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Abstract: Gram-negative bacteria depend on their cell membranes for survival and environmental
adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home
to several different outer membrane proteins (Omps). One class of important Omps is porins, which
mediate the inflow of nutrients and several antimicrobial drugs. The microorganism’s sensitivity to
antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeabil-
ity characteristics of porins. In this review, the properties and interactions of five common porins,
OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined.
Meanwhile, this review also highlighted the discovered regulatory characteristics and identified
molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins’
functional properties will pave the way to investigate effective agents or approaches that use porins
as targets to get rid of resistant gram-negative bacteria.

Keywords: gram-negative bacteria; outer membrane proteins; permeability properties; resistant
mechanisms; multidrug-resistant bacteria

1. Introduction

The cell membranes of gram-negative bacteria are crucial for their survival and envi-
ronmental adaptation. Generally, these membranes not only give gram-negative bacteria
surface specificity but also operate as a functional and protective barrier for them [1].
Gram-negative bacteria have double membranes that include an outer membrane (OM)
made up of outer membrane proteins (Omps) and other components [2,3]. In some circum-
stances, toxic substances, such as antibiotics, are prevented from transiting through the
OM [4,5], creating a considerable obstacle to the eradication of gram-negative infections
with traditional or novel antimicrobial agents.

Porins, a subclass of transmembrane pore-forming Omps, create tiny channels in
the membrane and allow passive transport of hydrophilic compounds, which helps to
modulate cellular permeability and increase antibiotic resistance [5–8]. In gram-negative
bacteria, porins are the most prevalent Omps of the OM, and they can be divided into
two groups based on how they function: non-specific porins and specific porins [5,9].
Porins have been studied in a variety of bacteria, including Acinetobacter baumannii [10],
Escherichia coli [11,12], Neisseria gonorrhoeae [13,14], and Klebsiella pneumoniae [15,16].
Porins appear to play a role in the envelope integrity of gram-negative bacteria in ad-
dition to their role in the passive transport of a range of chemicals. For example, the
non-specific porin of outer membrane protein A (OmpA) promotes the passive transport
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of numerous tiny molecules [17,18]. Additionally, OmpA also has a flexible periplasmic
domain that interacts non-covalently with peptidoglycan [19], supporting the integrity of
the envelope. Omps are usually encased by an annular shell of asymmetric lipids, which
mediates higher-order Omp–lipid–Omp complexes with adjacent Omps, and the basic unit
of supramolecular Omp assembly generally extends across the entire cell surface, coupling
the OM’s required multifunctionality to its stability and impermeability [20].

An alarming global problem has emerged in the form of rising antimicrobial resistance
(AMR), which is brought on by improper and excessive usage of antimicrobials as well as a
shortage of novel and creative antibiotics in development [21]. AMR is one of the top ten
worldwide public health hazards, according to studies from the World Health Organization
(WHO). The financial burden of AMR on the world is steadily increasing [1]. In order to bat-
tle gram-negative bacteria carrying AMR traits, new drug resistance elimination techniques
will need to be developed based on a thorough understanding of the structural properties,
functions, and regulatory mechanisms of porins. For instance, it was discovered that a
novel diazabicyclooctenone beta-lactamase inhibitor inhibits key carbapenemases classes
and is OmpA-dependent, which in turn improves sulbactam activity [18]. To eradicate
MDR strains of A. baumannii, OmpA blockers can work in tandem with last-resort antibi-
otics, such as colistin [22,23]. In addition, the results of AutoDockTools and Schrodinger’s
QikProp suggest that bioactive seaweed-sulfated polysaccharides (SSPs) can be a promising
therapeutic choice for extensively drug-resistant Salmonella typhi targeting OmpF [24].

Although porins participate in multiple physiological processes, including the uptake
of small molecules for growth and cell function, inflammation and immune response of the
host, and cell–cell contacts [25], this review focuses on providing a comprehensive overview
of the properties and functions of OmpA, OmpC, OmpF, OmpW, and OmpX in relation
to drug permeability and membrane integrity. Additionally, this review also investigates
the interrelationships among these porins and the underlying resistance mechanisms they
mediate. A thorough understanding of the functions and characteristics of diverse porins
would prove advantageous in the development of antibiotics with enhanced permeability
and the management of gram-negative bacterial resistance.

2. OmpA

OmpA, a monomeric protein with a β-barrel shape that promotes the diffusion of neg-
atively charged β-lactam antibiotics, has been demonstrated to be involved in drug resis-
tance [10,26,27]. Furthermore, OmpA interacts with the bacterial cell wall to attach the outer
membrane, and its C-terminal periplasmic domain non-covalently binds to the peptidoglycan
layer via two conservative amino acids in OmpA, aspartate at position 271 and arginine at
position 286 [28]. In addition, the periplasmic gap formed by disulfide linkages between
OmpA’s β strands 4 and 5 in the N- and C-terminal fragments can increase the protein’s
assembly efficiency in E. coli when the cysteine residues are aligned in the completely folded
β-barrel [29]. The alleles of ompA were observed to have a considerable effect on cell surface
hydrophobicity and charge in E. coli, which are important in stress response [30].

OmpA is a significant non-specific channel that helps various bacteria maintain the
integrity of their membranes. In comparison to the wild type (WT) strain, an ompA mutant
of A. baumannii showed a 2- to 3-fold reduced permeability to cephalothin/cephaloridine,
and the minimal inhibitory concentrations (MICs) of nalidixic acid, chloramphenicol,
trimethoprim, aztreonam, imipenem, colistin, and meropenem also decreased in the
mutant [31–35]. OmpA’s impact on maintaining membrane integrity helps to explain
these results because compromised membrane integrity can increase the intracellular
diffusion of antibiotics [31,35]. The primary surface glycoproteins, Pgm6 and Pgm7, in
Porphyromonas gingivalis have been demonstrated to cause resistance to the bactericidal
activity of human cathelicidin LL-37 and are known as OmpA-like proteins [36]. The ompA
mutant of E. coli was more sensitive to a variety of antibiotics, including β-lactams, am-
phenicols, glycopeptides, and lincosamides, compared to the WT [6]. Furthermore, our
team discovered that Citrobacter werkmanii showed increased 1,2-benzisothiazolin-3-one
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(BIT) resistance following the inactivation of ompA [37]. By preserving the stability of the
outer membrane, OmpA also defends Salmonella Typhimurium from the two β-lactam
antibiotics: ceftazidime and meropenem [38].

The flexible C-terminal domain of OmpA interacts non-covalently with peptidoglycan,
which is critical for the maintenance of cell wall integrity [19]. OmpA’s C-terminal domains
are entirely in charge of how this protein affects antibiotic resistance. The mutant strain of
ompA1C, which has the C-terminal domain of OmpA chromosomally deleted, displayed
a nearly identical phenotype to the ompA mutant of E. coli in antibiotic sensitivity [6].
The turgor of the bacterial envelope degrades in the absence of peptidoglycan interac-
tion, increasing membrane permeability and antibiotic penetration [6]. In A. baumannii,
OmpA typically serves as the main non-specific slow porin, along with β-lactamases and
multidrug efflux pumps, such as AdeABC and AdeIJK, to exhibit high levels of intrinsic
antibiotic resistance [39]. In addition, OmpA also connects to peptidoglycan (PG) from
A. baumannii via its C-terminal region, where Asp271 and Arg286 link to the peptidogly-
can’s diaminopimelic acid [40]. This interaction could regulate how bacteria produce outer
membrane vesicles (OMVs) and preserve the stability of the membrane [41]. In order to
combat antibiotic resistance, OMVs with OmpA in their membrane aggressively drain
extracellular drugs [42–44].

The expression of OmpA can be regulated by several genes (Figure 1). In Aeromonas veronii,
the lower transcription expression of ompA could be caused by the deletion of small pro-
tein B (SmpB) and four regions (−46 to −28 bp, −18 to +4 bp, +21 to +31 bp, and +48 to
+59 bp) of the OmpA promoter combined by SmpB, which suggests that the SmpB protein
was positively responsible for controlling OmpA expression at the stationary stage [45].
In A. baumannii, A1S_0316 displayed a higher affinity for binding to the OmpA promo-
tor region than the global repressor H-NS, and it operates as an anti-repressor on the
OmpA promotor region by preventing the binding of the AbH-NS protein [46]. OmpA in
Stenotrophomonas maltophilia KJ plays its β-lactam susceptibility response through the sigma
(P)-NagA-L1/L2 regulatory circuit, according to transcriptome analysis and real-time quan-
titative (qRT-PCR) experiments [47]. PG stress, which is generated by the loss of interaction
between OmpA and PG layers, triggers the upregulation of RpoP (σP) and the expression
of nagA. The increased NagA activity encourages the synthesis of repressor ligands, which
are believed to partially displace activator ligands from AmpR and reduce the production
of ceftazidime-induced β-lactamases [47]. More recently, it has been found that BlsA, a blue
light-sensing protein, can impact the expressional levels of the ompA gene of A. baumannii
under light conditions, which affects the efficiency of membrane penetration of lipophilic
ethidium bromide (EtBr) and meropenem absorption [48].

3. OmpC

Another porin expressed by gram-negative bacteria is OmpC [49]. OmpC is composed
of 16-stranded beta barrels with negatively charged amino acids that contribute to the for-
mation of the porin’s eyelet and promote its size-exclusion and permeability properties [50].
OmpC facilitates both the entry and resistance of antibiotics, such as β-lactams, as well
as the movement of hydrophilic substances with a low molecular weight over the outer
membrane [49,51]. The mutation of OmpC damages structural integrity and alters OM
permeability [7].

OmpC is involved in the transfer of antibiotics [52]. A slight rise in imipenem MIC
is connected to the decrease or loss of OmpC in clinical isolates of Enterobacter aerogenes
and Enterobacter cloacae [53,54]. The transcription and protein expression of OmpC were
decreased in all carbapenem non-susceptible (CP-NS) E. coli isolates, and the carbapenem
susceptibility of one isolate was restored by cloning the ompC gene [55]. OmpC mutants
have enhanced cefotaxime resistance in clinical isolates of multidrug-resistant E. coli [52].
Meanwhile, the ompC deletion mutant of E. coli was resistant to streptomycin, fusidic acid,
and nitrofurantoin; however, it was susceptible to carbapenems, cefepime, carbapenems,
fourth-generation cephalosporins, imipenem, vancomycin, and puromycin [6,56,57].
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One of the key mechanisms contributing to higher MICs for specific antibiotics was mu-
tations in OmpC. Mutation prediction suggests that the primary contributor to carbapenem
resistance is amino acid alterations, such as D192G, in the ompC of carbapenem-resistant
E. coli [58]. Additionally, an adjacent region of the OmpC protein in E. coli contained a
duplication of eight amino acids [57]. Based on specific R66, L67, Y64, F69, M65, and L67
locations, this duplication might be exploited to create salt bridges with the negatively
charged residues lining the other side of the barrel wall and changing the pore’s electrostatic
field [57]. Moreover, the following factors can be used to illustrate how the identified inser-
tion affected OmpC function: disruption of tertiary or quaternary structure; preventing
phage attachment and sterically restricting the movement of molecules; and disruption of
the hydrophobicity and charge of porins by limiting their ability to interact with substances,
such as antibiotics, to promote transport [57]. In avian pathogenic E. coli, quantitative
real-time reverse transcription PCR (RT-qPCR) research revealed that EnvZ, the histidine
kinase (HK) of OmpR/EnvZ (Figure 2), could affect the expression of biofilms and stress
response genes, including ompC [59]. Small regulatory RNA (sRNA)-dependent control of
gene expression enables cells to quickly and efficiently respond to different growth con-
ditions [60]. Meanwhile, it was discovered that the 109-nucleotide MicC sRNA (Figure 2)
suppresses OmpC expression in E. coli by directly base-pairing to a 5′ untranslated region
of the ompC mRNA, which requires the Hfq RNA chaperone to function [61].

4. OmpF

Another major porin expressed and extensively distributed in gram-negative bac-
teria OM is OmpF [62]. OmpF folds as a 16-stranded antiparallel β-barrel in tight ho-
motrimers [63]. OmpF constructs its crystal structure with two asymmetric trimers in the
tetragonal form [64].

It has been found that OmpF plays a crucial role in the permeation of short antimicro-
bial peptides (AMPs) by providing access to the lipopolysaccharide (LPS) binding site [65].
The antibiotic resistance of the ompF-deficient mutant indicates that OmpF is commonly the
primary pathway by which antibiotics enter the OM [66]. Furthermore, it has been demon-
strated that the non-specific porin OmpF of E. coli enables β-lactams (such as zwitterionic,
ampicillin, and amoxicillin) and fluoroquinolones (such as enrofloxacin and norfloxacin) to
penetrate the OM due to their strong affinity to OmpF [6,50,67,68], which partially depends
on a two-step kinetic model. The dipolar molecule first generates an MD-ES0 conformation
by aligning to the electric field within the OmpF channel before being reoriented into an
MD-ES1 conformation for transport [69]. In addition, the electroosmotic flow rather than
the electrophoretic force dominates the dynamics of antibiotic capture and transport of
norfloxacin, ciprofloxacin, and enoxacin across a voltage-biased OmpF nanopore [70].
The ompF mutant was found to be resistant to many β-lactam antibiotics (including
ampicillin and cefoxitin) in E. aerogenes [71], Pseudomonas aeruginosa [72], E. coli [6,73,74],
Serratia marcescens [75], and K. pneumoniae [76]. OmpF also contributes to resisting numer-
ous other different classes of antibiotics in addition to β-lactam antibiotics. In E. coli, the
main route for enrofloxacin’s entrance is OmpF [63], and the reduced expression of OmpF
led to the spread of quinolone resistance [77]. Studies on E. coli also showed that OmpF
expression is activated in response to tetracycline [78,79]. Similarly, S. marcescens lacking
OmpF had less antibiotic permeability and much higher nitrofurantoin MIC values [80].
Taken together, the ompF mutant was shown to be resistant to a wide range of antibiotics
from various groups, such as β-lactams, tetracyclines, amphenicols, quinolones licosamides,
and steroides [6].

Several works have demonstrated that the OmpF expression can be influenced by
various systems or genes (Figure 3). The two-component system EnvZ/OmpR controls
OmpF expression in response to nalidixic acid resistance [81]. In this system, activation of
the response regulator OmpR leads to phosphorylation, and OmpR~P suppresses OmpF
expression both at the transcriptional and post-transcriptional stages, the latter through
the MicF sRNA [82]. It is known that the micF promoter region is bound by four transcrip-
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tional regulators: OmpR, MarA (the key transcriptional regulator encoded by the marRAB
operon), SoxS, and Rob, which regulate the activation of micF expression. The micF gene,
encoding a non-translated 93 nt antisense RNA, binds its target ompF mRNA and regulates
ompF expression by inhibiting its translation and inducing degradation of the message in
E. coli [83]. In addition, by binding to a conserved MarA-binding site in the promoter region
of ompF, the transcriptional regulator of MarA can directly inhibit the expression of OmpF
at the transcriptional level, or indirectly at the post-transcriptional level by activating the
previously discussed MicF [25]. UxuR belongs to the GntR family of transcriptional regula-
tors. A reduced amount of outer membrane porin OmpF was observed with the deletion
of uxuR in E. coli, which suggests that UxuR regulates OmpF expression with unknown
mechanisms [84]. Furthermore, our team discovered that the OmpF upstream promoter in
C. werkmanii and its transcription could be combined with and negatively regulated by the
maltose metabolic regulator MalT for the first time, but we did not investigate how OmpF
mutants might react to various antibiotics [85].

5. OmpW

An eight-stranded β-barrel with a hydrophobic channel is formed by OmpW, a mem-
ber of the small Omp family [86,87]. OmpW plays a role in the transport of tiny hydrophobic
chemicals, which helps to explain why some antimicrobials are less efficient at inhibiting
bacterial growth [86].

In E. coli strains resistant to nalidixic acid, OmpW was discovered to be upregu-
lated [81]. However, mass spectrometry and Western blotting results revealed that OmpW
was downregulated in kanamycin-resistant E. coli K-12 strains, colistin/carbapenem-
resistant A. baumannii mutants, and ceftriaxone-resistant S. typhimurium strains [86,88], and
were once more consistent with the fact that porins restrict the entry of β-lactams into
cells [89]. According to proteomic research, OmpW in E. coli has been associated with
bacterial resistance to drugs such as ampicillin, tetracycline, and ceftriaxone [90]. E. coli
also protects itself from enrofloxacin by reducing OmpW expression by restricting the
transport and intracellular concentration of this drug [91]. Thereby, it was discovered that
under tobramycin stress, the expression of ompW in A. baumannii was markedly downregu-
lated [92]. In A. baumannii isolates, ompW expression increased and decreased in response
to ciprofloxacin and imipenem, respectively [93].

The knockout of the ompW gene also demonstrated that OmpW displayed antimicro-
bial resistance in many bacteria. OmpW appears to be the receptor or a component of the
receptor for colicin S4, chlortetracycline, neomycin, and ampicillin, as evidenced by the
resistance of E. coli mutants lacking the OmpW to these drugs [94–96]. The methyl viologen
sensitivity of ∆ompW of S. typhimurium is 2.5 times greater than the WT [97]. The loss
of OmpW in Actinobacillus pleuropneumoniae affects bacterial susceptibility to penicillin,
kanamycin, and polymyxin B [98]. Meanwhile, the ompW of E. coli is also involved in
the ethidium multidrug resistance gene E (emrE)-mediated substrate efflux process and is
mechanistically connected to EmrE [99].

As shown in Figure 4, baeR, a regulator gene of the BaeSR two-component system,
was discovered to affect OmpW expression in S. typhimurium [100]. It was discovered
that an oxidative stress-related transcriptional SoxS factor negatively regulated OmpW in
E. coli [101]. When specific environmental signals are detected by EnvZ, a phosphotransfer
from EnvZ’s His243 to OmpR’s Asp55 causes an increase in the cellular level of phosphorylated
OmpR (OmpR-P), which implies an active state of EnvZ/OmpR. This state changes the OMP
composition and leads to differential expression of ompW and other OMP genes, increasing
resistance to β-lactams, while OmpR directly suppresses ompW in Salmonella enteritidis [102].

6. OmpX

OmpX was first described for E. cloacae [103], but its homologs, such as PagC, Lom, Rck,
Ail, and y1324, have been found in other gram-negative bacteria, including
S. typhimurium [104], E. coli [105], E. aerogenes [106], and Yersinia pestis [107]. An OmpX



Microorganisms 2023, 11, 1690 6 of 17

protein precursor with 172 amino acid residues and a 23 amino acid residue N-terminal
signal sequence is encoded by the ompX gene in E. cloacae [103]. According to the X-ray crys-
tallography and NMR structures, OmpX from E. coli forms an eight-stranded antiparallel
β-barrel in the DHPC micelles [108]. Recently, it was found that OmpX folding is influenced
by both the insert length within a set of equivalent loop insertions and its hydrophobic
character [109].

Numerous investigations have revealed that ompX is crucial for regulating how bacte-
rial strains respond to antimicrobials [106,107]. The loss of ompX in a fimbriated strain of
E. coli PC31 resulted in antibiotic resistance to numerous antibiotics, which was attributed
to increased exopolysaccharide production [80]. The deletion of ompX in E. coli improved
resistance to a variety of hydrophobic antibiotics such as amikacin, cephalothin, gentam-
icin, novobiocin, nalidixic acid, and sulfonamides [80]. Similar to this, our research also
discovered that OmpX in C. werkmanii regulates resistance to drugs, such as tetracycline,
ciprofloxacin, chloramphenicol, lincomycin, rifampicin, aminoglycosides (kanamycin and
streptomycin), and β-lactams (ampicillin, carbenicillin, ceftazidime, and imipenem) [110].
Meanwhile, the overexpression of OmpX in E. aerogenes results in higher β-lactam resis-
tance, which can be explained by a significant decrease in Omp36 porin [111]. OmpX was
found to be 1.7 times more abundant in drug-resistant S. typhimurium isolates than in
drug-sensitive isolates [112]. These findings imply that the under or overexpression of
ompX affects hydrophobic chemical transport across the membrane but does not impact
substrate preference [80]. However, the lack of ompX in E. cloacae had no appreciable effect
on porin regulation or susceptibility to β-lactam antibiotics [103].

The ceftriaxone resistance functions of the outer membrane protein STM3031 (Ail/OmpX-
like protein) of S. typhimurium are largely achieved via increasing AcrD efflux pump
activity [113]. In addition, hydrogen peroxide stress enhanced the expression of ompX
mRNA but not OmpX protein in S. typhimurium, showing that ompX is post-transcriptionally
regulated in response to hydrogen peroxide [114]. Meanwhile, three sRNAs (MicA, CyaR,
and OxyS; Figure 5) were required in an Hfq-dependent manner to stabilize the ompX
mRNA [114].

7. Interaction

In a variety of circumstances, more than one Omp works concurrently to contribute
to the emergence of antibiotic resistance. By selecting porins with desired transmem-
brane channel diameter, the altered Omps balance in the setting of OmpC/OmpF strongly
regulates β-lactam resistance [115]. Non-specific porins appear to be more important in
maintaining membrane integrity for susceptibility to non-β-lactam antibiotics, but drug
transport by non-specific porins, particularly OmpC and OmpF, considerably influences
susceptibility to most β-lactam antibiotics [5]. OmpC or OmpF expression was found in
6.6% of the isolates of carbapenem-resistant E. cloacae, with OmpC and OmpF co-expressed
in four isolates [116]. The downregulation of OmpF and/or the polarization of the OM
transcriptome balance sloped toward the ompC gene contribute to carbapenem resistance in
Enterobacter isolates [117]. Meanwhile, it assumed that this transient polarization of OM pro-
tein balance was induced by the phosphorylated CpxR and activated CpxA [118]. The majority
of carbapenem-resistant E. cloacae isolates displayed decreased membrane permeability due to
low ompC or ompF expression, or both [119]. These results supported earlier studies that sug-
gested reduced ompF expression contributes to OmpC-directed OM protein polarization [117].
OmpF and OmpC as well as OmpN porin channels enhance kanamycin absorption into
E. coli through a size-constricted pore that combines the electrostatic compensation of a steric
barrier, which was demonstrated as follows. The small open pore of OmpN does not allow the
kanamycin translocation; while the higher negative charge of OmpC is sufficient to compensate
for the smaller size of OmpN. Finally, the biggest OmpF pore exhibits decreased flux as a
result of an extra binding site being present close to the channel mouth [120]. Additionally, the
duration of treatment with antimicrobials and bacterial cells caused various types of porins to
react in various ways. In Yersinia pseudotuberculosis, the main porins OmpF and OmpC are
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implicated in the early response to diverse antibiotic stressors caused by sublethal doses.
Depending on the antibiotics, they either suppress the transcription level of one or both of
their genes, providing the cells with the initial line of resistance. The expression of these
two proteins returned to the untreated cells after prolonged antibiotic exposure, despite an
increase in the transcription of the alternative porin gene ompX [121]. Ceftazidime works
well against E. coli that produces OmpF, but less well against cells that express OmpC [122].

In addition to OmpC and OmpF’s interaction, additional Omps also showed some
sort of association with one another in the resistance process. Overexpressing OmpX in
strains of E. coli and E. aerogenes decreased the expression of non-specific OmpC and OmpF
porins, resulting in limited permeability of β-lactams [106,123]. In a nalidixic acid-resistant
E. coli isolate, Lin et al., observed upregulation of OmpC and OmpW with concurrent
downregulation of OmpF [81]. OmpA and OmpC but not OmpF play significant roles
in maintaining membrane integrity. Therefore, E. coli expresses these three non-specific
porins differently, following their diverse functions in preserving membrane integrity [6].
The majority of the linked Omps in Aeromonas hydrophila were found to be involved in a
complicated protein–protein interaction (PPI) network, which raises the possibility that
additional Omps take in the biological roles of the deleted Omps [124]. Meanwhile, among
the environmental isolates of Enterobacter spp., a relationship between Omp (including
OmpA, OmpC, OmpF, and OmpX)-positive isolates and antibiotic resistance (including
β-lactam and cephalosporins) was discovered using linear regression performed by Graph-
Pad Prism (v. 7.0) software [125]. In the presence of ceftriaxone, the expressions of ompA
and ompX were found to be low, followed by time- and dose-dependent responses [126].
OmpA and OmpW were considerably downregulated in response to benzyl isothiocyanate
(BITC) in Vibrio parahaemolyticus, which was explained by the stable complex that BITC
and these two Omps generated [127]. In addition to traditional antibiotics, Omps has also
been linked to resistance to hostile environments, peptides, natural plant extracts, and
nanoparticles. The increased expression of ompF and the porosity of Salmonella’s outer mem-
brane caused by the deficiency of ompA rendered this strain vulnerable to nitrosative stress
both in vitro and in vivo [128]. Following incubation with a well-known antimicrobial
peptide, Maganin-2 (Mag-2), it was found that the number of OmpA and OmpF generated
in E. coli gradually decreased [129]. The relative expressions of OmpA, OmpF, and OmpX
were noticeably enhanced when S. enteritidis was treated with cinnamon essential oil [130].
Through the induction of protein aggregation and electrostatic forces, nanoparticles (NPs)
were also utilized as antimicrobial agents, and their treatment of E. coli would block the
function of OmpA and OmpC [131].

Numerous regulatory mechanisms or signal channels also had an impact on the degree
to which Omps were able to coordinate their functions (Figures 1–5). The synthesis of
the two primary non-specific porins, OmpC and OmpF, in E. cloacae isolates diminished
or lacked as a result of point mutations that affected their transcription, translation, or
insertion into the outer membrane [132]. By sensing and responding to external antimi-
crobials, as well as controlling the Omps expression levels, two-component systems are
typically involved in the development of antibiotic resistance in bacteria. In Enterobacter
isolates, OmpC and OmpF significantly increased β-lactam and cephalosporin resistance,
which was partially controlled by CpxAR and EnvZ/OmpR [82]. The sensor kinase CpxA
detects peptidoglycan breakdown when Klebsiella aerogenes is exposed to β-lactams, and
the response regulator CpxR subsequently represses ompF and activates acrD, which en-
codes the efflux pump, resulting in antibiotic resistance [133]. By affecting the expres-
sion levels of ompC, ompF, and ompW, a two-component regulator, CpxR, contributes to
S. typhimurium resistance to aminoglycosides and β-lactams, implying that many Omps
work together to exhibit their resistant properties collectively under the control of CpxR [134].
The two-component system BaeSR contributes to the antibiotic resistance of E. coli, and
BaeR overproduction can reduce cephalosporin susceptibility in the multidrug efflux pump
acrB-free E. coli by lowering the expression level of outer membrane proteins such as OmpA,
OmpC, OmpF, OmpW, and OmpX, which is associated with the reduction in TolC and
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global transcriptional regulators MarA and Rob [135]. The multiple mutations within the
CA domain region of EnvZ, a prototypical sensor histidine kinase, and altered ATPase
activity of this enzyme were responsible for the expressional changes of OmpC and OmpF
porins, which alter the permeability of Salmonella’s membrane, boost cefotaxime tolerance,
and increase minimal resistance to various classes of antibiotics [136]. Through the con-
trol of cell membrane permeability and efflux pump activity, CpxAR and PhoPQ were
significant contributors to the emergence of multidrug resistance (MDR) in S. enteritidis.
This was accomplished in part by enhanced expression of the membrane porin genes,
ompC and ompF, as well as other Omps [137]. Meanwhile, MzrA, a type II membrane
protein, connects the two-component envelope stress response regulators, CpxA/CpxR and
EnvZ/OmpR. The activated CpxA/CpxR triggers the synthesis of MzrA, which modulates
EnvZ/OmpR’s activity through the interaction with EnvZ to favor the accumulation of
OmpR~P. OmpC expression is upregulated by high amounts of OmpR~P; however, OmpF
expression is downregulated. High OmpR~P also downregulates mzrA, creating a negative
regulatory feedback cycle [138]. In addition, the loss of pfs, a 5′-methylthioadenosine/S-
adenosylhomocysteine nucleosidase, greatly enhanced the transcription levels of OmpC
and OmpF, as well as the outer membrane permeability of avian pathogenic E. coli; however,
the transcription levels of the efflux pump gene tolC were significantly reduced, which
implies that Pfs is a bond that connects Omps and efflux proteins [139]. In E. coli, premature
stop codons or gene interruptions were shown to cause a decrease in OmpC and/or OmpF,
which was associated with meropenem resistance [140].

8. Conclusions

In their OM, gram-negative bacteria have different porins (OmpA, OmpC, OmpF,
OmpW, and OmpX) with different weights and structures. However, a basic β-barrel was
harbored by all the porins mentioned here. Some of these porins will be activated in the
presence of different antimicrobial agents to protect the bacterial cells from being killed or
inhibited in a strain- and antimicrobial-dependent manner (Table 1). In addition, it has been
found that the activity and function of several porins were regulated by a great number of
other proteins or regulatory factors (Figures 1–5), such as two-component systems (BaeSR,
EnvZ/OmpR, and CpxAR), sRNAs (MicA, MicC, MicF, CyaR, and OxyS), SmpB, BlsA,
UxuR, H-NS, SoxS, and EmrE.

Table 1. Structural features and mediated antibiotic spectrum of typical porins in gram-negative bacteria.

Name Structural Feature Drug Resistance Spectrum

OmpA β-barrel-shaped
monomeric protein [26]

Cephalothin, cephaloridine, nalidixic acid, chloramphenicol, trimethoprim, aztreonam,
imipenem, colistin, and meropenem [31–35]; β-lactams, amphenicols, glycopeptides,

and licosamides [6]; and ceftazidime and meropenem [38].

OmpC Sixteen-stranded
β-barrels [50,73]

Imipenem [53,54]; carbapenem [55]; cefotaxime [52]; and streptomycin, fusidic acid,
nitrofurantoin, carbapenems, cefepime, carbapenems, fourth-generation cephalosporins,

imipenem, vancomycin, and furomycin [6,56,57].

OmpF
Sixteen-stranded

antiparallel β-barrel in
tight homotrimers [63]

β-lactams and fluoroquinolones [6,50]; β-lactam antibiotics, including ampicillin and
cefoxitin [6,71–76]; enrofloxacin [63]; quinolone [77]; nitrofurantoin [80];

and tetracycline [78,79].

OmpW
Eight-stranded β-barrel

with a hydrophobic
channel [86]

Nalidixic acid [81]; kanamycin, colistin/carbapenem, and ceftriaxone [86,88]; ampicillin,
tetracycline, and ceftriaxone [90]; enrofloxacin [91]; tobramycin [92]; ciprofloxacin and

imipenem [93]; colicin S4, chlortetracycline, neomycin, and ampicillin [94–96];
methyl viologen [97]; and penicillin, kanamycin, and polymyxin B [98].

OmpX Eight-stranded
antiparallel β-barrel [108]

Amikacin, novobiocin, cephalothin, sulfonamides, gentamicin, and nalidixic acid [80];
tetracycline, ciprofloxacin, chloramphenicol, lincomycin, rifampicin, aminoglycosides

(kanamycin and streptomycin), and β-lactam (ampicillin, carbenicillin, ceftazidime,
and imipenem) [110]; and β-lactam [111].
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Figure 1. Schematic representation of the OmpA regulation pathways. The promoter of OmpA could be
combined by SmpB [45] and an anti-(H-NS) repressor of A1S_0316 [46]. In Stenotrophomonas maltophilia,
OmpA participates in the β-lactam resistance response through the sigma (P)-NagA-L1/L2 regu-
latory circuit [47]. In response to environmental signals, the sensor kinase BaeS undergoes auto-
phosphorylation from ATP at a conserved histidine residue. After that, the phosphoryl group
is transferred to the BaeR, where it interacts with the receiver domain at a conserved aspartate
residue [141]. Phosphorylated BaeR (BaeR-P) inhibits OmpA expression, resulting in lower antimicro-
bial permeability [135]. The expressional levels of OmpA in A. baumannii can be positively regulated
by BlsA, which influences the penetration of EtBr and meropenem [48].

Figure 2. Schematic representation of the OmpC regulation pathways. The expression of OmpC can
be inhibited by the two-component regulatory system of BaeSR [135] and MicC in the presence of
an Hfq RNA chaperone [61]. When EnvZ detects high osmolarity, a phosphotransfer from EnvZ to
OmpR increases the synthesis of phosphorylated OmpR (OmpR-P), which increases the expression of
OmpC [59,142]. Meanwhile, the response regulator CpxR receives a phosphoryl group once the sensor
kinase CpxA recognizes envelop stress. The expression of OmpC is subsequently increased by the
activated CpxR [134]. The activated CpxA/CpxR induces the synthesis of MzrA, which also increases
EnvZ/OmpR activity and OmpC expression. A high concentration of OmpR~P downregulates mzrA,
which forms a negative regulatory feedback cycle [138]. In addition, the transcription levels of OmpC
and TolC are negatively and positively regulated by Pfs [139].
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Figure 3. Schematic representation of the OmpF regulation pathways. The two-component system
BaeSR, EnvZ/OmpR, and CpxAR negatively control OmpF expression partially through the MicF
sRNA at the transcriptional and/or post-transcriptional stages [81,82]. The activation of micF can
be regulated by OmpR, MarA, SoxS, and Rob [83]. In addition, MarA can directly inhibit OmpF
expression at the transcriptional level, or indirectly at the post-transcriptional level by activating
MicF [25]. Pfs controls the transcription levels of OmpF and TolC in a negative and positive manner,
respectively [139]. UxuR positively regulates OmpF expression with unknown mechanisms [84].

Figure 4. Schematic representation of the OmpW regulation pathways. The two-component system
of BaeSR positively regulated OmpW expression [100]. The other two systems, EnvZ/OmpR [102]
and CpxAR [134], negatively control OmpW expression. Additionally, SoxS negatively regulated
OmpW expression in E. coli [101].
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Figure 5. Schematic representation of the OmpX regulation pathways. The two-component system
BaeSR negatively regulates OmpX expression, which is linked to a decrease in TolC [135]. In addition,
MicA, CyaR, and OxyS were needed for the stability of the ompX mRNA in an Hfq-dependent
manner [114].

In general, antimicrobial exposure can cause several Omps to activate simultaneously
in some circumstances, and various Omps are involved in different antibiotic transport or
membrane permeability. Non-specific porins are involved in both membrane permeability
and antibiotic transport, whereas specific porins are only connected to antibiotic passive
transport. This comparison emphasizes how general-purpose porins are functionally
versatile. Thoroughly exploiting the structures, functions, and regulatory mechanisms of
porins and their relationships would pave the way for the control of gram-negative bacteria
using porins as targets.
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