary to unveil the detailed molecular interactions between these organisms.

3.4. General Properties of Saccharopolyspora sp. NFXS83 Genome

The genome of Saccharopolyspora sp. NFXS83 is 6.896 Mbp in length with an average
GC content of 71%. A total of 5999 genes were predicted, of which 5836 correspond to
complete protein-coding sequences (CDSs). A total of 55 RNA-related genes were also
found. The analysis performed using BlastKOALA resulted in the functional annotation of
2446 from a total of 5836 CDSs (41.9%) (Table S1). The annotated CDS were mostly involved
in carbohydrate metabolism (301), genetic information processing (443), and signaling and
cellular processes (257), followed by amino acid metabolism (219), environmental infor-
mation processing (175), and the metabolism of cofactors and vitamins (125), energy (108),
nucleotides (100), and lipids (91).

3.5. Genomic Insights into Saccharopolyspora sp. NFXS83 Lytic Enzymes
3.5.1. Glycosyl Hydrolases and Pectate Lyase Family Enzymes

Strain NFXS83 presented the ability to degrade extracellular chitin, starch, cellulose,
pectin, and alginate, indicating the presence of extracellular lytic enzymes in its genome.
In fact, a total of 60 CDSs encoding Glycosyl Hydrolase (GH) enzymes, divided into
33 different GH families, were detected in the genome of Saccharopolyspora sp. NFXS83.
From these, 34 GHs contained signal peptides, including chitinases, glucanases, rhamnosi-
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dases, and several other lytic enzymes (Table S2). Only two CDS encoding enzymes from
the Polysaccharide Lyase (PL) family were found, both containing signal peptides.

Chitinases (GH18) were amongst the most prevalent signalP+ GHs in the strain
NFXS83 genome. The encoded four chitinases were similar (33–73%) to Saccharopolyspora
erythraea extracellular chitinase [48] (Table S3). Moreover, the NFXS83 genome contained
one signalP+ beta-N-acetylhexosaminidase (GH20, OOZ19_22990) which presented 44%
identity to the described beta-N-acetylhexosaminidase of Cellumonas firmi involved in
the degradation of beta-N-acetylglucosaminides and N-acetylchitooligomers that result
from chitin degradation processes [49] (Table S3). In addition, NFXS83 also contained
several deacetylases, possibly involved in chitin deacetylation to chitosan, and one gene
(OOZ19_20955) encoding a signalP+ chitosanase with high identity (64.2%) to a Streptomyces
sp. N174 chitosanase [38] (Table S3), further suggesting that strain NFXS83 may also
degrade chitin via chitosan.

Three genes encoding GH13 family enzymes (amylase) were found, however, only
one gene (OOZ19_20745) encoding an amylase domain-containing protein presented a
signal peptide region (Table S3). Furthermore, one other SignalP+ CDS (OOZ19_03275)
from the GH97 family identical (36.0%) to a Glucan 1,4-alpha-glucosidase SusB from
Bacteroides thetaiotaomicron was annotated. This glucoamylase presents the ability to hy-
drolase the alpha-1,4-, alpha-1,6-, alpha-1,3- and alpha-1,2-glucosidic linkages during
starch degradation [50].

As for cellulose degradation, despite the absence of genes encoding typical cellu-
lose hydrolyzing enzymes (endo-β-1,4-glucanase or exo-1,4-glucanase activity) in the
Saccharopolyspora sp. NFXS83 genome, several genes encoding other glucanases and glu-
cosidases were detected (Table S3). Five of these genes encoded signalP+ enzymes (GH64,
OOZ19_03725; GH55, OOZ19_09715; GH30, OOZ19_18355; and GH16, OOZ19_28405) and
are possibly involved in the demonstrated cellulolytic activities of strain NFXS83.

Eight genes encoding enzymes capable of hydrolyzing different components of pectin
were also found: two endo-alpha-(1>5)-L-arabinanases, one beta-L-arabinobiosidase, one
alpha-galactosidase, three beta-galactosidases, and one rhamnogalacturonan endolyase
(Table S3). The signalP+ containing protein encoded by OOZ19_04700, presented high
identity (54.7%) to Bacillus subtillis 168 rhamnogalacturonan endolyase YesW, whose ability
to hydrolyze rhamnogalacturonan (main component of pectin) has already been demon-
strated [39]. Additionally, a CDS (OOZ19_16415) encoding a signalP+ enzyme from the
PL14 family (alginate lyase activity) was detected in the NFXS83 genome (Table S2).

Interestingly, the genome of Saccharopolyspora sp. NFXS83 also contained three genes
encoding lysozymes, known for their ability to lyse bacterial cell membranes [40]. Of these,
only one was signalP+ (OOZ19_20845), which may be indicative of extracellular activity
(Table S3).

From the 62 CDS presented in Table S2, 12 did not present similarity to any of the
entries found in the UniProt database, suggesting that Saccharopolyspora sp. NFXS83 en-
codes new protein coding sequences not previously identified from the GH23, GH33,
GH43, GH87, GH93, GH114, GH172, and PL14 families. Thus, this isolate could be
a source of novel enzymes adapted to marine environments with strong potential for
biotechnological applications.

3.5.2. Lipases, Esterases and Proteases

The degradation of proteins and lipids in marine media was also determined for
strain NFXS83. This is consistent with the presence of 12 lipases and 37 esterase-encoding
genes in its genome. From the 12 genes encoding lipases, 3 encoded proteins that con-
tained signal peptides and extracellular domains (Table S4). Two CDS (OOZ19_14095 and
OOZ19_09905) presented 40.4% and 25.5% similarity, respectively, to the Lipase 2 from
Streptomyces coelicolor, and one (OOZ19_29350) presented 31.2% similarity to Lipase EstA
from B. subtillis. Both Lipase 2 and Lipase EstA have been shown to exhibit high lipoly-
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tic activities [51,52]. Regarding esterases, none of the 37 genes encoding these enzymes
contained signal peptides.

BLAST analysis against the MEROPS database led to the prediction of 150 genes en-
coding enzymes belonging to different peptidase families (Table S5), of which 40 contained
signal peptide. Amongst these were several CDS encoding serine proteases (Table S6),
one of which (OOZ19_12730) presented high identity (43.1%) to a homolog Alkine serine
protease from Lecanicillium psalliotae, an extracellular enzyme previously studied for its
ability to degrade a wide range of substrates, including casein and gelatin [53].

3.6. Saccharopolyspora sp. NFXS83 Presents a Wide Range of Gene Clusters Involved in Secondary
Metabolite Production

The analysis conducted using ANTISMASH revealed the presence of multiple biosyn-
thetic gene clusters (BGCs) involved in secondary metabolite production, including polyke-
tides, non-ribosomal peptides, lanthipeptides, bacteriocins or other unspecified ribosomally
synthesized and post-translationally modified peptide products (RiPP-like), non-alpha
poly-amino acids, such as e-Polylysin (NAPAA), ectoine, and terpenes, in the genome
sequence of Saccharopolyspora sp. NFXS83 (Table 1).

Table 1. Secondary metabolite gene clusters identified in the genome sequence of Saccharopolyspora
sp. NFXS83. Only clusters with >50% similarity to known clusters are showed.

BGC Number Cluster Type Most Similar Known Cluster Similarity

1 NRPS, transAT-PKS, T1PKS,
bottromycin, cyanobactin Kirromycin biosynthetic gene cluster from Streptomyces collinus Tu 365 57%

2 T1PKS FD-891 biosynthetic gene cluster from Streptomyces graminofaciens 50%

3 NRPS, T1PKS SGR PTMs biosynthetic gene cluster from Streptomyces griseus subsp. griseus
NBRC 13350 66%

4 NAPAA ε-Poly-L-lysine biosynthetic gene cluster from Epichloe festucae 100%

5 Terpene Geosmin biosynthetic gene cluster from Streptomyces coelicolor A3(2) 100%

6 Terpene Isorenieratene biosynthetic gene cluster from Streptomyces griseus subsp.
griseus NBRC 13350 57%

7 NRPS-like, NRPS, T1PKS Althiomycin biosynthetic gene cluster from Myxococcus xanthus 100%

8 T1PKS Lucensomycin biosynthetic gene cluster from Streptomyces cyanogenus 68%

9 Ectoine Ectoine biosynthetic gene cluster from Streptomyces anulatus 100%

10 RRE-containing,
lanthipeptide-class-III Ery-9 biosynthetic gene cluster from Saccharopolyspora erythraea NRRL 2338 100%

11 Lanthipeptide-class-II Kyamicin biosynthetic gene cluster from Saccharopolyspora sp. 100%

NRPS—Non-ribosomal peptide synthetase; TIPKS—Type I Polyketide synthase; transAT-PKS—Trans-AT
Polyketide synthase; NAPAA—Non-alpha poly-amino acids; RRE-containing—RRE-element containing cluster;
Lanthipeptide class II—Class II lanthipeptides, such as mutacin II (U40620); Lanthipeptide class III—Class III
lanthipeptides, such as labyrinthopeptin (FN178622).

Interestingly, several of these clusters are involved in the production of antimicrobial
compounds, such as erythreapeptin, kiamycin, and ε-Poly-L-lysine, further corroborating
the observed antibacterial effects of strain NFXS83. The antimicrobial gene clusters are
analyzed in detail below.

Other secondary metabolites gene clusters were also detected, such as those in-
volved in terpene production, including geosmin, which is a known volatile of actino-
mycetes [54,55], and an unknown carotenoid pigment (isorenieratene-like), as well as a
gene cluster containing the ectoine production genes. These secondary metabolites may
play key important roles in the ecological adaptations of Saccharopolyspora sp. NFXS83. For
example, geosmin is a chemical signaling compound created by toxin-producing microbes
to deter predation by eukaryotic organisms [55]. Ectoine is a known osmolyte that plays a
key role in the osmotic stress tolerance of several microorganisms [56].
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3.6.1. BGC 1

A hybrid cluster containing homologs of the kirromycin, rimosamide, bottromycin
A2/D, and cyanobactin biosynthesis genes was detected in the NFXS83 genome (Table 2).
Comparative analysis revealed that cluster 1 contained high identity homologs of the Strep-
tomyces collinus Tu365 kir genes [57] (Table 2), suggesting the production of a kirromycin-like
narrow-spectrum antibiotic. Kirromycin binds to prokaryotic elongation factor (EF) Tu, re-
sulting in the inhibition of protein biosynthesis [58]. Next to the kir genes, a Non-Ribosomal
Peptide Synthase (NRPS) presenting homology to the Streptomyces rimosus subsp. rimo-
sus ATCC 10970 rmoI gene involved in rimosamide biosynthesis was also detected. The
rimosamides and detoxins family compounds exhibit anti-antibiotic activity, which may
serve as defense mechanisms to resist specific actinobacteria antibiotics [59]. The presence
of a rmoI-like gene in the vicinity of strain NFXS83 kirromycin-like antibiotic biosynthesis
genes suggests that the rmoI-like produced compound may act as an “antidote” to the
kyrromicin-like antibiotic.

Table 2. Detailed analysis of Saccharopolyspora sp. NFXS83 hybrid biosynthetic gene cluster 1.

Type Locus Tag Mibig Cluster Mibig Protein ID ID % Coverage % Cluster, Host

NRPS OOZ19_02780 BGC0001760 WP_004571777.1 (RmoI) 57.0 107.8 Rimosamide, Streptomyces rimosus
subsp. rimosus ATCC 10970

NRPS OOZ19_02890
BGC0001070

CAN89633.1 (KirAIII) 61.0 102.0
Kirromycin, Streptomyces collinus

Tu 365
T1PKS OOZ19_02875 CAN89636.1 (KirAVI) 56.0 101.4
NRPS OOZ19_02865 CAN89638.1 (KirB) 64.0 99.0

RIPP-like

OOZ19_02920

BGC0001157

CBG72695.1 70 100.5

Bottromycin A2, Streptomyces
scabiei 87.22

OOZ19_02925 CBG72688.1 67 96.4
OOZ19_02930 CBG72689.1 62 102.6
OOZ19_02935 CBG72690.1 65.0 92.8
OOZ19_02940 CBG72691.1 70.0 100.2
OOZ19_02945 CBG72692.1 65.0 92.1
OOZ19_02950 CBG72693.1 56.0 98.7
OOZ19_02955 CBG72694.1 85.0 89.1
OOZ19_02960 CBG72695.1 72.0 99.1
OOZ19_02965 CBG72696.1 63.0 99.6

RIPP-like OOZ19_02990 BGC0001632 KXS89937.1 40.0 105.9 Kawaguchipeptin A, Microcystis
aeruginosa NIES-88

RIPP-like OOZ19_03000 BGC0002629 RFP52076.1 41.0 100.6
Limnothamide biosynthetic gene

cluster, Limnothrix sp.
CACIAM 69d

The bottromycin gene cluster of Saccharopolyspora sp. NFXS83 (OOZ19_02920-02965)
presented high identity (from 58.2 to 78% identity) to the bottromycin A2 biosynthetic gene
cluster from Streptomyces scabiei 87.22 [60] (Table 2). Bottromycins are a class of macro-
cyclic peptides that present potent antibacterial activity, even against multidrug-resistant
human and plant pathogens, such as Xanthomonas oryzae [61]. Homologs of the cyanobactin
biosynthesis genes were also detected in the vicinity of the bottromycins production cluster.
These included two biosynthetic genes presenting similarity to the Kawaguchipeptin A
and Limnothamide biosynthesis genes of Microcystis aeruginosa NIES-88 and Limnothrix sp.
CACIAM 69d, respectively. Interestingly, BLASTp analysis revealed that homologs of
the cyanobactin-like encoding genes of Saccharopolyspora sp. NFXS83 (OOZ19_02990 and
OOZ19_03000) were not detected in other Saccharopolyspora spp. genomes, suggesting that
this may be a strain-specific characteristic. Cyanobactin-like peptides are known to exhibit
antibacterial effects as well as allelopathy against cyanobacteria and small grazing organ-
isms [62–64]. It is possible that Saccharopolyspora sp. NFXS83 cyanobactin-like genes may
play a role in its marine environment colonization activities, where it interacts with other
marine microbes, including cyanobacteria and other members of phyto and zooplankton.
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3.6.2. BGCs 2, 3, 4, 7, 8, 10, 11

A cluster (BGC2) containing a gfsA gene homolog was found in the NFXS83 genome
(Table 3). The gfsA gene is part of a biosynthetic gene cluster of Streptomyces graminofaciens
encoding FD-891, a 16-membered macrolide antibiotic with antitumoral effects [65]. While
some similarity was found between gfsA and NFXS83 OOZ19_03940 encoded proteins the
remaining gfsBCDEF genes were not detected in the NFXS83 genome. These results suggest
that NFXS83 OOZ19_03940 may encode a different type of antibiotic compound.

Table 3. Detailed analysis of Saccharopolyspora sp. NFXS83 biosynthetic gene clusters 2, 3, 4, 7, 8,
10, 11.

Type Locus Tag Mibig Cluster Mibig Protein ID ID % Coverage % Cluster, Host

T1PKS OOZ19_03940 BGC0000058 BAJ16467.1 (GFSA) 46.0 102.4 FD-891,
Streptomyces graminofaciens

NRPS, T1PKS

OOZ19_04725

BGC0001046

BAG17643.1 (SGR_814) 64.0 102.4

SGR PTM, Streptomyces griseus
OOZ19_04730 BAG17642.1 (SGR_813) 63.0 96.7
OOZ19_04735 BAG17641.1 (SGR_812) 77.0 98.2
OOZ19_04740 BAG17640.1 (SGR_811) 66.0 100.0

NAPAA OOZ19_07305 BGC0002174 BBU42014.1 (EPLS) 48.0 97.4 ε-Poly-L-lysine,
Epichloe festucae

NRPS, T1PKS
OOZ19_10385

BGC0000955
CCA29202.1 (AlmA) 49.0 101.9

Althiomycin,
Myxococcus xanthus

OOZ19_10380 CCA29203.1 (AlmB) 51.0 102.5
OOZ19_10375 CCA29204.1 (AlmF) 53.0 97.3

T1PKS
OOZ19_12435

BGC0002333
QSE03591.1 (LcmC) 62.0 100.7

Lucensomycin,
Streptomyces cyanogenus

OOZ19_12440 QSE03601.1 (LcmB) 49.0 100.5
OOZ19_12445 QSE03603.1 (LcmE) 55.0 103.8

RRE-containing,
lanthipeptide-

class-III

OOZ19_26865

BGC0000513

CAM03499.1 72.0 99.2
Ery-9, Saccharopolyspora

erythraea NRRL 2338
OOZ19_26870 CAM03500.1 67.0 102.1
OOZ19_26875 CAM03501.1 100.0 100.0
OOZ19_26880 CAM03502.1 69.0 99.6

Lanthipeptide-
class-III

OOZ19_28805

BGC0002346

QDF63352.1 (KyaR1) 68.0 94.8

Kyamicin, Saccharopolyspora sp.

OOZ19_28810 QDF63353.1 (Kyaorf11) 77.0 91.5
OOZ19_28815 QDF63354.1 (KyaL) 73.0 99.6
OOZ19_28820 QDF63355.1 (KyaK) 71.0 99.7
OOZ19_28825 QDF63356.1 (KyaR) 84.0 99.5
OOZ19_28830 QDF63357.1 (KyaN) 72.0 100.0
OOZ19_28835 QDF63358.1 (KyaA) 78.0 100
OOZ19_28840 QDF63359.1 (KyaM) 74.0 99.7
OOZ19_28845 QDF63360.1 (KyaX) 78.0 100.3
OOZ19_28850 QDF63361.1 (KyaT) 90.0 99.7
OOZ19_28855 QDF63362.1 (KyaH) 82.0 100.0

The BGC3 of Saccharopolyspora sp. NFXS83 presented high similarity to the Strepto-
myces griseus polycyclic tetramate macrolactams (PTMs) gene cluster [66] (Table 3). PTMs
from a wide range of microorganisms are known to present antifungal, antibiotic, and
antioxidant properties [66].

The NFXS83 BGC4 identified throughout AntiSMASH analysis (Table 3), contained
a homolog (OOZ19_07305) of the ε-Poly-L-lysine synthase gene of Epichloe festucae [67],
suggesting that Saccharopolyspora sp. NFXS83 also synthesizes an ε-Poly-L-lysine-like com-
pound that is known for its antimicrobial activity; it is widely used in food, pharmaceutical,
and medical applications [68].

An althiomycin-like BGC (BGC 7) (Table 3) that contains homologs of the Myxococcus
xanthus DK897 almAB and almF [69] was detected in the NFXS83 genome. Althyomycin
is a broad-spectrum sulfur-containing antibiotic mainly synthesized by Streptomyces, soil
Myxobacteria and entomopathogenic Serratia [70].

A T1PKS containing cluster (BGC8) harboring homologs of the Streptomyces cyanogenus
lucensomycin BGC [71] was also found in Saccharopolyspora sp. NFXS83 genomic repertoire
(Table 3). Lucensomycn is a macrolide presenting antifungal activity used in food and
agricultural applications [72].
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Finally, two lanthipeptide encoding BGCs (10,11) were found in the NFXS83 genome
(Table 3), and these contained the genes involved in erythreapeptin and kyamicin biosynthe-
sis, respectively. Both compounds are known products of Saccharopolyspora strains [73,74];
however, their modes of action remain elusive.

3.7. Genomic Insights into the Microalgae-Growth Promoting Properties of Saccharopolyspora sp. NFXS83

Genomic analysis revealed the presence of multiple genes that could be involved in
the beneficial interactions between Saccharopolyspora sp. NFXS83 and microalgae. Genes
involved in the production of IAA were detected in the NFXS83 genome, such as several
aminotransferases responsible for the conversion of tryptophan to indolepyruvic acid
(IPyA), a YUCCA-like enzyme (OOZ19_04645, 31.8% identity to Arabidopsis YUC3 gene)
which converts IPyA to IAA [75], and an homolog (OOZ19_04915) of the flavin-dependent
L-tryptophan oxidase RebO (52.9% identity to RebO from Lentzea aerocolonigenes) involved
in the transformation of tryptophan to 2-iminio-3-(indol-3-yl)propanoic acid, a possible
precursor of indole-3-propionic acid (3-(3-Indolyl)propanoic acid) (IPA). Moreover, Sac-
charopolyspora sp. NFXS83 contains the genetic machinery involved in the production of
several vitamins and co-factors, including pantothenate (vitamin B5), biotin (vitamin B7),
tetrahydrofolate (vitamin B9), and cobalamin (vitamin B12) (Table S7). Several studies have
revealed the importance of bacterial synthesized vitamins in microalgae growth [76–78].

4. Conclusions

This study provides an in-depth analysis of Saccharopolyspora sp. NFXS83 and its
biotechnological potential. The strain produced functional and stable extracellular lytic
enzymes under high salt conditions, presented antimicrobial activity and promoted the
growth and pigment accumulation of Phaeodactylum tricornutum. The genomic analysis
of the strain revealed the presence of several unique genes involved in lytic enzyme
production, various gene clusters involved in the production of secondary metabolites
(e.g., antimicrobial compounds, terpenes, and carotenoids) of great interest, as wells as
genes involved in the biosynthesis of microalgae growth promoting substances, further
reinforcing the marine biotechnological potential of this strain. Overall, this study lays
the foundation for future studies exploring Saccharopolyspora sp. NFXS83 applications in
various marine biotechnological processes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11040902/s1, Table S1: BlastKOALA functional anno-
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