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Abstract: Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant
welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus
(EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among
livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity
and mortality. During the past decade, this viral disease has become a real threat for countries of
the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock.
Moreover, the European Union registered the first cases of EHDV ever detected within its territory.
Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution,
conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe
are at risk for this serious disease. This review provides an overview of current knowledge about
EHDV, including changes of distribution and virulence, an examination of different animal models of
disease, and a discussion about potential treatments to control the disease.
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1. Introduction

The appearance and spread of outbreaks caused by arboviruses that affect both wild
and domestic ruminants carry a high risk of generating important direct and indirect
economic losses. Therefore, control of diseases caused by arboviruses is essential to ensure
the welfare of livestock, as well as to prevent possible detrimental effects on local, regional,
and national economies. In this regard, implementation of vaccination campaigns against
this type of pathogen has successful, with a great impact on animal health. However, a
variety of anthropogenic factors, climate change, and growing global trade increase the
risk of appearance of viral diseases, some of them transmitted by arthropod insects, in
non-endemic territories. The most recent example of this is recent landing in Europe of
an orbivirus previously unknown on this continent, the epizootic hemorrhagic disease
virus (EHDV).

Epizootic hemorrhagic disease (EHD) is an arthropod-transmitted viral illness of wild
and domestic species of the suborder Ruminantia, included in the list of notifiable diseases
of the World Organization for Animal Health (WOAH) since 2008. The causative agent of
EHD is EHDV. This virus belongs to the genus Orbivirus within the family Sedoreoviridae,
similar to bluetongue virus (BTV) and African horse sickness virus (AHSV). EHDV and
BTV share a variety of domestic and wild ruminant hosts, including sheep, white-tailed
deer (WTD), and cattle, although susceptibility to clinical disease associated with these
viral infections varies greatly among host species, individuals, and viral serotype. For
BTV, more than 29 serotypes have been described, while just 7 serotypes of EHDV are
currently described. Here, we review fundamental aspects of EHDV and the epidemiology
of this emerging and re-emerging viral disease. Moreover, we offer an outline of the
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pathology induced during infection of ruminant hosts as well as a description of the animal
experimental models used for the study of EHD. Finally, we review the current state of
vaccines against this veterinary relevant orbivirus and the prospects and challenges of
next-generation vaccines.

2. EHDV, the Etiological Agent of EHD

Similar to members of the Orbivirus genus, EHDV non-enveloped virions present a
structure characterized by an icosahedral capsid, which is divided into three consecutive
protein layers: the inner and intermediate layers (core) and an outer capsid [1] (Figure 1).
The genome is located inside the core particle and comprises ten linear double-strand
RNA segments that encode for seven structural (VP1–VP7) and at least four non-structural
proteins (NS1, NS2, NS3/NS3A, NS4, and probably the putative NS5 as for BTV [2]) [1,3,4].
As for the prototype BTV, the outer protein layer is made of 60 trimers of VP2, the most
exposed virion protein, and 120 trimers of VP5 [5]. The inner capsid is made of the subcore,
formed by VP3, and the intermediate layer, constituted by VP7, along with three minor
structural proteins with enzymatic activities: VP1 (RNA-dependent RNA polymerase), VP4
(capping enzyme), and VP6 (helicase) [4,6–9].
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Figure 1. Diagrammatic representation of the viral particle of EHDV (~80 nm in diameter). Three
concentric layers constituted by VP2 and VP5 form the outer capsid. The intermediate layer and the
subcore are composed by VP7 and VP3. The inner capsid contains the RNA polymerase complex,
composed by structural proteins VP1, VP4, and VP6. At least four additional proteins (NS1, NS2,
NS3/NS3A, and NS4) are expressed during the replicative cycle.

Outer capsid proteins VP2 and VP5, encoded by segments 2 and 6, respectively, are
the most variable proteins among EHDV serotypes, especially VP2, probably due to great
selective pressure [10]. Similar to BTV, VP2 and VP5 accomplish key roles during the early
stages of infection, being involved in virus attachment and virus entry into host cells [11].
VP2 is also mainly responsible for the induction of virus neutralizing antibodies (nAbs),
thereby defining virus serotype based on cross-neutralization assays and supported by
extensive phylogenetic studies [10]. Rapid, sensitive, and specific molecular typing assays
have been developed by identification of segment 2 nucleotide regions unique to each
EHDV serotype [12,13].

VP1 (segment 1), VP4 (segment 4), and VP6 (segment 9), involved in genome repli-
cation, are also highly conserved proteins, showing at least 85% of amino acid sequence
identities when eastern and western strains were considered separately [14]. Identification
of conserved nucleotide regions in segment 9 allowed development of a highly sensitive
EHDV pan-reactive TaqMan real-time RT-PCR assay for diagnosis and genome detection
in tissues [12].
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VP7 (encoded by segment 7) shows a highly conserved amino acid sequence (more
than 90% sequence identity) among EHDV serotypes [14,15]. VP7 is the immunodominant
serogroup-specific protein and is used in serogroup specific enzyme-linked immunosorbent
assays (ELISAs) for disease diagnosis [16]. Recently, researchers have shown the usefulness
of purified and unpurified baculovirus-expressed VP7 for development of competitive
enzyme-linked immunosorbent assays [17,18].

Non-structural proteins, found in infected cells but not in virus particles [19], play
supportive roles in crucial viral processes such as genome packaging, intracellular trans-
port, capsid assembly, virus release, and control of the immune response. NS1, the most
expressed protein during orbivirus replication in infected cells and positive regulator of
viral protein synthesis, forms tubules in the cytoplasm that are involved in viral transport
within infected cells and have a role in cellular pathogenicity [20–22]. NS1 has been de-
scribed as an almost identical protein among EHDV serotypes (more than 90% sequence
homology) [23]. The highly conserved protein sequence of NS1 is thought to be important
for tubule formation and function. In this sense, the conservation of 16 cysteine residues
in the protein sequence, including two residues at positions 336 and 339, could be of fun-
damental importance for NS1 formation as it occurs in the case of BTV [23]. The highly
conserved nucleotide sequence of NS1 has also enabled development of rapid molecular
tools for diagnosis of EHDV [24], even in samples of aged bone marrow for up to 12 weeks
after animal death [25]

NS2 (segment 8) acts as ATPase, having a role in RNA packaging and translation [26].
This phosphoprotein is the major component of viral inclusion bodies (VIB), acting as virus
assembly sites [27,28]. In terms of amino acid identity, NS2 varies more than NS1. The
sequence identity seen in NS2 among all strains varies around 79.7% [23]. Authors also
reported the conservation of a domain at the N-terminus of NS2, between amino acids
75–83. This domain was shown to be important for binding single-stranded RNA and
formation of VIBs during EHDV infection [26]. Differences at the sequence of this domain
between western and eastern strains could explain differential pathogenicity in cattle [23].

NS3 (segment 10) is important in virus release from infected cells, being expressed at
greater levels. NS3, which possess transmembrane domains [29], facilitates virus egress
via budding, rather than lysis, in Culicoides cells [30]. NS3 and NS3A are closely related
proteins, both translated from sequential ORFs of segment 10 [31]. The sequence identity
mean of NS3 is 89.7% at the amino acid level between eastern and western viruses [23].

For NS4 (encoded by segment 9), which is a virulence factor in the case of BTV [32,33],
no sequence homology analysis between EHDV serotypes has been conducted so far.

3. Changes in EHDV Epidemiology: Influence of Global Warming

To date, seven serotypes of EHDV have been identified, named as 1–2 and 4–8, desig-
nated based on extensive phylogenetic studies, sequencing data, and cross-neutralization
assays [10]. Genetic analyses demonstrated that previously identified serotype 3 [34] (Nige-
rian strain Ib Ar 22619) was serotype 1 [10]. EHDV has been isolated in North and South
America, Africa, Asia, the Middle East, and Oceania (Figure 2a). To date, it is endemic in
parts of North America, Australia, and certain countries of Asia and Africa [35]. EHDV
was first detected in the USA in 1955 when WTD were severely affected showing high
mortality [36]. Among the seven serotypes proposed, EHDV-1, 2, and 6 have been reported
to be present in North America, where WTD is the most severely affected host and the
scale of individual outbreaks increased with time [37–39]. In Australia, six out of seven
serotypes (EHDV-1, -2, -5, -6, -7, and -8) have been detected over the years [35,40]. Globally,
the presence of EHDV has been noted in Japan (serotypes 2 and 7, and serotypes 5 and
6 recently isolated from Culicoides insect vectors), China (serotypes 1, 5, 6, 7, 8), Morocco
(serotype 6), Algeria (serotype 6), Libya (serotype 6), Turkey (serotype 6), Tunisia (serotypes
6 and 8), Egypt (serotype 1), Oman (serotype 2 and 6), Sudan (serotype 5 and 6), Nigeria
(serotypes 1 and 4), the island of Mayotte (serotype 6), French Guiana (serotypes 6 and
7), Ecuador (serotype 1), Trinidad (serotype 6) and Israel (serotypes 1, 6 and 7) [41–59].
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Genome detection or serological evidences also indicate the presence of EHDV (unknown
serotypes) in Indonesia, Taiwan, Zimbabwe, Kenya, Kazakhstan, and Brazil [60–64]. Nu-
cleotide sequencing and neutralization tests suggest novel strains of EHDV identified in
South Africa and China as new putative serotypes [65,66]. Traditionally, this virus was
thought to cause severe disease only in deer and mild illness in cattle, except for the out-
breaks of EHDV-2 (traditionally known as Ibaraki virus) that have generated economic
losses in Japan since the mid-20th century. The first outbreak in the country in 1959 re-
sulted in 4000 deaths among cattle [67]. Moreover, further infection events in Reunion
Island and USA demonstrated the capacity of serotypes 6 and 7 to cause severe disease in
cattle as well [68–70]. Recent introductions of novel serotypes 6 and 7 in Israel and China
also demonstrated increased severity and prevalence among bovine populations [51,71].
Importantly, field strains causing EHDV-outbreaks in Israel were likely to be abortifacient
in cattle [72]. After spreading countrywide, endemization of EHD in the country is quite
probable [73]. The unique assessment of economic losses caused by EHDV correspond to
the EHDV-7 outbreak that occurred in Israel during the fall of 2006, with an estimated loss
ranging from USD 1,591,000 to USD 3,391,000, mainly associated with a reduction in milk
production [74].
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Figure 2. Epidemiology of EHDV across the world (a) and in Europe (b). (a) Colored areas represent
the countries were different serotypes of EHDV have caused outbreaks over the years or serological
evidence exists. The corresponding serotypes of each country are indicated. Where outbreaks are
located within a specific region, the whole country is indicated as infected. (b) Representation of the
Italian and Spanish affected regions.
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Traditionally, EHDV distribution has been enclosed in temperate and tropical climates
that support vector populations. In Canada, where EHDV was limited to southwestern
areas [75], detection of EHDV-2 genomes and serologic evidence in deer and cattle strongly
suggest that there is a progression of the virus to northern regions of America where it was
not present before [76,77]. This is likely to be related to global warming. These climatic
consequences were gradually visible through the EHDV outbreaks registered in the USA
during recent decades and patently apparent during the major outbreak of EHDV the
occurred during the summer of 2012 that coincided with severe drought and abnormally
high temperatures [78]. There were large losses of WTD, and a significant amount of clinical
disease in cattle in the Midwest and northern Plains [39]. During the past decade, there
have been important changes in the pattern of disease and distribution of EHDV: first,
related to the aforementioned growing severity of the disease among bovine populations;
second, regarding the emergence of outbreaks in the Mediterranean Basin in former EHDV-
free territories [79]. Outbreaks during 2020 in Turkey and North Africa were originated
by serotype 6, while serotype 8 was the causative virus of several outbreaks in cattle in
Tunisia during 2021 [50]. This was the first evidence of EHDV-8 circulation since 1982,
when this serotype was isolated in Australia. In Europe, there was no evidence of the
presence of EHDV as far as we know. However, it emerged on the continent for the first
time in October 2022. After BTV-like clinical signs were noticed in some animals, EHDV
was identified as the causative agent of cattle disease outbreaks in Sicily and southwestern
Sardinia (Figure 2b). Subsequently, it was confirmed that these outbreaks were caused
by EHDV-8, an identical strain to the one circulating in Tunisia between 2021 and 2022,
pointing to North Africa as the direct origin [80]. Consecutively, EHDV outbreaks were
detected in southern Spain, with EHDV serotype 8 confirmed and notified to the WOAH
as the causative agent (Figure 2b).

Epidemiologic changes of arboviral diseases are also related to genetic evolution
of their causative viruses. Recent works have established a distinction between EHDV
strains based on their eastern or western origin, which could possibly be influenced by
both regional and genetic factors [14,23]. Genetic variation present among EHDV strains
derives from mechanisms of recombination, gene duplication, and point mutation [10,23].
In this sense, an African ancestry of US and Australian strains has been suggested by the
identification of a recombination event in segment 8 of EHDV. Gene reassortment is another
major force that characterizes EHDV evolutive strength to maintain viral fitness. In the
USA, a novel EHDV-6 reassortant strain (Indiana strain) was identified as the causative
virus of an outbreak in WTD during September and October 2006. At first, researchers
identified a reassortment between the North American topotype of EHDV-2 and an exotic
strain of EHDV-6 [70]. Thereafter, this exotic strain was confirmed to have an Australian
origin [81]. Subsequently, an EHDV-6 strain isolated in Trinidad was recognized to be a
product of reassortment between Australian EHDV-6 and EHDV-2, and probably USA-
circulating EHDV-1. Moreover, authors pointed out this virus as a minor parent of the
EHDV-6 Indiana strain [47]. Another EHDV-6 strain isolated in the USA had an Australian
origin [82]. Multiple reassortment events as well as preferential reassortment have been
observed between USA-circulating EHDV strains of serotypes 1, 2 and 6 [83,84]. All of
these exemplify the plasticity of EHDV to survive and adapt to diversity of environmental
niches, illustrating the unpredictable epidemiological features of this disease.

Role of Culicoides Insect Vector in EHDV Spread

EHD is a vector-borne viral disease [85], so that its distribution is inherently limited to
the distribution of competent Culicoides vectors. EHDV vectors, adult female Culicoides, are
small biting midges belonging to the family Ceratopogonidae (Diptera order). Available data
in the literature suggest that the species of Culicoides involved in EHDV transmission are
likely to be similar to those that transmit BTV [86]. Culicoides species that are known to be
implicated in EHDV transmission include C. imicola, C. sonorensis, C. obsoletus, C. brevitarsis,
C. mohave, and C. oxystoma, among others [87–90]. EHDV infections are typically seasonal,
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occurring when vector insect populations are most abundant usually from mid-summer
to late autumn [88]. However, global warming is likely to influence factors related to the
incubation period and the distribution of competent insect vectors.

Many human and environmental factors clearly affect the dynamics of vector-borne
diseases. Global arbovirus distribution has expanded in recent decades as a consequence
of many anthropogenic factors, including commercial movement as well as long-distance
travel. In addition, global warming is directly influenced by human activities and signifi-
cantly affects the activity of arthropods [91,92]. It is a worrying fact that rate of warming
since 1981 is more than twice as fast, 0.32 ◦F (0.18 ◦C) per decade [93], with the mean
global temperature increasing more than 1 ◦C above preindustrial levels [92]. The abil-
ity of arthropods to transmit any virus is influenced by environmental factors such as
temperature. There is evidence that higher temperatures would decrease the extrinsic
incubation period of viruses and this would benefit the transmission of EHDV for longer
intervals of time [94]. As an example, studies related to vector competence of C. sonorensis
revealed that infection rate of this species with two orbiviruses was much greater at >20 ◦C
compared with 15 ◦C [95]. Modeling studies of C. imicola future distribution suggested that
its habitat suitability is likely to expand to higher latitudes in the northern hemisphere,
such as Norway, Sweden, Finland, and the Kola Peninsula [96].

Like other arboviruses, the distribution of many orbiviruses has been increasing in
recent times. As a precedent, AHSV spread in 2020 without any warning from sub-Saharan
Africa towards Southeast Asia [97]. The related BTV shares with EHDV many susceptible
ruminant hosts and transmission species of Culicoides. BTV has spread across central and
north Europe since appearing on the continent in 2006, leading to continuous outbreaks
and great economic losses. With this previous scenario, it is probable that EHDV as vector-
borne virus could have spread among territories of the EU, especially now that its presence
in Spain and Italy has been confirmed. Another factor to take into consideration is the
potential distribution of Culicoides midges by the wind. EHDV vectors can be passively
dispersed over long distances by prevailing winds [98] and this could lead to rapid spread
of EHDV. For BTV, modeling studies have established the positive relationship between
wind density and viral case density [99]. In the case of EHDV, winds were proposed
as the major contributor to long and medium distance EHDV distribution during the
Israeli outbreak in 2006. The recent arrival of EHDV to the southern territories of the EU
might have originated with wind flows from Northern Africa, without dismissing other
anthropogenic factors.

EHDV can be transmitted very rapidly through several species of Culicoides insects
present in Europe [100,101]. Coupled with global climate change, this increases the risk of
introduction of the pathogen in new areas even including the central parts and north of
the continent, where introduction of WTD has been carried out along with the presence of
susceptible European cervids and livestock species.

4. Disease and Pathology

EHD was firstly described in WTD in New Jersey in 1955 [36]. WTD (Odocoileus
virginianus) are especially susceptible to severe disease. In North America, where EHDV is a
major cause of mortality in WTD [102], periodic outbreaks result in significant mortality, but
susceptibility to disease has been shown to vary between subspecies [103]. Clinical disease
due to EHDV has been also reported in mule (black-tailed) deer, bighorn, yak, elk, brocket
deer, and pronghorn antelope [63,102,104–107]. While sheep are highly susceptible to BTV
with significant mortality, these are often resistant to EHDV-induced disease. However, it
is important to consider animals with subclinical infections as reservoirs of infection that
can amplify virus circulation, although the role of sheep in EHDV epidemiology seems to
be negligible [108]. Other species that have also been seropositive are fallow deer, wapiti,
bison, goat, red deer, and roe deer [109].
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After blood feeding from an infected animal, EHDV first replicates in the midgut
epithelium of the biting midge and disseminates through the hemolymph to secondary in-
fection sites including the salivary glands [110], where viral particles can undergo changes
related to infectivity [111]. When an infected Culicoides bites a susceptible ruminant host,
the virus primarily infects dendritic cells and macrophages. These subsequently migrate
carrying the virus to regional lymph nodes, draining the entry site. Here, the primary
replication occurs, and, then, the virus is disseminated to many organs, particularly the
spleen and lungs (although the virus has also been detected in the heart, cerebrum, cerebel-
lum, and testes). Mononuclear phagocytes and endothelium cells are mainly infected [112].
EHDV replicates in the vascular epithelium, benefiting from autophagy and inducing cell
death by apoptosis [112–114], leading to hemorrhage and thrombosis. In addition to direct
viral damage caused by replication in the endothelium, replication in macrophages and
endothelial cells leads to the release of pro-inflammatory cytokines such as interleukin
1 (IL-1) and interleukin 6 (IL-6) [115], which could enhance viral pathogenesis. Thus,
inflammatory mediators may contribute to the severity of clinical disease, as well as the
induction of vasoactive mediators, such as nitric oxide [116,117].

During the initial steps of infection, a type I IFN response determines whether the
disease makes progress in the infected host. In experimental infection of deer with EHDV,
peak viraemia coincided with peak IFN type I levels and both then rapidly declined [118].
Importantly, host genetics related to the innate immune response probably play a role
in disease outcome [119]. Leukopenia and lymphopenia are common features of EHD.
Clinical outcomes vary depending on the different forms of disease. The sub-acute form is
characterized by development of ulcers in the oral cavity and the gastrointestinal tract [102].
The acute forms portrays a hemorrhagic disease that includes hyperaemia of the conjunctiva
and the oral mucosa, pulmonary edema, pleural effusion, and multifocal haemorrhages in a
variety of organs affected by vascular damage and coagulopathy [102]. The peracute disease
causes fulminant death, probably due to the development of pulmonary vascular injury
with subsequent pulmonary oedema, probably assocciated with the cytokine storm [116].
Prolonged infections have also been observed in experimentally infected WTD and cattle,
which can be explained by association of EHDV viral particles with invaginations in the
erythrocyte membrane [120].

Although infection is usually less severe in cattle than in WTD, outbreaks among
bovines have been more virulent in recent years. EHDV epizootics reporting severe clinical
disease in cattle were described in Japan [67], Reunion Island [69], and Turkey [37], with
more recent outbreaks in Egypt [41], Israel [44,71], and Tunisia [50]. Increased virulence
in bovines has been also detected in North America over the past decade [121]. When
cattle are infected with EHDV and clinical signs occur, these can include pyrexia, hyper-
aemia, oral ulcerations, ptyalism, excessive nasal and ocular secretion, lethargy, weakness,
lameness, loss of appetite, reduction in the production of milk, and edemas (palpebral and
conjunctival mostly), among others [44,45,67,69]. In some cases, animal deaths have been
recorded [69]. Importantly, EHDV was frequently present in cases of aborted cattle during
some epizootics [53,71,72,122]

5. Experimental Animal Models of EHDV
5.1. White-Tailed Deer (WTD) and Other Cervid Species

As the global incidence of EHD is constantly increasing, the study of pathogenesis,
transmission, and diagnosis as well as the evaluation of vaccine candidates in natural
wildlife hosts is a key issue. In this sense, cervids have been used for EHDV study in
natural hosts (Table 1). Different species of cervids, including red, fallow, roe, and muntjac
deer, were experimentally infected with the New Jersey strain of EHDV-1, which is highly
virulent in WTD. In contrast, these animals did not display any signs of disease, although
productive infection could be detected [123]. Among the species of cervids susceptible to
EHDV infection, WTD stand out as the most affected host of EHDV. Experimental infection
of WTD with EHDV followed the first outbreak detected in the USA. WTD inoculated with
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EHDV-1 displayed severe illness in most cases, resembling the clinical disease observed
in nature and displaying gross and histopathological lesions [124,125]. A high mortality
among infected WTD was recorded [125]. In general, experimental infection of WTD with
EHDV induces acute disease leading to high mortality rates, independent from the age or
sex of the infected animals. WTD infected with the reassortant North American EHDV-6
resembled infection and clinical disease caused by the US strains of EHDV-1 and EHDV-
2. Researchers also characterized virological parameters of EHDV infection, detecting
viraemia from the third day post-inoculation until more than two weeks later (viraemia
was detectable for more than seven weeks) in surviving animals, even in presence of high
nAb titers. Viral RNA was detected in tissue samples of organs that presented macro- and
microscopic lesions [126]. A field isolate of EHDV-7 that caused intense and widespread
epizootic in domestic cattle in Israel was also assessed to determine whether WTD was
susceptible to infection. This virus strain led to a clinical disease identical to that observed
in experimental infections with North American isolates, and virological parameters were
similar to those of EHDV-6 infected WTD [127]. The fact that “exotic” strains of EHDV can
productively infect WTD inducing fatal clinical disease highlights the marked susceptibility
of WTD to EHDV infection. Nonetheless, it is important to note that not all subspecies
of WTD share the same susceptibility grade, with some of them, such as the subspecies
Odocoileus virginianus texanus (which inhabits regions where EDHV has been endemic
for a long period), showing innate resistance to EHDV [128]. Differential expression of
pro-inflammatory cytokines could explain this resistance [115]. Host genetic factors can
also influence susceptibility to EHDV infection [119]. This illustrates the complexity of
understanding the pathogenesis and virulence of EHDV even in WTD.

The employment of WTD as an EHDV animal model has not been restricted to the char-
acterization of EHDV infection and clinical disease, but has also been used in the study of
virus pathogenesis and host defense mechanisms triggered against this pathogen [115,129].
Peak levels of IFN type I (IFN-α and IFN-β) coinciding with peak viraemia levels in in-
fected WTD reflected the progression of an innate immune response following EHDV-1
inoculation. IFNs type I were not detected in blood after a second inoculation of convales-
cent animals with EHDV-1, due to an abrogated viral replication caused by a neutralizing
humoral response [118]. The induction of homologous nAbs is a very common feature
observed in surviving WTD and could be explored as a correlate of protection. Some
authors have characterized the dynamics of passive immunity against EHDV, observing a
prolonged persistence of maternal nAbs and protection against EHDV in fawns [130,131].
Cell-mediated immune responses and suppression of T-cell proliferation have also been
recorded in EHDV-infected WTD [103,132].

Several works have outlined the utility of WTD as an experimental model for studying
EHDV transmission and propagation via the Culicoides insect vector. This animal model has
been useful in studies of vector competence [133,134] and to determine factors affecting viral
replication in infected midges [135]. Interestingly, significant epidemiological features of
EHDV were evinced after blood-feeding of Culicoides midges from experimentally infected
WTD. Mendiola et al. (2019) demonstrated that insect vectors can become infected even
when virus cannot be detected in the blood of infected animals [136]. Alternative routes of
transmission in WTD have been evaluated. Indeed, reports of oral infection of WTD exist,
and oral and fecal shedding of EHDV by infected WTD have been demonstrated, which
means that direct and indirect contact transmission may play an important role in farm
animals stocked at high densities [137].
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Table 1. Cervid species used as experimental animal models for study of EHDV infection and pathology.

Specie Age Challenge Virus Dose Inoculation
Route Mortality Clinical

Disease
Pathological

Abnormalities Viremia
Virus

Isolation/RNA
in Tissues

Gross and
Histopathological

Lessions

Immune
Response Ref

Red deer
(Cervus
elaphus)

1–4 years old EHDV-1
USA1955/01 106 TCID50 IV No No No Yes a Not evaluated Not evaluated Homologous

nAbs [123]

Fallow deer
(Dama dama) 1–4 years old EHDV-1

USA1955/01 106 TCID50 IV No No No Yes a Not evaluated Not evaluated Homologous
nAbs [123]

Roe deer
(Capreolus
capreolus)

1–4 years old EHDV-1
USA1955/01 106 TCID50 IV No No No Yes a Not evaluated Not evaluated Homologous

nAbs [123]

Muntjac
deer

(Muntiacus
muntjac)

1–4 years old EHDV-1
USA1955/01 106 TCID50 IV No No No Yes a Not evaluated Not evaluated Homologous

nAbs [123]

White-Tailed
deer

(Odocoileus
virginianus)

2–24 months old

EHDV-1
USA1955/01 Unknown (inocula from

spleen, liver, lung, blood,
and kidney of severely

infected WTD)

SC or IM

Yes (>56%
mortality

rate) Severe to
fatal clinical

disease
Not evaluated Not

evaluated Not evaluated Yes Homologous
nAbs

[125]
EHDV isolated in
South Dakota (no

data specified)

Yes (>33%
mortality

rate)

9–36 months old EHDV-1
USA1955/01

Unknown (inoculum from
severely infected WTD

spleen)
IM

Yes (>50%
mortality

rate)
Yes Thrombocytopenia Not

evaluated Not evaluated Yes Not evaluated [124]

5 months old

EHDV-6
(EHDV-6/EHDV-2
reassortant isolate
CC-304-06 Indiana,

US, 2006)

106.4 TCID50 SC and ID
Yes (60%
mortality

rate)
Yes

Leukopenia,
lymphopenia,
hypoproteine-

mia

Yes a
Spleen, lung,
lymph node

and skin
Yes Homologous

nAbs [126]

8 months old EHDV-7 ISR2006/04
105.27 TCID50 (inoculum
from severely infected

WTD blood)
SC and ID

Yes (66.7%
mortality

rate)
Yes

Leukopenia,
lymphopenia,
hypoproteine-

mia,
thrombocy-

topenia

Yes a

Spleen, lung,
lymph node,

heart,
cerebellum,

cerebrum and
skin

Yes Homologous
nAbs [127]



Microorganisms 2023, 11, 1339 10 of 27

Table 1. Cont.

Specie Age Challenge Virus Dose Inoculation
Route Mortality Clinical

Disease
Pathological

Abnormalities Viremia
Virus

Isolation/RNA
in Tissues

Gross and
Histopathological

Lessions

Immune
Response Ref

2-months-old
Odocoileus
virginianus

texanus

EHDV-1 (from field
isolate from Walton
County, Georgia in

1999)

107 TCID50 (inoculum
from severely infected

WTD blood)

SC and ID

No

Mild clinical
disease No

Yes a Not evaluated

Not evaluated

Homologous
nAbs

[128]

EHDV-2 (field isolate
from Clarke County,

Georgia)

107.1 TCID50 (inoculum
from severely infected

WTD blood)
No

2-months-old
Odocoileus
virginianus

borealis

EHDV-1 (from field
isolate from Walton
County, Georgia in

1999)

107.1 TCID50 (inoculum
from severely infected

WTD blood)

Yes (100%
mortality

rate) Severe
clinical
disease

Lymphopenia,
hypoproteine-

mia

Gross lesions (not
specified)

EHDV-2 (field isolate
from Clarke County,

Georgia)

107 TCID50 (inoculum
from severely infected

WTD blood)

Yes (20%
mortality

rate)

3–4 months old
EHDV-2 (field isolate
from Clarke County,

Georgia in 1990)

105.5 TCID50 (inoculum
from severely infected

WTD blood)
SC and ID

Yes (31%
mortality

rate)
Yes Lymphopenia Yes a Not evaluated Not evaluated

Homologous
nAbs

[118]
3–4-months-old

EHDV-2
convalescent

animals

EHDV-2 (field isolate
from Clarke County,

Georgia in 1990)

103 TCID50 (inoculum
from severely infected

WTD blood)
No No No No a Not evaluated No

27–47-days-old
fawns (feed with
colostrum with
maternal nAbs) EHDV-2 (field isolate

from Clarke County,
Georgia in 2016)

105.6 TCID50 (inoculum
from virus isolated in

severely infected WTD
spleen and propagated in

BHK21 cells)

SC and ID

No

Mild or
absent
clinical
disease

Not evaluated

No
(transient
viraemia

in two
fawns a) Spleen No

Maternal
homologous

nAbs
[131]

27–47-days-old
fawns No

Moderate
clinical
disease

Yes a

3–4 months old EHDV-2 (strain not
specified)

105.5 TCID50 (inoculum
from infected WTD blood) SC and ID

Yes (25%
mortality

rate)
Yes Lymphopenia Yes a Not evaluated Not evaluated Homologous

nAbs [132]

4–5 months old

EHDV-2 (from field
isolate from Clarke
County, Georgia in

2016)

106.6 TCID50 (inoculum
from infected WTD blood)

SC and ID

No
Moderate

clinical
disease

Not evaluated

Yes a Not evaluated Not evaluated

Homologous
nAbs and

Cell-mediated
response

[103]
EHDV-1 (from field
isolate from Walton
County, Georgia in

1999)

107.6 TCID50 (inoculum
from virus isolated in

severely infected WTD
spleen and propagated in

BHK21 cells)

Yes (100%
mortality

rate)

Severe
clinical
disease

Lymphopenia,
thrombocytopenia
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Table 1. Cont.

Specie Age Challenge Virus Dose Inoculation
Route Mortality Clinical

Disease
Pathological

Abnormalities Viremia
Virus

Isolation/RNA
in Tissues

Gross and
Histopathological

Lessions

Immune
Response Ref

4–5-months-old
EHDV-2

convalescent
animals

EHDV-1 (from field
isolate from Walton
County, Georgia in

1999)

107.6 TCID50 (inoculum
from virus isolated in

severely infected WTD
spleen and propagated in

BHK21 cells)

No

Mild or
absent
clinical
disease

No

4 months old

EHDV-2 (from field
isolate from Clarke
County, Georgia in

1990)

105 TCID50 (inoculum
from infected WTD blood) SC and ID Not

specified
Not

evaluated Not evaluated Yes a Not evaluated Not evaluated Not evaluated [134]

6-months-old
Odocoileus
virginianus

borealis EHDV-2 (not
specified) 107.03 TCID50

Not
specified

Yes (25%
mortality

rate)

Moderate or
severe
clinical
disease

Not specified Yes a
Spleen, lung,

buccal mucosa
and skin

Yes
Induction of

pro-
inflammatory

cytokines

[115]
6-months-old

Odocoileus
virginianus

texanus

Mild or
absent
clinical
disease

No

8 months old EHDV-7 ISR2006/04 Unknown Infected C.
sonorensis Yes *

Severe
clinical
disease

Leukopenia,
lymphopenia,
hypoproteine-

mia,
thrombocy-

topenia

Yes a

Cerebrum,
cerebellum,
heart, lung,

spleen, lymph
node, skin,
epididymis

Yes Homologous
nAbs [133]

4–7 months old EHDV-7 ISR2006/04

105.1 TCID50 (inoculum
from virus isolated in

severely infected WTD
spleen and propagated in

BHK21 cells)

SC and ID Yes * Not
evaluated Not evaluated Yes a Not evaluated Not evaluated Not evaluated [135]

7 months old

EHDV-2 (from field
isolate from Coffey
County, Kansas in

2012)

106.5 TCID50 (inoculum
from virus isolated in

infected WTD spleen and
propagated in CPAE,

BHK21, and CuVaW8A
cells)

SC and ID Not
specified *

Mild to
moderate

clinical
disease

Not evaluated Yes a Not evaluated Not evaluated Not evaluated [136]

4–6 months old

EHDV-1 (from field
isolate from Walton
County, Georgia in

1999)

107.1 TCID50 (inoculum
from virus isolated in

severely infected WTD
spleen and propagated in

BHK21 cells)

SC and ID No

Mild to
severe
clinical
disease

Not evaluated Yes a
Virus isolated

from rectal and
oral cavities

Not evaluated Not evaluated [137]

Inoculation: IM, Intramuscular; ID, Intradermal; SC, Subcutaneous; IV, Intravenous; IC, Intracerebral; IP, Intraperitoneal. * Just one animal was included in the experimental design.
a Viraemia measured by plaque assay.
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5.2. Cattle and Other Farm Animals

WTD and other wildlife experimental models involve limitations (reviewed in [138])
that are not shared by suitable traditional livestock experimental animals widely used in
infectious disease research. As stated above, during recent EHDV outbreaks in North Amer-
ica, the Mediterranean Basin, and Reunion Island, an apparent increase in pathogenicity of
EHDV in cattle raised concerns. Therefore, cattle can be considered as a more accessible and
cheaper alternative to WTD for studying viral pathology and evaluating vaccine efficacy. In
Table 2, we compile data on all the experimental infections carried out in domestic animals
other than WTD so far. The first experimental inoculations of cattle with EHDV (Ibaraki-5
and Kyushu-1 strains) date from 1969, inducing clinical disease [67]. In later studies, cattle,
sheep, pigs, and goats were inoculated with the New Jersey strain of EHDV-1, which was
virulent in deer [123]. Despite technical limitations concomitant with that time, researchers
were able to observe viraemia in inoculated sheep and cattle while none of the goats or pigs
were viraemic. Interestingly, the virus was recovered from the vulva of a recently lambed
viraemic sheep. Clinical disease was not observed in any animal [123]. Similarly, other
researchers observed that inoculation of cattle with the EHDV-1 New Jersey strain did not
induce clinical disease, but the virus could be isolated from day 9 to day 23 post-inoculation
and viraemia was detected by gel-based reverse transcriptase-PCR between days 3 and
28 post-infection. Similar results were observed for cattle infected with the Alberta strain
of EHDV-2 [139]. In another work, subsequent inoculation of cattle with two US isolates
led to transient viraemia as well as the induction of a neutralizing immune response in
absence of clinical disease [140]. Likewise, no clinical disease nor other EHDV-associated
abnormalities were observed after inoculation of calves with a virulent EHDV-2 isolate
from deer. However, animals did display prolonged viraemia even in the presence of
homologous nAbs. Importantly, inoculation of a deer with the same virus did induce
severe clinical disease and the animal was euthanized, which indicates a non-virulent
phenotype of the inoculum in cattle [141]. Other strains different from US isolates have
been used for experimental infection of cattle. Virus isolates from the EHDV-6 outbreaks in
Morocco and Turkey in 2006 and 2007, which were characterized by a pathogenic profile
in infected bovines, were assessed. As occurred with the US isolates, inoculation of cattle
with EHDV-6 TUR2007/01 or EHDV-6 MOR2006/17 strains did not produce any evidence
of clinical disease, but viraemia was observed throughout the experiment and viral RNA
was detected in the spleens and lymph nodes of infected animals during this viraemia
peak. Viraemia was prolonged for more than four weeks and the virus could be isolated
from blood three weeks post-inoculation, even when animals seroconverted and presented
nAbs [142]. Nonetheless, experimental infection of cattle with the EHDV-6 Reunion Island
strain (which elicited clinical signs in cattle in the field) did induce mild clinical signs of
disease, although virologic parameters were similar to those of experimental infections
with EHDV-6 TUR2007/01 or EHDV-6 MOR2006/17 [143]. Schbaumer and colleagues
explored whether previous exposure to BTV or EHDV could influence subsequent infection
with the other [144]. Experimental infections of sheep and cattle with a EHDV-7 strain
pathogenic in cattle were conducted. No productive infection occurred in inoculated sheep,
although two of them were slightly positive according to RT-qPCR at some point after
infection. Viraemia was detected in infected cattle in absence of clinical signs of disease,
showing similar kinetics to previous observations for EHDV-6 [142]. Moreover, the authors
did not find any sign of interference between these two orbivirus infections [142]. A recent
work by Sailleau and colleagues reported experimental infection of calves with strains of
all EHDV serotypes. Interestingly, while subcutaneous inoculation of EHDV-1, -2, -4, -5,
-6, and -8 elicited similar results in terms of clinical signs and virological parameters to
those observed in the works previously depicted here, infection with EHDV-7 produced
clinical disease in the infected animal, which displayed apathy, diarrhea, prostration, in-
ability to stand, and anorexia, and had to be euthanized in consequence [145]. Importantly,
researchers also revealed cross-neutralizing relationships among serotypes, data that can
be of great importance in terms of vaccine development.
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The incapacity of EHDV isolates to induce the clinical signs observed in the field could
rely on an attenuation due to passage in cell culture (although some experimental infections
involved inoculums from severely infected deer), or aspects related to the inoculated
animal (age, genetic background). The fact that salivary proteins from Culicoides vector are
not involved during the described experimental animal inoculations could be important
for virus pathogenesis [146]. However, different routes of inoculation as well as virus
inoculums were tested by Ruder et al. (2015) and neither clinical disease or differences in
virus kinetics were observed when calves were infected with EHDV-7 by subcutaneous,
intradermal and/or intravenous inoculation, or by infected Culicoides biting midges [147].
Overall, cattle can be used as a reliable EHDV animal model although further research
is needed to elucidate the mechanisms behind the diminished pathogenicity of EHDV in
bovine experimental infections. Besides, all these works resemble the ability of EHDV to
productively infect European breeds of dairy cattle, which reflects a big concern regarding
the potential economic impact of EHDV that is circulating in Europe.

5.3. Mouse Models

Availability of appropriate laboratory animal models is a major concern when study-
ing disease pathogenesis and developing efficient and safe therapies against viral diseases.
Mouse models are a reliable tool that reproduce or, at least, partially mimic the disease
pathogenesis in a variety of cases [148]. For vaccine development, utilization of valid
mouse models endorses the basis of every traditional vaccine development procedure as
it implies several advantages, such as reduction of costs and time, facility to handle and
accessibility of a huge number of optimal reagents. When considering vaccine evaluation
against veterinary diseases, mouse models offer a more accessible and affordable animal
housing compared to natural hosts. Immunocompromised mouse models, like mice de-
ficient in the type I IFN (IFN-α/β) receptor (IFNAR(−/−)), have been extensively used
for vaccine efficacy assessment. The IFNAR(−/−) knock-out receptor mouse model has
been employed to study viral infection, disease, pathogenesis and vaccine testing against
a plethora of viral diseases [148]. This laboratory animal model has been exploited for
extensive study of BTV and AHSV [149–151]. Infection of IFNAR(−/−) mice with BTV
and AHSV reproduces the pathology observed in natural hosts of these viruses. Moreover,
establishment of IFNAR(−/−) mice as a BTV and AHSV infection model has allowed
preclinical assays of novel vaccine candidates as a prior step to their evaluation in natural
hosts [152–155]. For EHDV, suckling Swiss mice were intracerebrally inoculated with
the fully virulent deer New Jersey strain of EHDV-1, showing illness and being sacrifice
in consequence, or succumbing to infection in some cases. Besides, after serial passage
through the brains of newborn mice, the authors observed attenuation of this virulent
strain in deer [156,157]. However, newborn mice are incompatible with efficacy evalu-
ation of novel vaccine candidates owing to its immature immune system [158]. Much
later, Schbaumer, M. et al. (2012) demonstrated that the IFNAR(−/−) mouse model is
a suitable small animal model for EHDV [159] (Table 2). Although this study is limited
by the low number of animals involved, they observed dose-dependent susceptibility of
intraperitoneally (a route of inoculation less complex than the intracerebral one) EHDV-7 in-
oculated mice, with the more severe affected mice displaying BTV-like clinical signs (except
conjunctivitis) and detecting presence of RNA in spleen and gross lesions in spleen and
liver of death mice. Thereafter, the IFNAR(−/−) mouse model was used for virus isolation
from blood of EHDV-7 infected cattle, observing similar results to those by Schbaumer,
M. et al. (2012) [144,159]. Despite these results are very promising in order to explore the
possibility of establishing the well-known IFNAR(−/−) mice as an infection model for
EHDV, no further research has been conducted in this sense. As the global incidence of
EHDV is increasing, assessment of virulence and pathogenesis of other EHDV isolates in
the IFNAR(−/−) mouse model should be explored in the future.
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Table 2. Non-cervid experimental animal models used for study of EHDV infection and pathology.

Species Breed Challenge Virus Dose Inoculation
Route Mortality Clinical Disease Viremia RNA in

Tissues
Tissue

Damage Immune Response Ref

Cattle

Japanese
black

Kyushu-1 and Ibaraki-5
strains

1-5 mL infected
blood IV No

Yes
(conjunctivae
and oro-nasal
inflammation,

fever,
leukopenia)

Not
evaluated Not evaluated

Necrotic
changes of

epithelial cells
Not evaluated [67]

6–18-months-old Jersey or
Friesian cattle

EHDV-1
USA1955/01 106 TCID50 IV No No Yes a Not evaluated Not evaluated Homologous nAbs [123]

4–6-months-old calves

EHDV-1
USA1955/01

106 TCID50 ID and SC No No Yes a,b Not evaluated Not evaluated
Humoral response to
EHDV-1 or EHDV-2

(neutralization not tested)
[139]

EHDV-2
CAN1962/01

7–9-months-old
Holstein-Friesian cattle

EHDV-6 TUR2007/01 107.5 TCID50
SC No No Yes a,c Spleen and

lymph nodes No Homologous nAbs
EHDV-6 MOR2006/17 107.5 TCID50

12-months-old Holstein
cattle EHDV-7/ISR2006/13 5 × 105 TCID50 SC No No Yes a,c Not evaluated Not evaluated Homologous nAbs [144]

18-months-old Holstein
cattle

EHDV-6 (Reunión Island,
2008)

Two doses of 6
× 106 TCID50

SC No

Yes
(conjunctivitis,

epiphora.
One animal
displayed
moderate
oedema,

gingival ulcer)

Yes a,c

Spleen, liver,
skin, kidney,
lymph nodes

and heart

Not evaluated Homologous nAbs [143]

1-year-old Holstein steer
and adult Holstein cattle

EHDV-6
(EHDV-6/EHDV-2
reassortant isolate

CC-304-06 Indiana, US,
2006)

107.27 TCID50 SC and ID No No Yes a No No Homologous nAbs [126]

>4-years-old Holstein
cattle

EHDV-7 ISR2006/04
(WTD blood inoculum) 106.1 TCID50 ID and SC No No Yes c Spleen and

lymph node No Homologous nAbs

[147]
2-month-old Holstein

calves

EHDV-7 ISR2006/04
(BHK cell culture

supernatant)
107.12 TCID50

ID and SC No No Yes c
Spleen, lung
and lymph

node
No Homologous nAbs

ID, IV and
SC No

No (elevated
rectal

temperature at
two timepoints)

Yes c
Spleen, lung
and lymph

node
No Homologous nAbs

EHDV-7 ISR2006/04 Undetermined Infected C.
sonorensis No No Yes c

Spleen, lung
and lymph

node
No Homologous nAbs
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Table 2. Cont.

Species Breed Challenge Virus Dose Inoculation
Route Mortality Clinical Disease Viremia RNA in

Tissues
Tissue

Damage Immune Response Ref

2-month-old
Prim’Holstein calves

EHDV-1 USA1955/01 107 TCID50 *

I.M.

No No

Yes c Not evaluated Not evaluated

Homologous nAbs. Low
nAb titers against

EHDV-7 ISR2006/01

[145]

EHDV-2
CAN1962/01 5 × 107 TCID50 * No No

Homologous nAbs. Low
nAb titers against

EHDV-1 USA1955/01 and
EHDV-7 ISR2006/01

EHDV-4
NIG1968/01 3 × 106 TCID50 * No No

Homologous nAbs. Low
nAb titers against

EHDV-5 AUS1979/06

EHDV-5 AUS1979/06 1.6 × 106 TCID50
* No No

Homologous nAbs. Low
nAb titers against

EHDV-4 NIG1968/01

EHDV-6
AUS1981/07 107 TCID50 * No No Homologous nAbs.

EHDV-7
ISR2006/01 107 TCID50 * Yes

(euthanasia)

Yes (apathy,
diarrhea,

prostration,
unable to stand,

anorexia)

Homologous nAbs. Low
nAb titers against

EHDV-2 CAN1962/01

EHDV-8
AUS1982/06 5 × 107 TCID50 * No No

Homologous nAbs. Low
nAb titers against

EHDV-6 AUS1981/07

Sheep

12–24-months-old Suffolk
cross or Dorset Horn

sheep

EHDV-1
USA1955/01 106 TCID50 IV No No Yes a

Not evaluated
(Presence of

virus in
vulvae of a

viraemic
sheep

Not evaluated Homologous nAbs [123]

Cheviot-SouthDown
sheep (unknow age)

EHDV-1
USA1955/01

Unknown
(inoculum from
severely infected

WTD spleen)

IM No No Not
evaluated Not evaluated No Not evaluated [124]

10-months-old East
Frisian sheep EHDV-7/ISR2006/13 5 × 105 TCID50 SC No No No Not evaluated Not evaluated Not evaluated [144]

Goat 6–24-months-old British
Alpine goat

EHDV-1
USA1955/01 106 TCID50 IV No No No Not evaluated Not evaluated Homologous nAbs [123]

Pig 3-months-old Large
Whites

EHDV-1
USA1955/01 106 TCID50 IV No No No Not evaluated Not evaluated Homologous nAbs [123]
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Table 2. Cont.

Species Breed Challenge Virus Dose Inoculation
Route Mortality Clinical Disease Viremia RNA in

Tissues
Tissue

Damage Immune Response Ref

Mouse

Swiss newborn mice EHDV-1
USA1955/01 Not specified IC

Yes (98.6%
mortality

rate, 436 out
of 442 mice)

Yes (loss of
postural reflexes,

irregular
respiration,

cyanosis, and
tonic and clonic

convulsions)

Not
evaluated Not evaluated Not evaluated Not evaluated [156,157]

Adult
IFNAR(−/−) mice EHDV-7/ISR2006/13

Unknown
(blood inoculum

from infected
cattle)

IP

Yes (8.33%
mortality
rate, 1 out
of 12 mice)

Yes (ruffled fur,
apathy (no

conjunctivitis))
Yes c

Spleen (in 10
out of 12

mice)

Enlarged
spleens Not evaluated [144]

Adult
IFNAR(−/−) mice EHDV-7/ISR2006/13

5 × 102 TCID50

IP

Yes (30%
mortality
rate, 1 out
of 3 mice) Yes (ruffled fur,

apathy (no
conjunctivitis))

Not
evaluated

Spleen (in
both dead and

surviving
mice)

Enlarged
spleens and
necrotic foci

in liver in
dead animals)

Not evaluated [159]

5 × 105 TCID50

Yes (100%
mortality
rate, 2 out
of 2 mice)

Inoculation: IM, intramuscular; ID, intradermal; SC, subcutaneous; IV, intravenous; IC, intracerebral; IP, intraperitoneal. * Inoculation dose could vary not completely specified;
a viraemia measured by plaque assay; b viraemia detected by gel-based reverse transcriptase-PCR; c viraemia measured by real-time-qPCR.
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6. Classic and Novel Vaccine Approaches against EHDV

Vaccination entails the most effective countermeasure to successfully contain several
human and veterinary viral diseases. In the case of EHDV, vaccines based on conventional
approaches have been developed and their commercialization has been circumscribed to
regions where the virus has circulated causing a significant economic impact. In Japan,
two vaccines against EHDV-2 are commercially available: a monovalent live attenuated
vaccine and an inactivated bivalent vaccine (against EHDV-2 and bovine ephemeral fever,
caused by bovine ephemeral fever virus). The monovalent live attenuated vaccine of
serotype 2 has been demonstrated highly immunogenic and relatively safe, as the virus
was isolated from a vaccinated animal in a recent study [160]. In the USA, where serotypes
1 and 6 of EHDV are endemic and cause recurrent outbreaks, autogenous vaccines have
been commonly used. However, no peer-reviewed data exist regarding the protection
efficacy of these inactivated vaccines, which could also imply important issues regarding
animal welfare [161]. There is no currently licensed EHDV vaccine in Europe as there
has not yet been a real need for it. However, considering the wide expansion of EHDV-6
and EHDV-8 in the Mediterranean Basin and the recent arrival of EHDV-8 in Europe, as
well as the epidemiological history of EHDV, closely related to BTV, the development and
commercialization of effective vaccines against EHDV is needed.

LAVs (live attenuated vaccines) against BTV are used in the United States, Turkey, the
Republic of South Africa, India, and Israel, among others [161]. However, BTV LAVs, which
show highly immunogenicity, are often associated with several drawbacks relating toanimal
welfare and transmission to insect vectors (reviewed elsewhere [161]). For these reasons,
and after being used to control several outbreaks of BTV over the years, immunization with
BTV LAVs was reduced and, eventually, completely substituted by inactivated vaccines
in the European Union (EU) [162]. Therefore, LAVs are not a recommended choice to
consider in EHDV vaccination campaigns in the EU, as the possibility of virus spillover to
unaffected regions through uptake and spread by midges or in-contact transmission is clear.
Inactivated vaccines against BTV are produced and licensed in Europe, and, although some
pitfalls exist (reviewed in [162]), this approach has demonstrated more than enough efficacy
to control this disease [162]. Once inactivated vaccines are positively tested and licensed,
EU authorities should make a deep analysis based on a risk assessment to determine
whether implementation of mass vaccination in the affected territories (southern Spain and
Italian islands) is convenient. The experience of mass vaccination against BTV in affected
and risk areas of Europe has been worthwhile. BTV circulation and occurrence of clinical
disease disappeared in regions where vaccination reached 80%, limiting the estimated
economic losses [163].

Next-generation vaccines against EHDV must overcome inherent disadvantages of
classical approaches that occur with BTV and AHSV. First, they must allow differentiation
between naturally infected and vaccinated animals (DIVA), which has fundamental im-
plications in the economic field. Second, these newly generated vaccines should induce
protection against multiple EHDV serotypes, whose expansion to non-endemic latitudes is
highly probable. To date, the unique vaccine candidate that has been evaluated is based
on recombinant VP2 protein of EHDV-2 [164] (Table 3). This DIVA subunit vaccine has
shown promising results in terms of immunogenicity and protection in the primarily EHDV
affected host, WTD, preventing it from EHDV clinical disease, infection, and viraemia.
Prime-boost immunization with rVP2 of serotype 2 induced high titers (ranging from 1:240
to 1:320) of homologous nAbs in immunized WTD. After viral challenge with virulent
EHDV-2, immunized animals did not display EHD-related signs of disease and showed
steady rectal temperatures and peripheral lymphocyte counts. No viraemia nor RNA were
detected in EHDV-target organs, and immunized WTD showed an absence of gross and
histopathological lesions. Although not yet evaluated, its efficacy for avoiding transmis-
sion to the insect vector seems plausible as no RNA was detected in blood. This EHDV-2
rVP2-based vaccine is currently under field trial in the USA. Importantly, cattle immunized
following the same immunization strategy also developed a potent humoral response.



Microorganisms 2023, 11, 1339 18 of 27

Not only that, but the authors also achieved the expression and purification of the rVP2
of EHDV-6, which induced high titers of homologous nAbs in cattle. In this sense, bi-
or multivalent vaccines could be formulated as proposed in the study [164]. Different
vaccine platforms widely used for novel BTV and AHSV vaccines [152,165] should be
applied for generation of novel EHDV vaccines, e.g., subunit vaccine and viral vector-based
vaccines. In this regard, Alshaikhahmed and Roy (2013) exploited their experience with
non-infectious BTV-VLPs to develop core-like particles (CLPs, composed of VP3 and VP7)
and virus-like particles (VLPs, composed of VP3, VP7, VP5 and VP2) of EHDV-2 [166]
(Table 3). Immunization with two doses of safe DIVA VLPs induced nAbs against EHDV-2
in rabbits. Low titers of heterologous nAbs against EHDV-2 and -6 were detected but this
was probably due to the animal model used as for BTV [167]. No immunogenicity nor
protection were assessed in EHDV natural hosts. Importantly, authors demonstrated that
EHDV-2 CLPs can served as scaffold for rapid generation of VLPs of different serotypes,
which opens the opportunity for generating cocktails of EHDV VLPs. Despite this same
strategy providing good results in sheep against BTV, these vaccine candidates have not
yet been commercialized, which may be due to low affordability. This could constrain
future implementation of EHDV VLPs. Plant-based generation of EHDV VLPs offers a
possible solution to this problem. Other authors also generated VLPs of EHDV-6, but data
on immunogenicity or protection are lacking [168] (Table 3). Another plausible innovative
vaccination approach is the generation of non-replicative live-attenuated EHDV vaccines,
as reverse genetics (RG) systems have been successfully implemented for EHDV [169,170].
Development of this technology for BTV and AHSV allowed the production of the in-
novative disabled infectious single cycle (DISC) and disabled infectious single animal
(DISA) vaccines [171,172]. DISA and DISC vaccines are DIVA [173–175], effective, and
completely safe candidates and, although serotype-specific, cocktails of different serotypes
of disabled viruses provide high immunogenicity and multiserotype protection in sheep
and cattle [176–178].

Eventually, the first cases of EHDV-8 detected within the European Union will drive
research on next-generation EHDV vaccines. However, the unpredictability of EHDV
epidemiology forces researchers to explore multiserotype vaccine approaches. Infection-
and vaccine-induced immune responses against orbiviruses include neutralizing (directed
against the VP2 protein) and non-neutralizing humoral as well as cytotoxic cellular immune
responses directed toward other structural and nonstructural viral proteins. However, little
is known about the antigenicity of the different structural and nonstructural proteins
of EHDV. Considering the experience gathered from the generation and study of novel
vaccines against BTV and AHSV, further research on host responses against EHDV is
warranted. Experimental infection of WTD with EHDV-2 induced cross-protection against
EHDV-1 in the absence of EHDV-1 nAbs, indicating the trigger of an EHDV-specific cell-
mediated immune response. Indeed, animals were prevented from developing clinical
disease after EHDV-1 inoculation, but viraemia was detected. A very similar outcome
was observed after induction of protective NS1 and NS2-Nt-specific cell responses in
sheep challenged with virulent BTV-4 [155]. A recent article highlighted the existence of
shared B- and T-cell epitopes between the sequence of the EHDV and BTV VP7 and VP5
proteins, by in silico analysis [179]. Further, monoclonal antibodies directed against VP7
of EHDV also reacted against BTV VP7, which highlights the presence of discontinuous
epitopes shared between these two orbiviruses [180]. Nonetheless, without dismissing
this approach, experimental infection of EHDV-2 convalescent WTD with BTV-10, or
infection of BTV convalescent cattle with EHDV-7, proved that previous exposure to one
orbivirus did not impair viral replication of the other one [118,144]. Further research should
be carried out to evaluate the cross-reactivity and potential cross-protection induced by
EHDV/BTV antigens.
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Table 3. Experimental vaccine candidates designed against EHDV.

Vaccine
Type

Antigen
Included Serotype of Antigen Animal

Model Dose Adjuvant Immunogenicity Challenge Protection Ref

Recombinant
VP2

protein 1

VP2
EHDV-6 (Indiana

2012, 12-38993)

6-weeks-old
female

CD1-ISG

Two doses of
20 µg Montanide

ISA25
adjuvant

Neutralization
against EHDV-6

Not
challenged

-

[164]

3-4-months-
old male
Holstein

Two doses of
150 µg

Neutralization
against EHDV-6

VP2

EHDV-2 (Alberta
1962, SV-124-Canada)

6-weeks-old
female

CD1-ISG

Two doses of
20 µg

Montanide
ISA25

adjuvant

Neutralization
against EHDV-2

4-months-
old male
Holstein

calves

Two doses of
150 µg

Neutralization
against EHDV-2

5-month-old
male WTD

Two doses of
150 µg

Neutralization
against EHDV-2

106.74 PFU
EHDV-2
(Kansas

2012, strain
cc12-304)

Yes
a,b,c,d,e

CLP 1 VP7, VP3

EHDV-1
USA1955/01 Rabbit

Three doses
(first dose:

500 µg;
second and
third doses:

250 µg)

Incomplete
Fruend’s
adjuvant

Induction of VP3-
and VP7-specific

antibodies.

Not
challenged

-

[166]

VLP 1 VP2, VP5,
VP7, VP3

Neutralization
against

EHDV-1/Low
neutralization

against EHDV-2
and EHDV-6

VLP 1 VP2, VP5,
VP7, VP3

VP3 and VP7 from
EHDV-1

USA1955/01. VP2
and VP5 from

EHDV-2
CAN1962/01

Not
evaluated in

animal
model

- - - - -

VLP 1 VP2, VP5,
VP7, VP3

EHDV-6
(MOR2006/05)

Not
evaluated in

animal
model

- - - - - [168]

1 Expressed by recombinant baculovirus expression system: a steady rectal temperature; b absence of EHDV-
clinical signs; c absence of lymphopenia; d absence of RNA-emia and RNA in EHDV-target organs; e absence of
gross and histopathological lesions.

7. Conclusions

EHDV, an important arthropod-transmitted RNA virus that infects different wild and
domestic ruminants, has experienced a northern spread into novel areas in the last 20 years.
Global warming may result in expansion of vector species to previously vector-free regions,
and in altered vector competence of some midge species. These factors and others related
with human activities are likely to increase the risk of EHDV outbreaks in new territories.
Worryingly, the virus has recently been detected for the first time in the European Union in
October 2022.

White-tailed deer are especially susceptible to severe illness caused by EHDV infection;
nevertheless, disease can also occur in bovines. The increased virulence of certain EHDV
strains observed in cattle and the expansion of competent vectors involved in EHDV trans-
mission make necessary further investigation regarding the development of new diagnostic
techniques, safe DIVA vaccines, and the evaluation of laboratory animal models that will
facilitate the study of the protective capacity of new vaccine candidates against EHDV.
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