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Abstract: Probiotics are effective to treat or prevent gastrointestinal infections, and microalgae have
demonstrated important health-promoting effects and in some cases function as prebiotics. In this
regard, the anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana by reducing viral
infectivity is well known. However, their effect on immune response against rotavirus has not yet
been investigated. Therefore, the aim of this study was to determine the role of Bifidobacterium longum
and/or Chlorella sorokiniana in influencing an IFN type I-mediated antiviral response in rotavirus-
infected cells. In pre-infection experiments, HT-29 cells were treated with B. longum and C. sorokiniana
alone or in combination, followed by rotavirus infection, whereas in post-infection assays, HT-29 cells
were treated after infection. The cells’ mRNA was then purified to determine the relative expression
level of IFN-α, IFN-β, and precursors of interferons such as RIG-I, IRF-3, and IRF-5 by qPCR. We
showed that combination of B. longum and C. sorokiniana significantly increased IFN-α levels in pre-
infection and IFN-β in post-infection assays, as compared with individual effects. Results indicate
that B. longum, C. sorokiniana, or their combination improve cellular antiviral immune response.

Keywords: probiotics; immunity; Bifidobacterium; Chlorella; rotavirus; gastroenteritis

1. Introduction

Probiotics are commensal microorganisms that colonize human gut, modulate mi-
crobiota, and boost host immunity, improving health [1,2]. Some probiotics, such as
Lactobacillus and Bifidobacterium species, are commonly used because they have effectively
treated or prevented gastrointestinal diseases such as infectious gastroenteritis [3]. Their
beneficial effect is attributed to the production of antimicrobial metabolites, including
short-chain fatty acids, bacteriocins, reuterin, linoleic acid, and secondary bile acids, as
well as their potential to enhance intestinal or systemic immunity [4,5], particularly the
cellular immune response [6–8]. Furthermore, Bifidobacterium species have been shown
to inhibit virus replication, particularly rhinovirus, herpes simplex virus, coxsackievirus,
human papillomavirus, noroviruses, and hepatitis B virus [6,8,9].

Despite probiotics’ beneficial properties, their effectiveness is conditioned to viability
and abundance at the time of consumption (at least 106 CFU/g are potentially effective) [10].
To improve probiotics’ viability, some researchers made combinations with prebiotics or
microalgae such as Chlorella spp. [1,9]. Some studies with Chlorella sorokiniana and C.
vulgaris have shown prebiotic activity by enhancing Lactobacillus rhamnosus, L. acidophilus,
and Bifidobacterium lactis growth and viability [11–13]. Furthermore, C. sorokiniana has
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been associated with improved shelf-life of B. longum and L. plantarum [9,14]. Although
Chlorella is not yet formally defined as prebiotic, it is considered a functional food [14,15].
In vitro assays with Chlorella showed an increased propionate-producing microorganisms’
population in the intestines, which was associated with postbiotic gut health [16]. Moreover,
Chlorella has shown gastrointestinal effects in the management of mild digestive disorders
and the fecal microbiota in pigs. It has also demonstrated antimicrobial activity against
intestinal pathogens [11,14,15,17,18].

On the other hand, rotavirus infection is one of the main causes of gastroenteritis.
Despite vaccination, it is the leading cause of diarrhea-associated morbidity and mortality
in children up to five years old worldwide, particularly in developing countries [19,20].
Rotavirus gastroenteritis is characterized by watery diarrhea, vomiting, fever, and dehydra-
tion. The clinical course varies from mild to severe, sometimes leading to death. Symptoms
are more severe than illnesses caused by other gastrointestinal viruses [21]. Rotaviruses
belong to the Reoviridae family, which possess a double-stranded RNA genome, codifying
for six structural (VP) and six non-structural (NSP) proteins. NSP1 is associated with the
degradation of IFN type I precursors, which downregulates the cellular antiviral response,
improving viral replication that associates with diarrhea severity [20,22,23].

The cellular immune response against pathogens is mediated by interferons (IFNs),
a group of secreted cytokines that elicit distinct antiviral effects [24,25]. The host innate
immune system relies on pathogen sensors. One of them is the retinoic acid-inducible
gene-I (RIG-I)-like [24]. In viral infections, RIG-I is essential for antiviral defense and type I
interferon induction, through the interferon regulatory factors (IRFs) IRF-3, IRF-5, and IRF-
7. Type I interferons are regulated by IFN-α and IFN-β genes and are directly induced in
antiviral responses [24,26,27]. Nevertheless, some viruses express proteins associated with
cellular immunity evasion by inhibiting the antiviral type I interferon pathway [7,22,23].
Some probiotics such as Lactobacillus mucosae and Bifidobacterium breve have been shown to
restore antiviral signaling by upregulating interferon levels [7,28].

Although the properties of probiotics and prebiotics on human health are well rec-
ognized, recent research on microalgae has shown their potential to modulate human
immune response and act as antimicrobial agents against enteric pathogens [25]. We have
previously demonstrated that B. longum and C. sorokiniana possess antiviral effects against
rotavirus. The antiviral activity of B. longum and/or C. sorokiniana has been associated
with rotavirus reduced infectivity [8]. However, their effect on cellular response against
rotavirus has not yet been elucidated. Therefore, this study aimed to determine whether
B. longum and/or C. sorokiniana modulate cellular antiviral response mediated by type I
interferons and precursors in rotavirus-infected HT-29 cells.

2. Materials and Methods
2.1. Probiotic

Bifidobacterium longum strain (ATCC® 15707) was grown on MPT medium (2.5 g
yeast extract, 0.50 g sodium chloride, 0.5 g L-cysteine hydrochloride, 0.05 g ascorbic acid,
0.25 g potassium phosphate dibasic, 0.15 g potassium phosphate monobasic, 0.124 mg
ferric ammonium citrate, 10 g casein digest peptone, and 5.0 g glucose), as previously
reported [29]. Microbial growth kinetics were then evaluated by turbidimetry once the
exponential phase was identified. In addition, we determined the colony-forming units
(CFU) per milliliter by serial dilutions on agar plates and the bacterial inoculum was
adjusted to 1 × 106 CFU/mL, depending on the assay.

2.2. Chlorella sorokiniana

The microalga Chlorella sorokiniana was collected in the San Juan River in Cadereyta,
Nuevo León, México (25◦31′44′′ N–100◦2′8′′ W). It was identified and subjected to phe-
notypic and genotypic characterization, as previously reported [9,30]. C. sorokiniana
was grown in L-carnitine (LC) nutrient solution (5 mM KNO3, 1 mM KH2 PO4, 2 mM
MgSO4·7H2O, 6.25 mM Ca(NO3)2·4H2O, 46 µM H3BO3, 9.15 µM MnCl2·4H2O, 765 nM
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ZnSO4·7H2O, 320 nM CuSO4·5H2O, 15 nM (NH4)6Mo7O24·4H2O, 20 µM FeSO4·7H2O,
and 20 µM Na2 EDTA) at 25 ◦C and 120 rpm continuous light at 1400 lumens for 12 d [31].

2.3. Cells

We used rhesus monkey kidney cells (MA104; ATCC CRL-2378) in rotavirus replication
assays, whereas HT-29 human colon tumor cells (ATCC HTB-38) were used in B. longum
and C. sorokiniana assays. The cell line HT-29 was originally obtained in 1972 from a 44-
year-old Caucasian female of blood group A, Rh-positive [32]. Cell lines were incubated
in RPMI-1640 culture medium (Gibco, Grand Island, NY, USA), supplemented with 5%
fetal bovine serum (FBS; Mediatech Inc., Corning, NY, USA), 2 mM L-glutamine, and 1%
antibiotic and antimycotic solution (Caisson Laboratories, Smithfield, UT, USA) at 37 ◦C
and 5% CO2, until confluence. Cells were then harvested with PBS and 0.25% trypsin
(Mediatech Inc.) and transferred to 6-well plates for B. longum, C. sorokiniana, and rotavirus
assays or 96-well microplates for rotavirus microtitration.

2.4. Rotavirus Strain and Viral Titration

The human group A rotavirus strain Wa was propagated in MA104 cells. Virus
infection was activated by incubating at 37 ◦C in 5% CO2 for one hour with 10 µg/mL
trypsin-EDTA solution 10× (Sigma-Aldrich, St. Louis, MO, USA), after which the inoculum
was replaced with RPMI-1640 culture medium (Gibco) and incubated at 37 ◦C in 5% CO2 for
24 h. Lysates were then stored at−20 ◦C, until use. Rotavirus titers were calculated as focus-
forming units per milliliter (FFU/mL) by immunochemistry, as previously reported [33].
In brief, lysates from virus propagation or cells infected with rotavirus and treated with
probiotics and the microalga were used to infect MA104 in 96-well plates. After 14 h of
incubation, cells were fixed with a cold acetone-PBS solution and incubated for 45 min at
room temperature. Next, monolayer was washed twice with PBS and primary anti-rotavirus
antibodies (Invitrogen, Carlsbad, CA, USA) were added. Cells were then incubated one
hour at 37 ◦C and washed twice with PBS, after which horseradish peroxidase (HRP)-
anti-sheep IgG conjugate (Invitrogen) was added to the cells and incubated one hour at
37 ◦C, followed by the addition of 0.1 M sodium acetate buffer (30 mM sodium acetate
and 12 mM acetic acid; pH 5.0), containing 0.64 mg/mL aminoethylcarbazole (Sigma-
Aldrich) dissolved in N,N-dimethyl formamide (Sigma-Aldrich) plus 0.36% hydrogen
peroxide immediately prior to use. Infected cells were counted using optical microscopy
and identified by their brown color, indicating the presence of viral antigens. FFU/mL
were calculated using the following formula: FFU/mL = 20 × (microscope objective) × 5.5
(well diameter) × average number of foci (duplicate determinations; 100 to 200 foci/well)
× dilution (foci count). Multiplicity of infection (MOI), which refers to the number of viral
particles per cell, was calculated with the number of viral particles used (FFU/mL) per
well divided by the number of cells originally seeded in the well. Rotavirus multiplicity of
infection (MOI) was 0.1 in each assay.

2.5. Cellular Viability Assay

Viability of HT-29 cells treated with B. longum and/or C. sorokiniana was determined
by the colorimetric MTT reduction assay, as previously reported [19]. For this, HT-29 cells
were incubated with C. sorokiniana and/or B. longum in RPMI-1640 medium without FBS
for 24 h at 37 ◦C and 5% CO2 in 95% air, after which they were washed twice with PBS
and 20 µL of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT; Sigma-
Aldrich; 5 mg/mL final concentration) were added to cells and incubated for 3 h. MTT
was then replaced by 10 µL of dimethyl sulfoxide (DMSO; Sigma-Aldrich) and incubated
three minutes, under continuous shaking. Next, optical densities were determined in a
microplate reader (Multiskan GO, Thermo Fisher Scientific Inc., San Jose, CA, USA) at
570 nm [34].
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2.6. Bifidobacterium longum and Rotavirus Assays

B. longum was used to treat rotavirus-infected cells. In pre-infection experiments, HT-29
cells were treated with B. longum (1 × 106 CFU/mL) for one hour at 37 ◦C and 5% CO2 in
95% air, after which they were infected with Wa strain rotavirus (MOI 0.1) for 24 h at 37 ◦C
and 5% CO2 in 95% air. In post-infection assays, HT-29 cells were infected with rotavirus
(MOI 0.1) for one hour at 37 ◦C and 5% CO2 in 95% air and incubated with B. longum
(1 × 106 CFU/mL) in RPMI-1640 medium without FBS at 37 ◦C in 5% CO2 for 24 h. Cells
were then stored at 20 ◦C, until further analysis, such as viral RNA purification and qPCR
assays. B. longum cytotoxicity to HT-29 cells was determined by the MTT reduction assay.

2.7. Chlorella sorokiniana and Rotavirus Assays

C. sorokiniana biomass was used to treat rotavirus-infected cells. In pre-infection
treatments, HT-29 cells were treated with C. sorokiniana (1 × 106 cells/mL) for one hour
at 37 ◦C and 5% CO2 in 95% air, after which they were infected with Wa strain rotavirus
(MOI 0.1) for 24 h at 37 ◦C and 5% CO2 in 95% air. In post-infection assays, HT-29 cells
were infected with rotavirus (MOI 0.1) for one hour at 37 ◦C and 5% CO2 in 95% air,
and incubated with C. sorokiniana (1 × 106 cells/mL) in RPMI-1640 medium without FBS
at 37 ◦C in 5% CO2 for 24 h. Cells were then stored at 20 ◦C, until viral titration by
immunochemistry or until further analysis, such as viral RNA purification and qPCR
assays. Microalga cytotoxicity to HT-29 cells was determined by the MTT reduction assay.

2.8. Effect of Probiotic and Microalga Combination Treatment on Rotavirus-Infected Cells

B. longum and C. sorokiniana assays were performed on HT-29 cells, before and after
rotavirus infection as follows: (a) in pre-infection experiments, before rotavirus infection,
cells were incubated with B. longum (1× 106 UFC/mL) and C. sorokiniana (1× 106 cells/mL)
in two milliliters of RMPI-1640 medium for 4 h at 37 ◦C and 5% CO2, after which cells were
washed with PBS, followed by rotavirus infection (MOI 0.1) and incubation for 24 h at 37 ◦C
and 5% CO2, and (b) in post-infection experiments, after rotavirus infection (1 h) at 4 h at
37 ◦C and 5% CO2, infected HT-29 cells were treated with B. longum (1 × 106 UFC/mL) in
combination with C. sorokiniana (1 × 106 cells/mL) and incubated for 24 h at 37 ◦C and
5% CO2.

2.9. mRNA Purification and qPCR Assay

Total RNA extraction from rotavirus-infected cell lysates and/or treated with C.
sorokiniana and/or B. longum was performed by the Trizol method (Life Technologies,
Rockville, MD, USA). Purified RNA was used as a template for cDNA synthesis (High-
Capacity cDNA Reverse Transcription; Applied Biosystems, Foster City, CA, USA). Relative
expression of IFN-α, IFN-β, IRF-3, IRF-5, and RIG-I genes was determined by qPCR, using
PGK-1 as an endogenous gene (Table 1). Reactions were developed with the Sensi FAST
SYBER Lo-ROX Kit (Bioline, London, UK), following manufacturer’s instructions. qPCR
conditions were 95 ◦C for 5 min, 45 cycles of 58 ◦C for 5 s, and 60 ◦C for 10 s. Gene relative
expression was calculated using 2−∆∆Ct (Applied Biosystems).

Table 1. Quantitative PCR primer sequences.

Primer Name
Primer Sequences (5′ to 3′)

Product Length Reference
Fwd Rev

IFN-α 5′-TTT CTC CTG CCT GAA GGA CAG-3′ 5′-TCC ATG ATT TCT GCT CTG ACA-3′ 373 [35]
IFN-β 5′-CTC CTC CAA ATT GCT CTC CTG-3′ 5′-GCA AAC TGG TCA CGA ATT TTC C-3′ 409 [35]
IRF-3 5′-ACC AGC CGT GGA CCA AGA G-3′ 5′-TAC CAA GGC CCT GAG GCA C-3′ 65 [36]
IRF-5 5′-CTG TCT CTG GTC TGG TCA GC-3′ 5′-GCC AGC CAG GTG AGT GTT TA-3′ 564 [35]
RIG-1 5′-CTC CCG GCA CAG AAG TGT-3′ 5′-CCT CTG CCT CTG GTT TGG-3′ 170 [35]
PGK1 5′-GAG ATG ATT ATT GGT GGT GGA A-3′ 5′-AGT CAA CAG GCA AGG TAA TC-3′ 160 [37]



Microorganisms 2023, 11, 1237 5 of 12

Statistical Analysis

Data were reported as mean ± SD of triplicates from three independent experi-
ments. Statistical analysis was calculated by the one-way ANOVA and Tukey’s multiple
comparisons or Kruskal–Wallis and Dunn’s multiple comparison tests, using GraphPad
Prism version 9.5.1 (528), 24 January 2023 (GraphPad Software Inc., San Diego, CA, USA).
p values < 0.05 were considered statistically significant.

3. Results
3.1. Pre-Infection or Post-Infection Assays with Rotavirus in HT-29 Cells

To study the effect of B. longum and C. sorokiniana on rotavirus infection, HT-29 cells
were treated with one or both of them and infected with rotavirus or they were first infected
and treated. As shown in Figure 1, all treatments (pre-infection or post-infection treatments
with rotavirus) improved the monolayer integrity, as compared with rotavirus-infected
cells without any treatment.
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Figure 1. Monolayer integrity of rotavirus-infected cells at 24 h post-infection. In pre-infection
experiments, HT-29 cells were incubated with Bifidobacterium longum and/or Chlorella sorokiniana,
after which they were infected with rotavirus. In post-infection experiments, HT-29 cells were first
infected with rotavirus and further treated with Bifidobacterium longum and/or Chlorella sorokiniana.
Controls included mock (complete monolayer) and rotavirus (absence of monolayer). Abbreviations:
B.l: Bifidobacterium longum; C.s: Chlorella sorokiniana; and RV: Rotavirus.

3.2. Rotavirus

To study the cellular antiviral response induced by rotavirus in infected cells without
any treatment, we determined mRNA relative expression level of IFN-α, IFN-β, IRF-3,
IRF-5, and RIG-I. Results showed an increased relative expression of IFN-β (p < 0.05) and
IRF-5 (p < 0.05). In contrast, IFN-α, IRF-3, and RIG-1 genes relative expression was lower
as compared with that of untreated or infected cells.
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3.3. Bifidobacterium longum and Rotavirus

In pre- and post-infection experiments, results on rotavirus-infected cells treated with
B. longum showed better monolayer integrity, compared with that of rotavirus-infected cells
without the probiotic (Figure 1). In addition, to determine whether B. longum induces an
in vitro antiviral response in HT-29 cells, the effect of this probiotic in pre- and post-infected
cell experiments was measured through the mRNA relative expression levels of IFN-α,
IFN-β, IRF-3, IRF-5, and RIG-I genes. In pre-infection assays, HT-29 cells were treated with
B. longum before rotavirus infection, showing significant (p < 0.05) increases in IFN-α and
RIG-I relative genes expression, as compared with infected cells without treatment. In
post-infection experiments, cells were infected and further treated with probiotics. Results
indicated downregulation of IRF-3 and IRF-5, without statistically significant difference
with rotavirus alone. In contrast, in pre- and post-infection experiments, higher relative
expression was observed in RIG-I, as compared with infected cells without B. longum
(Figure 2). Furthermore, there was a significantly (p < 0.05) higher relative expression of IFN-
α in pre-infection experiments than that in post-infection ones. However, not significant
differences were observed among IFN-β, IRF-5, and RIG-1. This result demonstrated that
B. longum may induce an in vitro antiviral response in HT-29 cells, mediated by IFN-α in
cells treated with this probiotic and further infected with rotavirus (Figure 2).
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ANOVA with subsequent Fisher test, using GraphPad Prism 9.5.

3.4. Anti-Rotavirus Effect of Chlorella sorokiniana in HT-29 Cells

Results on rotavirus-infected cells treated with C. sorokiniana, in pre- and post-infection
experiments, showed better monolayer integrity than that in cells infected and without
the microalgae treatment (Figure 1). To determine if C. sorokiniana induces an in vitro
antiviral response in HT-29 cells, we measured IFN-α, IFN-β, IRF-3, IRF-5, and RIG-I
mRNA relative expression levels. In pre-infection experiments, cells were treated with C.
sorokiniana followed by rotavirus infection, showing that IFN-α, IRF-3, and RIG-I relative
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expression was significantly (p < 0.05) upregulated, as compared with that in rotavirus-
infected cells without treatment. In post-infection experiments, cells were infected and
treated with C. sorokiniana, showing a lower relative expression of IFN-α, IFN-β, IRF-3, and
RIG-1 than that in cells only infected with rotavirus. In addition, IFN-α, IRF-3, and RIG-I
relative expression was significantly (p < 0.05) higher in pre-infection experiments than in
post-infection ones. This may indicate that the antiviral response induced by C. sorokiniana
is mediated by RIG-I, IRF-3, and IFN-α in pre-infection experiments (Figure 3).
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3.5. Bifidobacterium longum, Chlorella sorokiniana, and Rotavirus

HT-29 cells treated with the B. longum and C. sorokiniana combination and infected
with rotavirus, in pre- and post-infection experiments, showed an improved cell monolayer
integrity, as compared with rotavirus-infected cells without treatment (Figure 1). Further-
more, to determine if B. longum and C. sorokiniana induced an in vitro antiviral response,
we evaluated the mRNA relative expression level of IFN-α, IFN-β, IRF-3, IRF-5, and RIG-I
genes. In pre-infection experiments, cells were treated with a combination of B. longum and
C. sorokiniana before rotavirus infection, showing a higher relative expression of IFN-α and
RIG-I than those in cells not treated but infected (p < 0.05). In post-infection experiments,
cells were infected and further treated with B. longum in combination with C. sorokiniana,
showing a significantly (p < 0.05) increased IFN-β relative expression, as compared with
cells infected with rotavirus but without probiotic and microalgae treatments. In addition,
IRF-3 and IRF-5 expression was significantly (p < 0.05) higher in cells treated pre-infection
than in post-infection experiments. These results may indicate that the protective antiviral
response induced by B. longum and C. sorokiniana is mediated by IFN-α in pre-infection
assays and by IFN-β in post-infection treatments (Figure 4).
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Figure 4. Bifidobacterium longum (B.l) and Chlorella sorokiniana (C.s) combination and rotavirus (RV)
experiments. mRNA relative expression level of IFN-α, IFN-β, IRF-3, IRF-5, and RIG-I genes in
rotavirus-infected HT-29 cells treated with Bifidobacterium longum in combination with Chlorella
sorokiniana. Different letters indicate statistical significance between treatments. Data were analyzed
by ANOVA with subsequent Fisher test using GraphPad Prism 9.5.

4. Discussion

Probiotics are, by definition, living microorganisms that confer health benefits to the
host, if they are consumed in adequate amounts [38]. In this regard, probiotics, such
as Bifidobacterium species, have been widely studied and used because they have effec-
tively treated or prevented gastrointestinal infections, particularly viral infections [39–41].
Probiotics have been associated with a reduction of viral load and diarrhea duration in
viral gastroenteritis [41,42]. In the present study, we performed in vitro experiments with
rotavirus and probiotics in HT-29 cells, which exhibit similar structural and functional
features than enterocytes [43]. The first insight into the favorable effect of B. longum against
rotavirus was the monolayer integrity, compared with infected cells without any treatment.
Other studies with B. adolescentis and L. casei showed a delayed cytopathic effect in MA104
cells infected with rotavirus [40]. In addition, B. longum R0175 was recently associated with
the prevention of rotavirus infection and showed a protective effect on porcine intestinal
epithelial cells before infection [42].

In infected cells, rotavirus induces the proteasomal degradation of IRF-3, IRF-5,
and IRF-7 through NSP1 protein activity, suppressing the host’s antiviral interferon re-
sponse [23,44]. In the present study, we observed that after 24 h of infection with rotavirus in
HT-29 cells, the relative expression of IRF-5 and IFN-β was significantly (p < 0.05) increased,
as compared with non-infected cells. Furthermore, we have previously reported that B.
longum reduced rotavirus infectivity to 74% [9]. Due to the protective effect of B. longum of
cell monolayers and the potential effect of blocking rotavirus infectivity, we hypothesized
that this probiotic may induce an antiviral cellular immune response against rotavirus.

Therefore, we determined whether B. longum modulates an antiviral response in
in vitro experiments, before or after rotavirus infection. We observed a significantly
(p < 0.05) higher IFN-α relative expression in pre-infection experiments than in post-
infection ones. Previous studies indicated that IFN-α genes are induced in response
to viral infection [23]. Our results indicate that B. longum anti-rotavirus activity may be
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mediated by blocking virus infectivity (as we previously reported) and inducing a cellular
antiviral response (present study). In agreement with our work, others have demonstrated
that the innate immune response against rotavirus was modulated by B. infantis MCC12
and B. breve MCC1274 in porcine intestinal epitheliocyte cells [6]. An antiviral cellular
response might be associated with molecules such as lipopolysaccharides or lipoteichoic
acids produced by probiotics that may induce antiviral gene expression, associated with
shorter infection periods and a lower risk of viral infection [39,45].

On the other hand, microalgae have demonstrated significant health-promoting effects
and, in some cases, function as prebiotics. Cells treated with C. sorokiniana and infected
with rotavirus (pre-infection experiments) showed increased RIG-1 and IFN-α relative
expression, as compared with rotavirus-infected cells (without treatment). Furthermore,
the combination of B. longum and the microalgae C. sorokiniana improved the monolayer
integrity in rotavirus-infected cells, as compared with infected cells without any treatment.
However, as we previously reported, the anti-rotavirus effect of B. longum was better in
combination with C. sorokiniana because they reduced viral infectivity to 30% instead of
74% with the probiotic alone [9]. Due to the protective effect of B. longum and C. sorokiniana
of cell monolayers, we evaluated whether they induce an antiviral cellular response against
rotavirus. Our results indicated that a combination of B. longum and C. sorokiniana increased
IFN-α levels pre-infection (p < 0.05) and IFN-β in experiments post-infection (p < 0.05).
The anti-rotavirus effect of B. longum combined with C. sorokiniana may be associated with
blocking infectivity and inducing a cellular antiviral response. In this regard, we showed
three-fold increases in RIG-I and IFN-α relative expression levels in Bifidobacterium longum
and Chlorella sorokiniana-treated HT-29 cells, which may indicate a protective effect by
preventing pathogenic infection, as previously reported for Bifidobacteria spp. [40,42]. On
the other hand, in rotavirus-infected cells, the mRNA relative expression of IFN-α was
suppressed (p < 0.05), whereas that of IRF-5 and IFN-β (p < 0.05) resulted in two-fold
significant (p < 0.05) increases, as compared with non-infected cells. Furthermore, we
observed a 17-fold increase in IFN-α relative expression in cells treated with Bifidobacterium
longum and Chlorella sorokiniana and further infected with rotavirus, whereas in cells infected
and further treated with Bifidobacterium longum and Chlorella sorokiniana, we showed a five-
fold increase in IFN-β relative expression, as compared with non-infected cells. Our
results indicated a better antiviral response in pre-treatment experiments and the influence
of Bifidobacterium longum and/or Chlorella sorokiniana to induce an IFN type I-mediated
antiviral response in rotavirus-infected cells (Figures 3 and 4).

In addition to the anti-rotavirus activity shown in our studies, Chlorella supplementa-
tion was associated with a protective effect against chronic hepatitis C virus, in a clinical
trial model, and was related to a reduced viral load [46]. Some microalgal cell components
and chemical agents may exert health-promoting effects [47]. Although numerous studies
regarding the antiviral effect of probiotics and the interaction of probiotics have been
reported, the specific immune mechanism remained unknown [48]. Probiotics’ antiviral
mechanism is still under research; however, microalgae studies are scarce. In addition
to the antiviral activities of probiotics, some foods may enhance the energy sources of
probiotics and might be used as prebiotics to potentiate their antiviral effect. In fact, by
feeding rice bran and probiotics to germ-free swine, the intestinal barrier function was
increased by the produced metabolites, regulating the immune response and preventing
rotavirus-induced diarrhea [30]. This information leads us to believe that Chlorella activity
may be like a prebiotic.

The anti-rotavirus effect of B. longum mediated by type I interferons reported in this
study agrees with previous reports of probiotics against viruses and it has been associated
with viral load reduction and improved monolayer integrity. In addition, our results
indicated that B. longum, C. sorokiniana, or their combination improve cellular antiviral
immune response. Furthermore, we showed that a combination of B. longum and C.
sorokiniana significantly increased interferon response in pre-infection and post-infection
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experiments, as compared with individual effects. To our knowledge, this is the first report
of the immunomodulatory effect of B. longum and C. sorokiniana in rotavirus-infected cells.

5. Conclusions

Our present results indicate that Bifidobacterium longum in combination with Chlorella
sorokiniana modulates type I interferons relative expression, improving antiviral response.
Although more studies are needed, the use of probiotics such as Bifidobacterium and the
microalgae Chlorella may become an alternative to prevent rotavirus infection or decrease
gastroenteritis severity.
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