
Citation: Lim, S. A Review of the

Bacterial Phosphoproteomes of

Beneficial Microbes. Microorganisms

2023, 11, 931. https://doi.org/

10.3390/microorganisms11040931

Academic Editor: Grzegorz Wegrzyn

Received: 28 February 2023

Revised: 27 March 2023

Accepted: 31 March 2023

Published: 3 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

A Review of the Bacterial Phosphoproteomes of
Beneficial Microbes
Sooa Lim

Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea;
salim0609@hoseo.edu; Tel.: +82-41-540-9591

Abstract: The number and variety of protein post-translational modifications (PTMs) found and
characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic
proteins, most post-translational protein changes in bacteria affect relatively few proteins because the
majority of modified proteins exhibit substoichiometric modification levels, which makes structural
and functional analyses challenging. In addition, the number of modified enzymes in bacterial species
differs widely, and degrees of proteome modification depend on environmental conditions. Neverthe-
less, evidence suggests that protein PTMs play essential roles in various cellular processes, including
nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination,
sporulation, persistence, and virulence. Additional investigations on protein post-translational
changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of
treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of
major bacterial proteins and review the progress of research on phosphorylated proteins depending
on bacterial species.

Keywords: microorganisms; bacteria; proteins; post-translational modifications (PTMs); signal
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1. Introduction

Bacteria play vital roles in the environment, animals, and humans and perform many
essential ecological functions, such as recycling organic materials and assisting the carbon
and nitrogen cycles. In contrast to plant and animal cells, bacteria are frequently sub-
jected to continuous changes in their physical and chemical surroundings [1]. Bacterial
metabolism is controlled by intracellular signals and provides the energy required for cellu-
lar activity and adaptation to different environments [2]. Bacteria rapidly adapt to various
environments through post-translational modifications (PTMs) or the allosteric binding of
small molecules that play a key role in metabolism. This review focuses on protein phos-
phorylation in PTMs. Protein phosphorylation is the most common and well-studied PTM
that bacteria use to regulate protein activity and underlies bacterial protein heterogeneity.
Previous studies have shown that phosphorylation is utilized more by eukaryotes than
prokaryotes. Nonetheless, research efforts have resulted in the discovery of a wealth of
bacterial phosphoproteins, despite the low abundances of protein modifications [3–5].

2. Bacterial Protein Phosphorylation

Bacterial protein phosphorylation subserves diverse functions in bacteria related to
antibiotic resistance, such as DNA replication, metabolism, heat shock response, biofilm
formation, spore formation, anti-virulence, and the production of amino acids and antibi-
otics. Protein homeostasis and novel protein functions can be achieved by phosphorylation,
which requires components of complex cellular signal detection and conversion networks.
Protein phosphorylation (His, Asp, Ser, Thr, Tyr, and Arg), glycosylation (Arg, Asn, Ser,
and Thr), acetylation (Lys), acylation (Lys), lipidation (Cys), oxidation (Met), and thiolation
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(Cys) are the most common PTMs [6], and protein phosphorylation is one of the best
understood. Amino acid residue phosphorylation can control the activity of proteins by
causing structural changes in active sites and modulating protein–protein interactions. For
example, in bacteria, protein phosphorylation and dephosphorylation of various amino
acids provide a variety of chemical characteristics [7], stabilities, and functionalities [5].
Furthermore, protein phosphorylation plays essential regulatory roles in the cell cycle,
receptor-mediated signal transduction, differentiation, proliferation, transformation, and
metabolism. Two types of protein phosphorylation systems are most common in bacteria:
the so-called two-component systems (TCSs), which include bacterial protein kinases, and
the protein phosphorylation system, which affects serine, threonine, and tyrosine side
chains.

2.1. Two-Component Systems (TCSs)

Since the publication of a breakthrough paper on bacterial signaling in 1986, re-
searchers have been able to share their findings on various regulatory systems. In addition,
changes in protein phosphorylation and the discovery of amino acid sequence similarities
in TCSs have been actively studied [8]. Bacteria sense and respond to numerous external
stimuli to survive in various environments [9] and adapt to environmental changes using
TCSs and phosphorelays, which are critical mediators of bacterial signal transduction
(Figure 1A). In phosphorylases, a sensor kinase first transfers the phosphoryl group to a
response regulator with a conserved aspartate domain but no output domain, which is a
more complicated type of TCS [10]. TCSs comprise at least two proteins: a sensor kinase
and a response regulator. It was predicted that bacteria exhibit signaling phosphorylation
mainly at His and Asp residues [11]. The former senses external stimuli, while the latter
alters the expression profiles of bacterial genes required for survival and adaptation [12]. In
other words, TCSs play a significant role in the general regulatory network by integrating
external signals and information from stress pathways, central metabolism, and global
regulators [13].
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systems in bacteria. (B) The overall mechanism of protein phosphorylation regulated by protein
kinases and protein phosphatase.

For example, the PhoQ/PhoP TCS detects several host stimuli, such as extracellular
magnesium restriction, low pH, cationic antimicrobial peptides, and osmotic stress [5,14].
TCSs are critical for the coordinated expression of virulence factors and, in some situations,
for bacterial viability and proliferation. Several studies have shown that TCSs regulate
virulence and antibiotic resistance in pathogenic bacteria [9,15–26]. Furthermore, the
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mechanisms of specific TCSs inhibitors differ from those of existing antibiotics and might
facilitate the development of effective drugs against drug-resistant bacteria [5,12,15,27,28].
Serine/threonine kinases, which usually have multiple substrates, can also phosphorylate
TCS response regulators [5]. The reported regulatory modes of five TCSs in Escherichia
coli (E. coli) exhibited novel relationships: MG1655, BaeSR, and CpxAR are stimulated by
ethanol stress; KdpDE and PhoRB are induced by low levels of potassium and phosphate,
respectively; and ZraSR is stimulated by zinc [29]. Human TCS genes have been compared
to TCS genes in Francisella tularensis, a Gram-negative bacterium that causes disease in
various hosts [13]. Furthermore, a recent report showed that TCSs utilize multiple mecha-
nisms, such as cross-regulation, to integrate and coordinate input stimuli to control biofilm
formation [30–36].

2.2. Involvements of Ser/Thr/Tyr/Arg Kinases in Bacterial Signaling and Regulation

Unlike TCS histidine kinases, which usually phosphorylate one response regulator,
Hanks-type kinases and BY kinases tend to phosphorylate multiple protein substrates
(Figure 1B) [5]. In phosphorylases, a sensor kinase first transfers the phosphoryl group to a
response regulator with a conserved aspartate domain but no output domain, which is a
more complicated type of TCS [10]. Phosphoproteomic surveys over the past decade in phy-
logenetically diverse bacteria have identified numerous proteins phosphorylated at Ser/Thr
(ST) residues [11]. Furthermore, Tyr phosphorylation regulates several cellular processes
in bacteria [37,38]. Historically, the phosphorylation of ST residues in bacterial proteins
was first identified by pioneering experiments in the 1970s. However, by the early 1980s,
most research focused on TCSs [39], HPr kinase/phosphorylases [40–42], and the isocitrate
dehydrogenase (Icd) kinase/phosphatase system [43–46]. As a result, researchers arrived
at the premature conclusion that eukaryotes possess only Ser/Thr/Tyr (STY) kinases and
that bacteria possess mainly His/Asp kinases. On the other hand, with the advent of
genomic sequencing in the 1990s, genes encoding ST kinases were widely identified in
bacterial genomes [47], and this apparent complexity presented the challenge of identifying
the substrates of these bacterial kinases. Comprehensive searches for proteins containing
phosphorylated STY residues in E. coli, Bacillus subtilis (B. subtilis), and Lactococcus lactis (L.
lactis) in 2007 gave rise to bacterial phosphoproteomics [3,4,47,48]. Since then, hundreds
of homologous TCSs have now been identified in eukaryotic organisms. Reversible phos-
phorylation of STY residues has also been found in many prokaryotes identified as having
equal or greater numbers of STYs than eukaryotes [47,49–51]. For example, numerous
eukaryotic ST kinases that participate in complex signaling pathways help regulate the
Myxococcus xanthus (M. xanthus) life cycle [52]. In addition, bacterial kinases with catalytic
domains may share structural and functional homology with eukaryotic ST kinases [53,54].
Knowledge of protein kinases/phosphatases has expanded as researchers have further
defined bacterial evolutionary conservation. Therefore, the roles of bacterial proteins
containing phosphorylated STY residues corresponding to protein kinases/phosphatases
during signal transduction need to be fully understood. Bacterial protein phosphorylation,
which performs a variety of functions including antibiotic resistance, DNA replication
and metabolism, heat shock response, biofilm formation, sporulation, and antitoxicity,
is continuously investigated [50,55–60]. Several years ago, new evidence suggested that
arginine phosphorylation and dephosphorylation are key regulators in bacteria, which
implied these modifications might also be important physiologically [61–71].

3. Bacterial Phosphoproteomics

Phosphorylation represents a dynamic change, and phosphoproteins are commonly
present at very low levels. As a result, precise and sensitive techniques are needed for phos-
phoproteome analysis. A large body of phosphoproteomic research has been conducted
using mass spectrometry techniques in conjunction with specific phosphor-enrichment
techniques [1]. Additionally, specific tools have been developed to study the many sub-
strates of STY kinases. Traditional phosphoproteomics, utilized in bacteriology before 2007,
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relied on 1D- and 2D-gel 32P-radiolabeling or Western blotting with immunodetection
followed by low-resolution mass spectrometry. Although 2D gel electrophoresis enables the
simultaneous separation of hundreds of proteins, this tool has poor reproducibility, under-
represents low-abundance and hydrophobic proteins, and has a poor dynamic range [72].
Furthermore, the ability of 2D gel electrophoresis to resolve integral membrane proteins
is limited because of protein aggregation during the first isoelectric-focusing (IEF) migra-
tion, and this technique is particularly ineffective at identifying sites of phosphorylation.
However, the efficient enrichment of phosphorylated peptides before mass spectrometry
has revolutionized phosphoproteomics, and since 2007, high-resolution mass spectrome-
try coupled with gel-free analysis has led to the elucidation of site-specific STY bacterial
phosphoproteomes in many bacterial species.

3.1. Phosphoproteome Analysis of Beneficial Microorganisms

The first phosphoproteome studies suggested [3,4,48] that phosphorylations are criti-
cal regulatory events of bacterial metabolism and showed that bacterial phosphoproteins
and phosphorylated residues are associated with evolutionary conservation. Hundreds of
biological meaningful phosphorylation sites in bacteria had been found by 2019 [73–88].
The immobilized metal ion affinity chromatography (IMAC) phosphopeptide enrichment
technique was used to identify more than 2000 phosphorylated proteins [81,82,89]. In 2021,
19 phosphoproteomic studies on bacteria were reported, and the phosphoproteomes of
14 bacteria were analyzed and biologically interpreted [54,71,90–98]. Increasing evidence
shows that bacterial phosphorylation sites are as versatile as those of eukaryotes. Fur-
thermore, many studies have emphasized the utilities of protein phosphorylation events
and their associated kinases/phosphatases for elucidating the associated physiological
processes. Table 1 lists phosphoproteomics studies conducted on 35 bacterial species since
the start of phosphoprotein research in 2007. In addition to STY phosphorylation in bacteria,
recent research efforts have also studied the phosphorylation of histidine (His, the most
abundant bacterial protein) [71,81,82,89,93,99,100] and arginine, which plays a significant
role in bacteria [71,82,101]. Prior to 2014, experiments on sub-stoichiometric phospho-
peptide enrichment were performed under strong acidic conditions, which explains why
phosphorylated histidine residues were difficult to detect. However, phosphorylated His
proteins can now be identified using recently developed methods [81,89]. Furthermore,
several new methods have been devised to analyze arginine since it was discovered that
arginine phosphorylation plays an important role in Gram-positive bacteria [70,71]. The
information provided in Table 1 may be expansive, but it provides comprehensive reference
information on research techniques and trends for those studying phosphorylated proteins.
Furthermore, it provides information for researchers studying specific bacteria regarding
the detection of phosphorylated proteins.

Table 1. Bacterial Ser/Thr/Tyr/His/Arg phosphoprotemics studies.

Organism Strain Year P-pro.
(ea)

P-pep.
(ea)

P-site
(ea)

Ser
(%)

Thr
(%)

Tyr
(%)

Arg
(%)

His
(%) Refs.

C. jejuni 11168 2007 36 58 35 30.3 72.7 9.1 [73]

B. subtilis 168 2007 78 103 78 69.2 20.5 10.3 [3]

L. lactis Il1403 2008 63 102 79 46.5 50.6 2.7 [48]

E. coli K12 MG1665 2008 79 105 81 67.9 23.5 8.6 [4]

K. pneumoniae K2044 2009 81 117 93 31.2 15.4 25.8 [102]

P. putida MK25 2009 40 56 53 52.8 39.6 7.5 [103]

P. aeruginosa PAO1 2009 23 57 55 52.7 32.7 14.5 [103]

M. pneumoniae M129 2010 63 16 16 53.3 46.7 0 [74]
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Table 1. Cont.

Organism Strain Year P-pro.
(ea)

P-pep.
(ea)

P-site
(ea)

Ser
(%)

Thr
(%)

Tyr
(%)

Arg
(%)

His
(%) Refs.

S. pneumoniae D39 2010 84 102 163 47.2 43.8 9 [104]

M. tuberculosis H37Rv 2010 301 381 506 40 60 0 [105]

S. coelicolor A3(2) 2010 40 44 46 34.1 52.3 13.6 [106]

L. monocytogenes EGDe 2011 112 155 143 93 43 7 [107]

S. coelicolor M145 2011 127 260 289 46.8 48 5.2 [108]

H. pylori 26695 2011 67 80 124 42.8 38.7 18.5 [109]

C. acetobutylicum ATCC824 2012 61 82 107 42 47.6 10.6 [110]

R. palustris(Ch) CGA010 2012 54 100 63 63.3 16.1 19.4 [111]

R. palustris(Ph) CGA010 2012 42 74 59 58.9 23.2 17.9 [111]

T. thermophilus HB8 2012 48 52 46 30 12 4 [112]

T. thermophilus HB27 2013 53 93 67 57 36 7 [75]

Synechococcus sp. PCC7002 2013 245 280 410 43.9 42.4 13.6 [113]

E. coli K12 BW25113 2013 133 150 108 75.9 16.7 7.4 [114]

S. aureus COL 2014 108 68 50 25 15 10 [101]

A. baumannii AbH120A2 2014 70 80 70.8 25.2 3.8 [76]

A. baumannii 17978 2014 41 48 68.9 24.1 5.2 [76]

B. subtilis 168 2014 177 155 74.6 18.6 7.3 [115]

S. erythraea NRRL2338 2014 88 109 47 45 8 5.3 [99]

P. aeruginosa PA14 2014 28 43 59 49 24 27 [116]

L. monocytogenes ∆PrfA 2014 191 256 242 155 75 12 [117]

S. meliloti CCBAU 2015 77 88 96 63 28 5 [118]

B. subtilis Spore 2015 124 155 77.41 22.6 [119]

B. subtilis 168 2015 175 441 339 74.8 17.7 7.1 [77]

E. coli K12 BW25113 2015 392 1212 1088 69.5 21.8 7.7 [77]

E. coli K12 MG1655 2015 71 82 [120]

K. pneumoniae K2044 2015 286 663 559 72.9 13.7 12.9 [77]

Synechocystis sp. PCC 6803 2015 188 242 262 [121]

M. tuberculosis SAW5527 2015 214 303 414 38 59 3 [79]

M. smegmatis mc2155 2015 2462 464 185 39.5 57.1 3.5 [78]

M. bovis BCG 1173P2 2015 1765 402 442 35 61.6 3.1 [78]

M. tuberculosis B0/W148 2016 132 180 191 22 76 2 [80]

A. baumannii SK17-S 2016 248 351 410 47 27.6 12.4 4.9 [100]

A. baumannii SK17-R 2016 211 240 285 41.4 29.5 17.5 4.9 [100]

M. tuberculosis H37Ra 2017 257 512 29 68 3 [122]

M. smegmatis mc2155 2018 154 222 242 24.8 74.0 1.2 [84]

M. aeruginosa FACHB-469 2018 37 59 [123]

M. aeruginosa FACHB-905 2018 18 26 [123]

S. coelicolor M145 2018 48 92 85 50.6 47.4 2 [85]

E. coli K12 MG1665 2018 632 1178 1183 [83]
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Table 1. Cont.

Organism Strain Year P-pro.
(ea)

P-pep.
(ea)

P-site
(ea)

Ser
(%)

Thr
(%)

Tyr
(%)

Arg
(%)

His
(%) Refs.

E. coli K12 W3110 2018 861 2446 57.2 25.3 8.5 9 [81]

E. coli K12 W3110 2018 781 2057 2129 1220 501 162 246 [89]

E. coli K12 W3110 2018 2248 56 20 13 5 5 [82]

Z. mobilis ZM4,31821 2019 125 177 73 21 6 [124]

S. thermophilus LMD9 2019 106 410 161 43 33 23 [56]

S. eriocheiris M207170 2019 245 465 [86]

E. coli K12 1655, ∆yea 2021 83 127 67.7 28.3 3.9 [94]

B. subtilis 168 2021 146 283 267 73 12.7 7.5 6.7 [93]

S. aureus USA300 2021 859 3800 3771 55.2 29.6 7.3 7.8 [93]

B. subtilis 168 2021 153 214 67 28 5 [54]

S. pyogenes M1 2021 205 449 41 55 4 [54]

L. monocytogenes EGDe 2021 241 420 56 35 9 [54]

B. pertussis L1423 2021 45 53 54 72 17 11 [92]

B. bronchiseptica RB50 2021 23 28 29 69 21 10 [92]

B. parapertussis 12822 2021 42 50 50 80 12 8 [92]

M. bovis BCG, ∆PknG 2021 914 1371 1401 85.3 13.4 1.3 [90]

S. suis WT, ∆stp 2021 50 73 [91]

S. suis WT, ∆stk 2021 67 87 [91]

S. aureus NE98, ∆SdrE 2022 953 4407 45.5 24 5 20.2 5.4 [71]

S. aureus NE217, ∆Stk1 2022 903 3779 48.1 22 6.7 18 5.2 [71]

S. aureus NE1919,
∆Stp1 2022 951 4085 40.2 21.2 6.1 26 6.5 [71]

C. difficile 630WT 2022 700 2994 1759 75 20 5 [98]

C. difficile 630WT, ∆
erm 2022 504 1061 117 76.6 17.8 5.6 [96]

S. rimosus G7, 10970 2022 230 273 417 41.3 53.5 5.3 [97]

S. coelicolor A3(2) 2022 187 351 361 41 56.2 2.8 [95]

Experimental phosphoproteome coverage is shown in terms of identified phosphorylated proteins (P-pro.),
phosphopeptides (P-pep.), and phosphorylated sites (P-site). Data were extracted from research publications or
databases. Blank areas: not reported; (Ch) chemoheterotrophic growth; (Ph) photoheterotrophic growth.

3.2. Phylogenetic Diagram of Beneficial Microorganisms

This review also provides an overview of useful microorganisms subjected to phos-
phoproteomic studies. Figure 2 lists the 35 bacterial species investigated, divides them
into 8 phyla, 11 classes, 16 orders, 24 families, and 26 genera, and classifies them as Gram-
positive bacteria (P, n = 16) or Gram-negative bacteria (N, n = 19).

Mycobacterium is a genus in the phylum Actinomycetota and is assigned its own
family, Mycobacteriaceae. This genus includes pathogens known to cause serious diseases
in mammals and tuberculosis in humans. Biochemical and signaling pathways involved in
pathogenicity were investigated in virulent H37Rv and non-virulent H37Ra [122] strains to
investigate protein phosphorylation networks using clinical isolates of M. tuberculosis [79].
In addition, a phosphoprotein study was undertaken to understand how antibiotic resis-
tance develops [80] and to obtain insights into the regulatory roles of phosphoproteins in
Mycobacterium growth and development [78,84].
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(P): Gram-positive bacteria and (N): Gram-negative bacteria.

Antibiotics, such as actinorhodin, methylenomycin, undecylprodigiosin, and per-
imycin, are produced by different Streptomyces strains [108]. Immobilized zirconium (IV)
affinity chromatography and mass spectrometry were used to discover more phospho-
proteins [95] and understand the roles of phosphoproteins in Streptomyces coelicolor (S.
coelicolor) [106]. Bacterial differentiation and secondary metabolic activation in S. coelicolor
were recently investigated using a quantitative mass spectrometry-based/proteomics/
phosphoproteomics approach [85].

Bacilli is a class of Gram-positive aerobic bacteria that includes the orders Bacillaes and
Lactobacillales. Bacillales are a representative genus that includes Bacillus, Listeria, and
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Staphylococcus, and Bacillus subtilis (B. subtilis) is used as a model for research on bacterial
cell differentiation and chromosome replication. This bacterium is used commercially to
synthesize large amounts of enzymes [125–127], and B. subtilis 168 has been reported to
contain a number of biologically significant phosphoproteins [3,54,77,93,115]. Listeria mono-
cytogenes (L. monocytogenes) is a pathogenic soil bacterium, and after 143 phosphorylation
sites [107] were discovered in this bacterium, an automated STY phosphopeptide enrich-
ment method was devised to investigate the relationship between protein phosphorylation,
toxicity mechanisms, and carbon metabolism, and as a result, 420 phosphorylation sites
were detected [54]. Phosphorylated proteins in Staphylococcus aureus have been found to
be associated with pathogenicity and virulence. An effective phosphopeptide enrichment
technique was developed to understand how protein phosphorylation affects complex
signaling networks associated with pathogenicity, and eight proteins phosphorylated on
arginine residues have been identified [93,101]. Research has shown that arginine phospho-
rylation plays a significant and relevant role in metabolism [71]. Streptococcus is a genus
of Gram-positive coccus or spherical bacteria belonging to the family Streptococcaceae,
within the order Lactobacillales in the phylum Bacillota [128]. The pathogenic bacterium
Streptococcus pneumoniae, which plays an essential regulatory role in complex protein
phosphorylation metabolic pathways and bacterial virulence, has been studied [104]. A
systematic study of ST kinases and phosphatases of the pathogen Streptococcus suis (S.
suis) was performed using comparative phenotypic, proteomic, and phosphoproteomic
assays [91]. In addition, studies were conducted to identify the proteins and pathways
tagged by STY phosphorylation in Streptococcus thermophilous (S. thermophilous), a lactic
acid bacterium used extensively for dairy fermentation [56]. The class Clostridia includes
Clostridium acetobutylicum (C. acetobutylicum), which produces butanol, and Clostridioides dif-
ficile (C. difficile), a well-known enteropathogen. The extent and nature of phosphorylation
in the Gram-positive enteropathogen C. difficile have not been well characterized. PTMs
have been studied [98], and a promising study was conducted to provide detailed mapping
of kinase–substrate relationships in C. difficile to identify novel biomarkers and therapeutic
targets [96].

Cyanobacteria of the species Microcystis aeruginosa (M. aeruginosa) can play a crucial
role in synthesizing cyanotoxins, particularly the potent liver poisons known as micro-
cystins, and thus, the relation between toxin generation and phosphoproteomic profiles was
studied in M. aeruginosa [123]. Cyanobacteria, such as Synechocystis sp., play important
ecological roles. Ser, Thr, and Tyr phosphorylation contribute to the basic mechanisms that
regulate homeostasis in cyanobacteria [113,121].

Thermus is a genus of thermophilic bacteria belonging to the Deinococcota phylum,
and the research, biotechnological, and industrial potentials of thermostable enzymes
isolated from members of the Thermus genus are of great interest. The phosphoproteins
of Thermus thermophilus (T. thermophilus) HB8 identified using phosphoproteome analysis
are involved in various cellular processes [112]. In a phosphoproteomic study on T. ther-
mophilus HB27, phosphorylation affected PilF phosphorylation on type IV pilus and biofilm
formation [75].

Mycoplasma pneumoniae (M. pneumoniae) belongs to the Mollicutes class and is a diminu-
tive bacterium capable of host-independent life. In humans, M. pneumoniae causes my-
coplasma pneumonia, a form of atypical bacterial pneumonia related to cold agglutinin
disease. This bacterium exhibits little regulation of gene expression, which is why its
phosphorylated proteins are biologically important [74].

Gammaproteobacteria, Alphaproteobacteria, and Betaproteobacteria are classes of
bacteria in the phylum Pseudomonadota. Pseudomonas, Moraxella, and Acinetobacter
species are pathogens that can cause disease in humans, animals, and plants. Acinetobac-
ter baumannii (A. baumannii) can be pathogenic in individuals with a weakened immune
system, and is garnering attention as a cause of nosocomial infections [129]. In one study,
the STY phosphoprotein properties of two A. baumannii reference strains (ATCC17978)
and a highly invasive, multidrug-resistant clinical isolate (Abh12O-A2) were compared,



Microorganisms 2023, 11, 931 9 of 15

and the results obtained highlighted the roles of phosphoproteins in pathogenicity and
drug resistance [76]. The roles of AmpC β-lactamase phosphorylation were also com-
pared in a mipenem-susceptible Acinetobacter baumannii SK17-S and resistant SK17-R
strain [100]. E. coli is a rod-shaped, Gram-negative, facultative anaerobic organism that
can be grown and cultured easily and inexpensively in a laboratory environment [130],
and studies have confirmed that specific phosphorylated bacterial proteins are involved in
translational arrest, growth inhibition, and the induction of physiological dormancy [83].
Phosphoproteomics studies have generated large datasets of bacterial phosphorylated
protein with the aim of understanding cellular processes [4,77,83,114,130]. Approximately
30% of Klebsiella pneumoniae (K. pneumoniae) strains naturally present in soil can fix nitrogen
in anaerobic environments, and K. pneumoniae has been shown to increase crop yields via
nitrogen fixation [131]. Encapsulated K. pneumoniae, an important pathogen in nosocomial
infections, contains protein-tyrosine kinases and phosphatases, which are viewed as keys
to deciphering its virulence [102]. An enrichment process was developed to identify more
phosphopeptides in a single bacterial sample [77]. Rhodopseudomonas palustris (R. palustris)
has a variable metabolism and can grow in photoheterotrophic and chemoheterotrophic
conditions. This species is used to control carbon metabolism by phosphorylation at the
threonine residue and produce hydrogen, lipids, and thus butanol [111]. In addition, the
phosphoproteome of Bordetella pertussis, bronchiseptica, and parapertussis were characterized,
and their potential roles in Bordetella biology and virulence were examined. Bordetella are
pathogens that cause whooping cough or diseases resembling whooping cough. Globally,
bordetella infections have increased, necessitating a greater understanding of these diseases
and the developments of novel medications and vaccines [92].

4. Conclusions

Bacteria play vital roles in the environment, animals, and humans. Bacterial pro-
tein phosphorylation serves diverse functions in bacteria, such as antibiotic resistance,
DNA replication and metabolism, heat shock response, biofilm formation, spore forma-
tion, anti-virulence, and the production of amino acids and antibiotics. Bacteria contain
extremely small amounts of phosphoproteins, but despite this, phosphoproteins influ-
ence essential cellular processes. Research on two-component systems (TCSs) and the
protein phosphorylated at Ser/Thr/Tyr (STY) residues began in 2008, and hundreds of
biologically relevant phosphorylation sites have since been discovered in bacteria. Further-
more, increasing evidence indicates that bacterial phosphorylation sites are as versatile
and rich as those in eukaryotes. Advances in proteomic technology have resulted in the
discovery of many bacterial phosphoproteins, and advances in LC-MS/MS technology
and phosphopeptide enrichment over the last 20 years have enabled the study of large
datasets of Ser/Thr/Tyr/Arg phosphopeptides in bacteria. Prior to 2014, experiments
on sub-stoichiometric phosphopeptide enrichment were done under strong acidic con-
ditions, which explains why phosphorylated histidine residues were difficult to detect.
However, phosphorylated His proteins can now be identified using recently developed
methods [81,89]. Furthermore, several new methods have been devised to analyze argi-
nine since it was discovered that arginine phosphorylation plays an important role in
Gram-positive bacteria [70,71]. Because technological advances have enabled researchers
to determine the biological significances of individual microbes, we undertook this review
to summarize studies on the phosphorylation of proteins and the phylogeny of microbes.
Table 1 provides a summary of the status of Ser/Thr/Tyr/His/Arg phosphorylated pro-
tein analyses conducted on beneficial microorganisms, and Figure 2 summarizes why
researchers studied these microorganisms and findings of biological significance. Although
this information may be somewhat expansive, it provides comprehensive reference infor-
mation on research techniques and trends for those studying phosphorylated proteins.
Furthermore, it provides information for researchers studying specific bacteria regarding
the detection of phosphorylated proteins. This review article was also produced in part to
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help researchers find information on the biological significance of phosphoproteins and
provide information on research ideas and trends.
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