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Abstract: Enteroaggregative Escherichia coli (EAEC) and enterohemorrhagic E. coli (EHEC) are E. coli
pathotypes associated with unmanageable diarrhea in children and adults. An alternative to the
treatment of infections caused by these microorganisms is the use of the bacteria of the Lactobacillus
genus; however, the beneficial effects on the intestinal mucosa are specific to the strain and species.
The interest of this study consisted of analyzing the coaggregation properties of Lactobacillus casei
IMAU60214, as well as the effect of cell-free supernatant (CSF) on growth and anti-cytotoxic activity in
a cell model of the human intestinal epithelium for an agar diffusion assay (HT-29) and the inhibition
of biofilm formation on plates of DEC strains of the EAEC and EHEC pathotypes. The results showed
that L. casei IMAU60214 exhibits time-dependent coaggregation (35–40%) against EAEC and EHEC
that is similar to the control E. coli ATCC 25922. The CSF showed antimicrobial activity (20–80%)
against EAEC and EHEC depending on the concentration. In addition, the formation and dispersion
of biofilms of the same strains decrease, and the proteolytic pre-treatment with catalase and/or
proteinase K (1 mg/mL) of CSF reduces the antimicrobial effect. When evaluating the effect in HT-29
cells pre-treated with CFS on the toxic activity induced by the EAEC and EHEC strains, a reduction
of between 30 and 40% was observed. The results show that L. casei IMAU60214 and its CSF have
properties that interfere with some properties associated with the virulence of the EAEC and EHEC
strains that cause intestinal infection, which supports their use for the control and prevention of
infections caused by these bacteria.

Keywords: Lactobacillus casei IMAU60214; cell-free supernatant; enterohemorrhagic Escherihcia coli
enteroaggregative; E. coli; anti-biofilms; coaggregation; anti-cytotoxins; antimicrobial activity

1. Introduction

Escherichia coli is a Gram-negative bacillus that colonizes the intestinal mucosa of
humans and other animal species at birth. The bacterium integrates and forms part of
the microbiota of its host by establishing a mutualistic relationship, which is why the
bacteria have been defined as E. coli [1]. However, the plasticity of its genome together
with the horizontal transfer of genetic information has favored the emergence of clones
of the bacterium responsible for different clinical syndromes such as diarrhea, urinary
tract infections, sepsis, and meningitis [2,3]. Diarrheagenic E. coli (DEC) strains represent
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the second leading cause of infectious intestinal diseases in children and young adults,
second only to enteric infections caused by viral pathogens such as rotavirus, calicivirus,
adenovirus, and norovirus [4–6]. DEC strains present different antigenic characteristics
(serogroups and serotypes) and virulence properties that cause various clinical features.
That is why the term “pathotypes” or pathogenic groups arose, in which their properties are
considered, including the type of adherence related to the type of adhesins they express, the
production of toxins with enterotoxic or cytotoxic effects, or the ability to invade cells [6,7].
Pathotypes include enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC),
Shiga-toxin-producing E. coli (STEC), Enteroaggregative E. coli (EAEC), enterotoxigenic
E. coli (ETEC), enteroinvasive E. coli (EIEC), and hybrid strains with more than one virulence
factor, such as enteroaggregative hemorrhagic E. coli (EAEHEC) [8,9]. In addition to the
pathotypes of DEC strains, strains that cause extraintestinal infections (EXPEC) causing
urinary tract infections (UPEC), meningitis (NMEC), or septicemia have been described.
Another relevant aspect of infectious diseases is related to the increase in resistance to
antimicrobials, a situation that is increasing every day, which is why the World Health
Organization (WHO) has pointed out the possibility that, by the year 2050, there could be
no useful treatments for infectious diseases [10]. Given this possibility, it raises the need
to seek alternatives for the management of infections, including those related to E. coli,
which has been defined as priority number one within the community and in intrahospital
infections [11]. An alternative that has been used for a long time is bacteria with probiotic
potential, which have been studied to evaluate their beneficial effects on health [12,13].
The microorganisms used as probiotics are mostly obtained from the intestinal microbiota
of humans and animals and are used in commercial products such as fermented milk or
lyophilized products administered orally [14,15]. Probiotic bacteria mainly belong to the
genus of lactic acid bacteria (LAB) such as Lactobacillus and Bifidobacterum [16]. There are
different species of Lactobacillus, including L. acidophilus, L. plantarum, L. casei, L. paracasei,
L. johnsonii, L. reuteri, and L. rhamnosus, which have been considered strong candidates
for use as biological therapy [17,18]. Previous studies with Lacticaseibacillus strains report
inhibitory effects on the growth of enteric pathogens [19,20]. Another property that has
been observed in these probiotic bacteria is the inhibition of the growth of pathogenic
bacteria through the secretion of ethanol, fatty acids, hydrogen peroxide, bacteriocins, and
microcins, products with significant antimicrobial activity [20,21]. Other reports show
that the protective effect of probiotic bacteria against pathogenic microorganisms is due
to their ability to induce the secretion of mucins that reinforce the protective activity
of the epithelial barrier by favoring tighter junctions in the intestinal epithelium [22,23].
In addition, immunomodulatory effects have been observed regulating the secretion of
cytokines that activate phagocytic cells and T lymphocytes [24,25]. Other elements that
favor the potential of probiotic bacteria include the physicochemical properties of the cell
wall such as hydrophobicity, auto-aggregation, and coaggregation, which together with
the secretion of short-chain fatty acids (lactic, acetic, and formic acids) form metabolic
products released into cell-free supernatants (CFSs), which regulate pH, a situation that can
limit the growth of pathogenic microorganisms [26–28]. However, to survive, pathogenic
bacteria express components that allow them to tolerate adverse conditions such as acidic
environments, a lack of nutrients, and the effect of antimicrobials [28,29]. Biofilms form
an organized polymeric extracellular structure made up of exopolysaccharides, nucleic
acids, and proteins. These allow the bacteria that produce them to adhere to biotic and/or
abiotic surfaces, contributing to the colonization of the microorganism while protecting
the bacteria from adverse factors such as antimicrobials and even interfering with immune
defense mechanisms, which favors the development of infection in the host [29]. Although
there are a large number of probiotic bacteria that have been commercialized, many of them
have not been evaluated for their ability to interfere with the development of pathogenic
bacteria that cause disease in their host. This occurs in such a way that it is necessary to
identify in probiotic bacteria for commercial use the properties that they possess to interfere
with and/or counteract the virulence mechanisms of pathogenic bacteria. Currently, not all
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species of probiotic bacteria have been studied in relation to the mechanisms they have to
interfere with regarding the growth of pathogenic microorganisms. Lacticaseibacillus is a
member of the LAB; although it is used as a commercial probiotic, so far there have been
no reports to indicate that the properties it possesses inhibit the growth of or eliminate
pathogenic bacteria that cause intestinal disease, such as diarrheagenic E. coli. In the absence
of information about it, the aim of the present study was to investigate the coaggregation
ability of this Lacticaseibacillus strain and if its CSF has properties such as anti-biofilm
activity, an antimicrobial effect, and neutralizing effect on toxins produced by EAEC and
EHEC DEC strains.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The Lactobacillus casei strain IMAU60214 is an isolate of a fermented dairy product,
kindly donated for the study by the research group of Dr. Cruz-Guerrero of Universi-
dad Autónoma Metropolitana de México [30]. The strain was grown in MRS medium
(De Manosa, Rogosa, Sharpe) and broth (BDL, Franklin Lakes, NJ, USA) at 37 ◦C for 18
to 24 h. The pathogenic strains of the DEC group used were EAEC 49766 (a clinical iso-
late of diarrhea) and EHEC or EDL933 ATCC 700927 as well as a control strain for the
experimental tests with Escherichia coli ATCC 25922 [31]. These strains were cultivated in
Luria–Bertani broth (LB) medium previously prepared according to a certain formulation
(5.0 g/Lt sodium chloride, yeast extract, and 10.0 g/Lt casein peptone at pH 7.2) at 37 ◦C,
overnight without agitation. On the test day, the bacteria from the obtained culture were
centrifuged at 5000 rpm for 5 min at room temperature. The bacterial cell concentrate was
washed three times with physiological saline solution (pH = 7.2) and adjusted to a final
concentration of 1 × 109 CFU/mL.

2.2. Coaggregation Assay

The coaggregation ability of Lactobacillus casei IMAU60214 was tested as reported by
Handley et al. [32], with slight modifications. EAEC 49766, EDL933, or ATCC 700927 strains
and the E. coli test control strain ATCC 25922 were coaggregation partners. Bacterial cultures
of the pathogens and of the probiotic L. casei IMAU60214 were obtained as indicated in
Section 2.1. Subsequently, suspensions of bacterial cells in phosphate saline solution (PBS)
pH = 7.2 were prepared in equal volumes of 4 mL and adjusted to a concentration of
1 × 109 CFU/mL. For the coaggregation assays, 2 mL of the Lactobacillus and pathogens
were mixed in pairs and vortexed for 30 s. The preparations were then incubated at
37 ◦C, alongside each individual strain of the bacterial cells used as the test control. In
addition, the formation of coaggregates with the pathogenic strains was monitored by
microscopic visualization in the immersion objective magnification (100×) of each specific
pathogenic strain after Gram staining. Immediately, the optical density (OD) was monitored
in the mixture (OD mix), that is, of the Lactobacillus and the specific strain of the specific
pathogen, and in the control tubes containing the Lactobacillus strain (OD of the Lactobacillus)
as the specific pathogen (OD-specific pathogen). Absorbance (ABS) readings were read
at intervals of every 15 min up to 120 min using a GeneQuant Pro spectrophotometer
(Amerschan Biosciences, Helsinki, Finland) at a wavelength of 600 nm. The percentage of
coaggregation was calculated according to the following formula:

% Coaggregation = [1 − OD600 nm mix/control + OD 600 nm (mix)
+ OD 600 nm specific pathogen/2] × 100

This formula was applied for each incubation interval tested (T1 15 min, T2 30 min, T3
45 min, T4 60 min, T5 90 min, and T6 120 min). Each strain and/or condition was developed
in three independent experiments, with each one using duplicate biological samples.
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2.3. Preparation of Cell-Free Supernatant (CSF) of L. casei IMAU60214

The Lactobacillus strain was grown in MRS broth medium (BDL, Franklin Lakes, NJ, USA)
at 37 ◦C without shaking for 48 h. Immediately, the Lactobacillus suspension was centrifuged
at 5000 rpm for 5 min and the CSF was collected in sterile tubes. The acid condition of
the CSF was adjusted to pH = 6.5 with 1N NaOH. Afterward, the CSF was filtered using
0.22 membranes (Millipore, Burlington, Middlesex, MA, USA). The CFS was used fresh,
and its biological activity was tested at different CSF concentrations (10%, 20%, 40%,
60%, and 80%) prepared in stock of volume to volume (v/v) in MRS broth medium (BDL,
Franklin Lakes, NJ, USA).

2.4. Evaluation of the Antimicrobial Activity of CSF against the Diarrheagenic E. coli
(DEC) Strains

The antimicrobial activity of CSF from L. casei IMAU60214 against diarrheagenic E. coli
strains EAEC and EHEC was tested by the diffusion plating method described by Davood-
abadi et al. [33], with slight modifications. The DEC and E. coli ATCC 25922 strains (as the
internal positive control) were grown in LB at 37 ◦C overnight without shaking. The strains
were adjusted to a 0.5 McFarland standard tube (1 × 108 CFU/mL), an inoculum of 200 µL of
each pathogenic strain was distributed with a cotton applicator moistened with physiologi-
cal saline solution on Mueller–Hinton agar plates (Difco Agar, Franklin Lakes, NJ, USA),
and perforations were made with 1 mL micropipette tips to generate 7 mm-diameter wells.
Then, the wells were filled with 100 µL of the CSF concentrations (10 to 80% (v/v)) prepared
in MRS broth medium. The plates were kept for 10 min at room temperature to allow
diffusion into the agar; then, they were incubated for 24 h at 35 ◦C. The activity of each CFS
concentration was evaluated by measuring the bacterial radial inhibition zones for each of
the DEC strains and the control strain (and/or internal positive control) of E. coli ATCC
25922. In addition, a negative control of the MRS broth medium (without adding CFS) was
included in the experimental assays, which were performed in duplicate for each of the
different CSF concentrations, in a total of three independent experiments.

2.5. Biofilm Formation of Diarrheagenic Strains (DEC)

Biofilms of the two DEC strains, EAEC 49766 and EHEC (or EDL933, ATCC 700927),
and control strain E. coli ATCC 25922 were prepared by adjusting their optical density to
McFarland tube 1 (3 × 108 CFU/mL). Then, 50 µL of the adjusted suspension was diluted
with 950 µL of LB culture medium and deposited in 24-well polystyrene plates (Costar,
(Costar®, Corning® Thermo Fisher Scientific, Waltham, MA, USA) prepared in triplicate
series of wells. Subsequently, the plates were incubated for 48 h at 37 ◦C. Afterward, each
well was washed six times with phosphate saline pH = 7.2 to remove the suspended bacteria,
and the adhered bacteria were fixed with 1 mL methanol (Merck, Darmstadt, Germany) for
15 min at room temperature. The formation of biofilms formed was then quantified and the
plates were stained with 400 µL per well of 2% (v/v) crystal violet solution for 20 min at
room temperature. Excess staining was removed by washing with Milli-Q water, and after
removing residual fluid, the plates were dried at room temperature. The stain was released
by the addition of a 33% (v/v) glacial acetic acid destaining solution, and ABS at 570 nm
was read in a microplate reader (Multiskan, Termolabsystems, Vantaa, Finland). Each assay
was carried out in biological triplicates, in a total of three independent experiments.

2.6. Evaluation of the Anti-Biofilm Formation Activity of the CSF of L. casei IMAU60214 against
the DEC Diarrheagenic Strain

The anti-biofilm formation potential of CSF was tested, considering several mecha-
nisms of action: the inhibition of biofilm formation, the dispersion of pre-formed biofilms,
and the effect of catalase and proteinase K proteolytic enzymatic treatment (1 mg/mL) on
the biological activity of the CSF of L. casei IMAU60214.



Microorganisms 2023, 11, 1324 5 of 18

2.6.1. Effect of CSF from L. casei IMAU60214 on the Biofilm Formation of the DEC Strains

To determine the influence of the CSF of L. casei IMAU60214 on the formation of
biofilms of the DEC EAEC 49766 and EHEC strains (or EDL933, ATCC 700927) and the
control of E. coli ATCC 25922, the bacterial suspensions of these strains were adjusted to the
optical density of McFarland tube 1 (3 × 108 CFU/mL). Then, 50 µL of the adjusted suspen-
sion of each strain was diluted with 950 µL of LB culture medium and deposited in 24-well
polystyrene plates (Costar®, Corning® Thermo Fisher Scientific, Waltham, MA, USA) in
the presence or absence of different concentrations (10–80%) of L. casei IMAU60214 CSF in
triplicates of biological samples for each of the CSF concentrations [ref]. The cultures were
cultivated at 37 ◦C for 48 h, and after incubation, the development of biofilm formation as
well as its quantification was performed as described in Section 2.5. The effect of L. casei
IMAU60214 CSF on biofilm formation was measured by comparing the absorbance read-
ings at 570 nm from the CSF-treated wells versus the untreated control wells. In addition,
the percentage reduction by the CSF of L. casei IMAU60214 was calculated according to the
following formula:

Percentage reduction in biofilms = 1 − average ABS 570 nm of biological
samples/average of the ABS 570 nm control × 100.

Each assay was performed in triplicate on the biological samples, in a total of three
independent experiments. In addition, the effect of the presence of the CSF of L. casei
IMAU60214 on the formation of biofilms of diarrheagenic strains was analyzed on the
dry surface of 24-well polystyrene plates (Costar®, Corning®, Thermo Fisher Scientific,
Waltham, MA, USA) in biological samples treated and untreated with the CSF as observed
in phase contrast microscopy on a Nikon microscope, using a 20× dry objective (NA075).

2.6.2. Effect of the CSF of L. casei IMAU60214 on the Dispersion of Biofilms of the
DEC Strains

Experimental biofilm dispersion assays of the DEC strains’ pre-formed (mature)
biofilms were prepared in 24-well plates (Costar®, Corning®, Thermo Fisher Scientific,
Waltham, MA, USA) as described in Section 2.5. Briefly, pre-formed biofilms from each DEC
strain and the control E. coli ATCC 25922 were treated with varying concentrations (10 to
80%) of L. casei IMAU60214 CSF in parallel with assaying untreated adherent bacterial cell
wells and the blank well control. The 24-well plates, under these conditions, were incubated
at 37 ◦C for 24 h. The dispersion or eradication of biofilms was calculated according to the
following formula:

Eradication or dispersion of biofilms = 1 − mean ABS 570 nm of biological
samples/mean of the ABS 570 nm control × 100

2.6.3. Evaluation of the Anti-Biofilm Activity and Biofilm Dispersion of the DEC Strains
after Proteolytic Enzymatic Treatment with the Catalase and Proteinase K of the CSF of
L. casei IMAU60214

The effects of proteolytic enzymatic treatment with catalase and proteinase K on the
biological activity of the CSF of L. casei IMAU60214 were investigated in relation to the
formation and dispersal of the biofilms of the DEC strains. A stock solution of catalase
(Sigma, Aldrich St. Louis, Missouri, USA ) was prepared at 1 mg/mL in 0.2 M PBS pH = 7.0,
while a stock solution of proteinase K (Thermo Fisher Scientific, Waltham, MA, USA)
at the same concentration was prepared in 30 nM PH tris buffer solution equal to 7.5.
Subsequently, the CSF preparations were incubated (1:1 v/v) with the enzyme solutions for
two hours at 37 ◦C. After these treatments, the formation as well as the dispersion of DEC
biofilms were carried out as described in Sections 2.6.1 and 2.6.2. CSF negative controls
(without enzymatic treatment) were included in the experimental assays carried out on the
biological samples in triplicate for a total of three independent experiments.
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2.7. Culture of the HT-29 Human Intestinal Epithelium Cells

Primary-colon-tumor-derived adenocarcinoma HT-29 cells (ATCC HT-38) were rou-
tinely grown in DMEM (Dulbecco’s modified Eagle medium) with 10% (v/v) fetal bovine
serum (FBS) without antibiotic supplementation in 25 cm2 cell culture bottles (Costar,
Corning) at 37 ◦C in a humid atmosphere of 5% CO2. Monolayers of the HT-29 cells were
prepared in 96-well polystyrene cell culture plates (Costar®, Corning®, Thermo Fisher
Scientific, Waltham, MA, USA) and grown to 90% confluence. Subsequently, the medium
was replaced with fresh 10% DMEM/SFB medium 24 h before the co-cultivation study of
HT-29 human epithelial cells infected with the diarrheagenic E. coli strains and the control
E. coli ATCC 25922.

2.8. Infection Assay of the HT-29 Epithelial Cells with the DEC Strains

Confluent monolayers of HT-29 cells were infected with E. diarrhoeagenica strains DEC,
EAEC 49766, and EHEC (or EDL933, ATCC 700927) and E. coli strain ATCC 25922 at a
multiplicity of infection (MOI) of 1:10 bacteria versus cells eukaryotes. The bacteria in
co-culture with the HT-29 cells were incubated at 37 ◦C in a humid atmosphere of 5% CO2
for 4 h. After the co-culture period, the bacteria were removed from the monolayers by
washing with DMEM (GibcoTM, Thermo Fischer Scientific, Waltham, MA, USA) and the
cells were processed to examine the cytotoxic effect produced by these bacteria by phase
contrast microscopy using a 20× objective lens with image capture examining the selected
fields. Moreover, the post-infection cellular cytotoxicity analysis used the reduction with
MTT (3-[4,5-dimethyl-2-yl]-2,5 diphenyl tretrazolium bromide).

2.9. Cellular Cytotoxicity Assay in HT-29 the Human Epithelial Cells Post Infection with the
Escherichia coli DEC Strain

Cellular cytotoxicity was assayed by the MTT reduction method described by Denizot
et al. [34] with slight modification. Briefly, after post-infection with the DEC strains, the
medium was removed, and the cells were washed with DMEM containing 100 µg/mL
gentamicin (GibcoTM, Thermo Fisher Scientific, Waltham, MA, USA). Subsequently, the
HT-29 cells were washed with a PBS pH = 7.0 solution and incubated at 37 ◦C for 4 h with
an MTT solution (0.5 mg/mL). At the end of the incubation period, the MTT solution was
removed and dimethylsulfoxide (DMSO, Merck) was added. The MTT reduction was read
in a microplate reader (Multiskan, Termolabsystems Fildandia) at a wavelength of 570 nm.
Cellular cytotoxicity was expressed in percentage values, in comparison with the negative
controls (uninfected cells). The assays were developed in duplicate biological samples for a
total of three independent experiments.

2.10. Evaluation of the Effect of the CSF from L. casei IMAU60214 on the Co-Culture of HT-29
Human Epithelial Cells Infected with the Bacterial Cells of the DEC 49766 EHEC and
EDL933 Strains

In order to understand the impact of the CSF of L. casei IMAU60214 on the cell damage
induced by the infection of human epithelial cells HT-29 in response to the challenge of
DEC strains and the control of E. coli ATCC 25922, the bacteria were added in a multiplicity
of infection (MOI) ratio of 1:10 to HT-29 cell monolayers seeded in 96-well plates in co-
culture of different CSF concentrations (10–80%), which were incubated at 37 ◦C in a humid
atmosphere of 5% CO2 for 4 h. After the incubation period, the plates were washed three
times with warm PBS solution and the viability for the different experimental conditions
mentioned above including the untreated HT-29 epithelial cell controls was determined
by the MTT reduction method as indicated in Section 2.9. Alternatively, morphological
changes observed on the monolayers of HT-29 epithelial cells post infection with the DEC
strains and control E. coli ATCC 25922 were photographed by phase contrast microscopy
under a Nikon microscope using a 20× dry objective (NA075). Each assay was carried out
in biological triplicates in a total of three independent experiments.
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2.11. Statistical Analysis

The results are expressed as the mean ± standard deviation (SD) of three indepen-
dent experiments. Statistical analysis was performed using the GraphPad Prism version
6 program. The data obtained were subjected to an analysis using one-way (ANOVA), with
Turkey’s post hoc test by using GraphPad Prism (San Diego, CA, USA) and a statistically
significant difference was considered with p < 0.05.

3. Results
3.1. Coaggregation of L. casei IMAU60214 with the DEC Strains

According to the physicochemical characteristics of coaggregation in Figure 1, it was
observed that L. casei IMAU60214 has an evident interaction with the diarrheagenic E. coli
strains evaluated, forming visible coaggregates (Figure 1A). It was also observed that after
120 min of incubation with L. casei IMAU60214 (Figure 1B), the values of the coaggregation
capacity of the Lactobacillus with each of the three E. coli strains tested increased with
time, observing intervals of 1% to 40% with respect to time, specifically the coaggregation
capacity with DEC strains EAEC 49766 (32 ± 5%), EHEC DL933 (40 ± 2%), and E. coli
ATCC 25922.

3.2. Antimicrobial Activity of the Cell-Free Supernatant (CSF) of L. casei IMAU60214 against
Diarrheagenic E. coli

The agar diffusion assays used to analyze the antimicrobial activity of the CSF from
L. casei IMAU60214 showed growth inhibition against EAEC and EHEC strains and the
control strain E. coli ATCC 25922 Figure 2. The same assay without adding CSF with only
MRS medium showed no growth inhibition after 24 h of incubation at 35 ◦C (Figure 2A).
The inhibition halos obtained ranged from 10 ± 2 mm to 20 ± 2.5 mm in diameter among
the DEC strains (Figure 2B). In addition, the intensity of inhibition was observed to be
dependent on the CSF concentration (10–80%).

3.3. Inhibitory Effect of the CFS from L. casei IMAU60214 on the Biofilm Formation of the
DEC Strains

The formation of biofilms developed on abiotic surfaces and the effect of the CSF of
L. casei IMAU60214 were analyzed by phase contrast microscopy as shown in Figure 3.
Structural observation of the biofilms from the DEC and control E. coli ATCC 25922 strains
in the absence of L. casei IMAU60214 CSF treatment showed an organized architecture
of mature biofilms in both the DEC and control E. coli ATCC 25922 strains. Among the
features associated with mature biofilms, fungal formations, microcolonies, monolayers,
and multilayers were observed on the abiotic surface; each DEC strain (EAEC 49766 and
EHEC EDL933) showed its own structural pattern in the formation of mature biofilms. The
same assay but treated with L. casei CSF IMAU60214 at 80% (v/v) showed a reduction in
the formation of mature biofilms with the loss of their organization.

3.4. Effect of the CFS from L. casei IMAU60214 on the Formation and Dispersion of DEC Biofilms

The effect of the CSF from L. casei IMAU60214 on the formation and quantitative dis-
persion of biofilms of DEC strains are shown in Figure 4. The presence of CSF significantly
reduced the formation of bacterial cell biofilms with respect to the control DEC strains and
untreated E. coli ATCC 25922 (Figure 4A). Moreover, in this assay, the effect was dependent
on the concentration of CSF; the quantitative analysis of the reduction effect with CSF for
each strain evaluated at high concentrations of CSF (40–80%) was 52 ± 5% in EAEC 49766,
40 ± 2% in EHEC DL933, and 35 ± 5% in E. coli ATCC 25922. The assay further showed
that CSF treatment causes the dispersion of pre-formed (mature) biofilms of DEC strains on
the abiotic surface after 24 h (Figure 4B). Concentrations of 40%, 60%, and 80% v/v of CFS
dispersed DEC biofilms of 35 ± 3%, 50 ± 5%, and 62 ± 3%, respectively. This dispersion
property of the CSF is concentration dependent. Furthermore, it was observed that this
dispersion is similar between the DEC strains and the control strain.
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Figure 1. Coaggregation activity of L. casei IMAU60214 with three pathogenic strains (two DEC strains
EHEC, EAEC, and the control E. coli ATCC 25922). (A) The formation of bacterial coaggregates of the
study strains were observed by Gram-staining and visualized with the immersion objective using a
light microscope Nikon. The magnification of the picture is 1000× (B) Coaggregation percentages
with the E. coli strains after 120 min of interaction at 37 ◦C. The values represent the mean ± standard
deviation of three independent biological assays. The magnification of these picture is 100×.
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Figure 2. Antimicrobial activity of (CSF) from L. casei IMAU60214 against the DEC strains. (A) Repre-
sentative images of growth inhibition zones of the pathogenic strains at different concentrations of
CSF pH = 6.5 (10–80%) deposited in wells (1–5) and the negative control (MRS medium alone) on
Mueller–Hinton agar plates after incubation for 24 h at 35 ◦C. (B) Measurement of zones of inhibition
(mm) where the values represent the mean ± standard deviation of three independent biological
assays for each pathogenic strain. * significant difference among the concentrations of CSF (p < 0.05).
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Figure 3. Structural examination of the effect of the CSF from L. casei IMAU60214 on the formation of
mature biofilms of the DEC strains on the abiotic surface. Biofilm formation in the presence of 80%
CSF concentration and in its absence was analyzed using a Nikon inverted phase contrast microscope
with a dry objective, the magnification of these picture is 1000×. The images shown are representative
of three independent biological assays.
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Figure 4. Impact of CSF from L. casei IMAU60214 on the biofilm formation and dispersion of the
DEC strains on the abiotic surface. (A) Percentage of biofilm formation in the presence of different
concentrations of CSF (10–80%) quantified by the crystal violet method. (B) Percentage of mature
biofilm dispersion after 24 h of CSF treatment (10–80%). The values represent the mean ± standard
deviation of three independent biological assays for each of the pathogenic strains. * significant
differences among the concentrations of CSF (p < 0.05).

3.5. Effect of CSF Pretreated with Catalase and Proteinase K on the Biofilm Formation and
Dispersion Activity of the DEC Strains

In the search for metabolites involved in the functional activities of CSF from L. casei
IMAU60214 against DEC strains, the effect of biofilm formation and dispersion was an-
alyzed in the presence of oxidative components such as hydrogen peroxide and in the
possible presence of proteins with bacteriocin function (Figure 5). Biofilm formation was
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significantly abated between 35 ± 3 and 30 ± 2% in the presence of the enzyme catalase
compared to the untreated CSF controls in all of the study strains (Figure 5B). Similar
data were observed when the CSF was pre-treated with proteinase K at a concentration of
1 mg/mL in both the biofilm formation and the dispersion of the DEC strains (Figure 5B).
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Figure 5. Effect of enzymatic pre-treatment with proteinase K and catalase (1 mg/mL) from the CSF
of L. casei IMAU60214 on the formation and dispersion of biofilms of the DEC strains as well as the
control E. coli ATCC 25922 strains on the abiotic surface. (A) Biofilm formation; (B) biofilm dispersion.
The values represent the mean ± standard deviation of three independent biological assays for each
of the pathogenic strains. * significant difference among the treatments (p < 0.05).

3.6. Effect of CSF Pretreated with Catalase and Proteinase K on the Biofilm Formation and
Dispersion Activity of the DEC Strains

In the search for metabolites involved in the functional activities of CSF from L. casei
IMAU60214 against the DEC strains, the effect of biofilm formation and dispersion was
analyzed in the presence of oxidative components such as hydrogen peroxide and in the
possible presence of proteins with bacteriocin function as shown in Figure 5. Biofilm forma-
tion was significantly abated between 35 ± 3 and 30 ± 2% in the presence of the enzyme
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catalase compared to the untreated CSF controls in all study strains (Figure 5B). Similar
data were observed when the CSF was pre-treated with proteinase K at a concentration of
1 mg/mL in both the biofilm formation and the dispersion of the DEC strains (Figure 5B).

3.7. Effect of the CSF from L. casei IMAU60214 in an In Vitro Co-Culture with Human HT-29
Epithelial Cells Infected with the DEC Strains

The influence of CSF on cell damage and/or cytotoxicity induced by in vitro infection
with DEC strains on HT-29 epithelial cells is shown in Figure 6. The cytotoxicity data
quantified by MTT reduction exhibit a positive impact, with a significant dependence on
the concentration of CSF present in the co-culture. Concentrations of 40% to 60% (v/v) of
(CSF) maintain viability at levels similar to uninfected cells (Figure 6A)
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Figure 6. Effect of CSF co-incubation from L. casei IMAU60214 on the cytotoxic damage induced with
the DEC strains on HT-29 human epithelial cells. (A) Quantification of cell damage by MTT reduction.
(B) Representative images of the structural analysis by visualization in phase contrast microscopy
using an inverted microscope with a 20× dry objective in the absence of CSF and with CSF (80%).
The magnification of these picture is 400×. The values represent the mean ± standard deviation of
three independent bioassays for each of the pathogenic strains. * significant difference among the
treatments (p > 0.05).
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In contrast, the HT-29 cells infected with each of the DEC strains exhibit lower viability
(30 ± 5% to 50 ± 3%); that is, more than half of the HT-29 cells infected with diarrheagenic
E. coli show cell cytotoxicity effects, supported by the reduction in metabolic activity
quantified by MTT reduction. It is noteworthy that the EAEC and EHEC strains produce
greater damage compared to that caused by the control strain of E. coli ATCC 25922.
Similarly, when analyzing the morphological changes in uninfected cells and cells infected
with diarrheagenic E. coli, we found distinct morphological changes associated with cell
damage (Figure 6B).

The observations made by phase contrast microscopy show the loss of the integrity of
the monolayer, a reduction in cell size, and increased vacuolization of the cells compared
to that observed in the uninfected cells. On the other hand, the structural monolayer of
the cells co-cultured with CFS and infected with the diarrheagenic E. coli strains closely
resembles the cell monolayers of the negative control (uninfected cells). Analysis of cyto-
toxicity percentages of HT-29 human epithelial cells co-cultured with CFS infected with
DEC strains shows a significant reduction in the concentration-dependent cytotoxic effect
of L. casei CSF IMAU60214.

4. Discussion

In recent decades, the extensive use of antibiotics against pathogenic bacteria such as
Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, and Salmonella spp.,
among other microorganisms has increased antibiotic resistance, limiting their treatment
options [35,36]. Previous studies have demonstrated that the Enterobacteriaceae family
includes genetic variants resistant to carbapenems [37]. In this context, recent studies have
focused on using this family as an alternative strategy probiotic strain and/or its metabolic
bioproducts released in cell-free supernatants (CSFs) of Lactobacillus spp. which showed
activity against carbapenem-resistant strains of the Enterobacteriaceae family [38]. In the
intestinal environment, probiotic strains can exert their beneficial potential through their
properties of coaggregation, competitiveness, pathogen exclusion, and adhesion prevention
on the intestinal mucosa, among other parts of the human body [39]. The most promising
scenario of probiotic potential has been established through in vitro and in vivo studies
that have analyzed the antimicrobial activity attributable to metabolic bioproducts [40,41].
In the present study, the potential antimicrobial activity of L. casei CFS IMAU60214 obtained
from a dairy isolate was evaluated. The evaluation was performed on an important group
of enteric pathogenic bacteria, mainly Escherichia coli pathotypes causing diarrhea, such as
EAEC, and other disorders, such as hemolytic uremic syndrome, caused by EHEC [42,43].
An interesting observation was the ability of L. casei IMAU60214 to coaggregate against two
DEC strains and the reference strain E. coli ATCC 25922. Coaggregation ability is a physico-
chemical property of the bacterial cell wall, which favors cell–cell interaction that conditions
the formation of a barrier that interferes with the adherence of pathogenic bacteria to the
intestinal mucosa and prevents them from colonizing the intestinal mucosa [44,45]. Previ-
ous reports refer to coaggregation activities between strains of L. paracasei and Lactobacillus
rhamnosus with pathogenic E. coli [46,47]. However, other investigations report the exis-
tence of Lactobacillus strains with limited ability to coaggregate with pathogens, suggesting
that there is variability among strains and species of probiotic bacteria against pathogenic
microorganisms [48,49]. The results of the present study concerning the coaggregation
property of viable L. casei IMAU60214 suggest that this probiotic strain is a good candidate
for controlling infection caused by diarrheagenic E. coli. Furthermore, the coaggregation
activity (pathogen–probiotic strain), in addition to interfering with the adherence and colo-
nization of the pathogen, can maintain a microenvironment that increases the efficacy of
the antimicrobial action of the bioproducts secreted by the probiotic bacteria. In this regard,
it has been hypothesized that properties such as coaggregation and antimicrobial effects
could contribute to the decrease in pathogen load by competitive exclusion mechanisms
during infections [50,51]. In this study, we observed that the CSF from L. casei IMAU60214
had an antimicrobial effect on the study strains EAEC, EHEC, and E. coli ATCC 25922. It is
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important to note that antimicrobial activity continues to be one of the main criteria for the
selection of probiotic strains. Biofilm formation is an important property expressed by some
pathogenic bacteria, so having innocuous products that interfere with the formation of
biofilms of pathogenic microorganisms would contribute to their elimination. Biofilms, in
addition to contributing to the adherence of bacteria, protect them against the action of the
immune response and the action of antimicrobials [52,53]. When evaluating the CSF activity
of L. casei IMAU60214, it was observed that it reduces and disintegrates biofilms of DEC
strains. The DEC strains used in the study are excellent biofilm producers, a relevant aspect
since not all pathogenic microorganisms present this activity [54,55]. The impact of CSF on
the formation and dispersion of biofilms against these pathogenic DEC strains provides
evidence that L. casei IMAU60214 is an excellent candidate to be used as a useful probiotic
bacterium for the control and treatment of infections related to infection by E. coli strains
that cause diarrhea and other more severe conditions such as hemolytic uremic syndrome
(HUS) [56]. The analysis of the components potentially involved in the mechanisms of
action of CSF revealed that both the anti-formation and biofilm dispersion activities of
the DEC strains were reduced by treatment with proteinase K and catalase individually.
These results indicate that, most probably, the components responsible for these activities
are proteins that need to be identified and oxidizing compounds, particularly hydrogen
peroxide. In previous works, it has been reported that metabolites of a protein nature,
oxidative components, and organic acids contained in or derived from CSFS can alter the
pathogenesis of certain enteric bacteria such as Salmonella enteritidis [57]. Structural analysis
of the biofilms through phase contrast microscopy imaging provided evidence of the ability
of the components released in the CSF of L. casei IMAU60214 to inhibit the architectural
development of biofilms formed by the DEC strains. It was also observed that the CSF
from L. casei IMAU60214 exhibits a protective effect on HT-29 epithelial cells infected with
the EAEC and EHEC strains, producing toxins such as Pet toxin and Shiga-like toxin (SLT),
respectively [58–62]. In this regard, Navarro et al. [63] showed that Pet secreted by strains
of the EAEC pathotype induces morphological changes in the mucosa characterized by
flattening of the intestinal villi with cell damage to the intestinal mucosa evaluated in an
experimental rat ligated loop model. In the same context, SLT from EHEC has cytotoxic
capacity, causing cell damage to the human intestinal epithelium [64]. In agreement with
the results obtained in the present study, recent reports show that the CSF from L. casei
causes destruction of the bacterial cell membrane. The results of this work agree with
those reported in other investigations that suggest that supernatants derived from probiotic
bacteria significantly reduce cytotoxic effects and apoptosis induced by enteric pathogens,
such as Salmonella Typhimurium [65].

5. Conclusions

It can be concluded that both the coaggregation effect and the CSF activity of L. casei
strain IMAU60214 make this bacterium a suitable candidate for use as a probiotic with
potential to interfere with the activity of some of the pathogenic factors of diarrheagenic
E. coli strains. The analysis of the literature indicates that the present study is the first
to contribute to the characterization of the antagonistic activity of L. casei IMAU60214,
against DEC strains. However, it presents some limitations. One of these is related to
the biofilm formation assay that was only analyzed on abiotic surfaces; it would have
been important to demonstrate that this CSF supernatant can destroy biofilm formation
under biotic conditions. Another aspect that remains to be evaluated is the total CSF
composition of this L. casei strain IMAU60214. However, what has been shown is the basis
for confirming its impact through extensive research in both in vivo studies with animal
models and clinical studies in the future, in which there will be strong reasons to consider
it as a therapeutic alternative for infections caused by diarrheagenic E. coli.
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