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Abstract: The transmission of viruses from one host to another typically occurs through horizontal
or vertical pathways. The horizontal pathways include transmission amongst individuals, usually
through bodily fluids or excretions, while vertical transmission transpires from mother to their
offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human
pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk,
including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell
lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk
transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports
summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here,
we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on
Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted
through breast milk, covering various species. We also elaborate on the production and composition
of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral
transmission.

Keywords: retrovirus; breast milk; breastfeeding; mammalian retrovirus; oral route;
virus transmission; tonsils; salivary glands; human T cell lymphotropic virus type 1 (HTLV-1);
human immunodeficiency virus (HIV)

1. Introduction into Breast Milk Transmission of Retroviruses

The transmission of viruses between hosts is typically facilitated through horizontal
or vertical pathways, the latter occurring from mothers to their offspring during pregnancy,
childbirth, or breastfeeding. Although breast milk has been shown to protect newborns
from several infectious diseases, few viruses are transmitted by breastfeeding [1]. Based
on Koch’s postulates, five out of sixteen human viruses that had been suspected to be
transmitted by breast milk fulfill the criteria of proven breast milk transmission, including
human cytomegalovirus (CMV), human immunodeficiency virus (HIV), human T cell
lymphotropic virus type 1 (HTLV-1), dengue virus, and Zika virus [2]. While the milk
transmission of dengue and Zika virus is a matter of debate [3,4], the breast milk trans-
mission of CMV, HIV, and HTLV-1 has been known for a longer time [5]. Both HIV and
HTLV-1 are members of the family Retroviridae, which comprises many other retroviruses
infecting various mammalian species. Yet, there is a lack of reports summarizing our knowl-
edge about the breast milk transmission of mammalian retroviruses. Thus, this review
presents a comprehensive overview of mammalian retrovirus transmission via breast milk,
encompassing multiple species. Initially, the production and composition of breast milk are
discussed, followed by a detailed account of mammalian exogenous retrovirus families that
have been either described or suspected to be transmitted through breast milk. Moreover,
we summarize an exploration of potential entry sites for mammalian retroviruses during
oral transmission.
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2. How Is Breast Milk Produced?

To obtain a better understanding of the breast milk transmission of animal retroviruses,
it is first important to comprehend lactation, the process of the production and secretion of
breast milk. The production of human breast milk in response to the hormone prolactin
takes place within the human mammary glands by alveolar epithelial cells, or lactocytes.
These cells are organized within alveoli, which form clusters or so-called lobules. Breast
milk is secreted from the lactocytes and drains from the lumen of the alveoli into a common
lactiferous duct (15–20 per lactating breast) upon contraction of the myoepithelial cells
lining the outside of the alveoli in a web-like pattern. The lactiferous duct transports
the milk and finally opens up on the surface of the nipple, where milk can be drawn by
the suckling [6]. The epithelium within the mammary gland undergoes drastic changes
during the maturation of the lactating tissue as permeability declines by the closure of
tight junctions within the epithelium, influencing the composition of breast milk [7–9]. In
general, the mechanism of milk production is similar among species; however, the location
and external form of the mammary glands differ extensively [10].

3. How Is Breast Milk Composed in Different Species?

Breast milk is a diverse and complex biological fluid system. Several factors influence
its composition, which include (1) species affiliation, (2) genetics, (3) stage of lactation,
(4) health status, (5) diet, (6) infant feeding, (7) term or pre-term birth, and (8) breast full-
ness [11–20]. With regard to the stages of lactation, breast milk can be categorized into
colostrum (birth to 5 days postpartum), transitional milk (6–14 days postpartum), and
mature milk (>14 days postpartum). Milk at each of these stages has its specific compo-
sition, reacting to the infant’s needs [7,21]. Therefore, maternal support for the neonatal
developing immune system is most required soon after birth, whereas the nutritional de-
mand increases over time as the infant grows. The fundamental constituents of breast milk,
comprising protein, fat, lactose, oligosaccharides, cells, minerals, and water (approximately
87%), are consistent across all mammalian species [19]. Upon centrifugation, breast milk
can be fractionated, resulting in a creamy top layer containing the lipid components, a
cloudy supernatant, also defined as skim milk, containing whey and casein fractions, as
well as a milk cell pellet [22]. Despite similar general ingredients, the composition of the
solid components varies between species, with milk from ruminants differing significantly
from that of non-ruminants [19]. The research on the milk composition in other species
than humans and dairy animals is rather scarce but has been summarized by Park and
Haenlein [23,24].

3.1. Proteins

Among proteins, caseins are the dominant class present in milk. They include αs1-, αs2-
, β-, and κ-casein and are present in self-assembled casein micelles stabilized by κ-casein
[19,25]. Between distinct species, the casein-to-whey protein ratio differs between horse,
donkey, goat, sheep, camel, and human milk, having a lower casein-to-whey protein ratio
than cattle milk. Regarding the protein composition, human breast milk is distinguished
from cow milk by the absence of β-lactoglobulin, whereas α-lactalbumin is the most
abundant whey protein in human milk [19]. Other species in which low or absent levels
of β-lactoglobulin have been described include camels and llamas [19,23,26]. Overall, the
protein content is the highest within the first lactation stage, as the mammary gland is still
permeable, and it is especially high in immunoglobulins, reflecting the high immunological
need of the infant [7–9]. As the gut permeability of the newborn decreases soon after birth,
as a result of the closure of the barrier within the epithelial tissue, the presence of maternal
antibodies in the human breast milk is essential for primary mucosal immunity. This is
reflected by the presence of a high proportion of soluble IgA, followed by soluble IgM and
IgG [27–29]. Compared to this, the milk of ungulates, for instance, primarily contains IgG,
while rodents transmit both IgA and IgG to the neonate [30,31]. The relevance of breast
milk antibodies for gut microbiome establishment, protection against microbial and viral
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pathogens, allergies, and necrotizing enterocolitis has been studied in humans as well as in
mouse models [28]. The two major enzymes in colostrum, lysozyme and lactoferrin, act
in a cooperative manner to destroy Gram-negative bacteria; however, both exert further
antibacterial, antiviral, or antifungal as well as immune-modulatory activities [29].

3.2. Fat

The highest nutritional value within breast milk is contributed by the fat propor-
tion, which mainly consists of triglycerides (98%), followed by diacylglycerides and free
fatty acids. The triglycerides are synthesized within the rough endoplasmic reticulum of
mammary epithelial cells and transported through the cytosol within the milk fat globule.
Subsequently, they are secreted at the apical membrane of the mammary epithelial cell,
resulting in coating by the milk fat globule membrane (MFGM), a specialized, protec-
tive phospholipid tri-layer containing specific proteins [32]. This organization of fatty
components is unique to breast milk and is a common feature of all mammalian species;
however, milk fat globules may vary in size and protein proportion [19]. Out of all breast
milk components, the total fat composition and concentration can vary the most, not
only over the course of lactation but also within one day and even within one session
of nursing, leading to high differences between different individuals as well as between
different species [7,19,32,33]. MFGM components, including phospholipids, gangliosides,
cholesterol, and glycoproteins, and their implications on infant health regarding cogni-
tive development, intestinal maturation, and immune development have been studied
extensively and were summarized by Thum et al. [32].

3.3. Lactose

Naturally and exclusively present within mammalian breast milk, lactose is the major
source of carbohydrates. It is a disaccharide composed of D-glucose and D-galactose and is
broken down via β-galactosidase (lactase) present in the small intestine of all mammals [34].
This enzyme reaches its peak activity shortly after birth and decreases again typically after
weaning. Nevertheless, in some ethnicities in Europe and Africa, human lactase activity
stays persistent even into adulthood (app. 20%), which is genetically determined [34–37].
Human milk has a relatively high lactose content (7%) compared to other species, especially
compared to cow’s milk (4.6%) [19,34].

3.4. Oligosaccharides

Another factor significantly discriminating human breast milk from that of other mam-
mals is the content and variability in oligosaccharides (OSs). Human milk oligosaccharides
(HMOs) represent the third highest amount of solid components in human milk, and
until now, over 200 different structures have been identified [38,39]. The characteristic
of all HMOs is the lactose core at their reducing end, which can be extended by one or
several monosaccharide structures out of galactose, N-acetylglucosamine, fucose, and
N-acetylneuraminic acid. The process of HMO synthesis was summarized by Bode [38].
Nevertheless, HMOs do not serve as nutrients, as they are non-digestible by the infant
and are secreted with the feces [40–42]. Initially, they were identified because of their
prebiotic potential, as favorable gut bacteria metabolize HMOs. Therefore, they actively
shape a healthy microbiome within the infant’s gut [43,44]. Furthermore, HMOs show
antibiotic and antiviral functionality, as they, e.g., exhibit a decoy function for bacterial
and viral receptors [38,45]. The highest concentration of HMOs is found within colostrum
(20–25 g/L) and declines over time (5–20 g/L in mature milk) [38–40,46]. Within the human
species, the OS composition varies between individuals [47,48] and is defined by genetic
factors depending on the Lewis blood group antigens, dividing lactating mothers into
so-called milk types (Le+/Se+, Le−/Se+, Le+/Se−, Le−/Se−). Mothers harboring an
active secretor gene (Se+; >70%) express fucosyltransferase-2 (FUT2), which enables them to
generate α(1-2)-fucosylated HMOs, e.g., 2′-fucosyllactose (2′-FL) and lacto-N-fucopentaose
1 (LNFP1). The milk of non-secretors (Se−) does not contain α(1-2)-fucosylated HMOs.



Microorganisms 2023, 11, 1777 4 of 28

In addition, fucosyltransferase 3 (FUT3), encoded by the Lewis (Le) gene, links fucose
in an α1-3/4 manner, leading to a reduced amount of α1-3/4-fucosylated HMOs within
Le− women [38,39,48].

The OS content within breastmilk has been studied in species other than humans
[49–55]. The milk of non-human primates, for instance, still shows a more complex OS
pattern than that of non-primate species [50,54]. Comparing the fucosylation status, the
concentration of fucosylated OSs in chimpanzee milk (50%) is similar to that of human
breast milk (50–80%), followed by gorillas (15%). In other species, the fucosylation of OSs
plays a minor role (<1%) [54]. Within bovine milk, which serves as the basis of formula
milk, the level of OSs is quite low [49], and porcine milk showed a highly sialylated OS
pattern similar to that of bovine milk [53]. In contrast, goat milk shows significantly
higher OS content (e.g., 60 to 350 mg/L in mature milk), which is still lower than that of
human milk [55].

3.5. Cells

Early research concluded that the human breast milk cell (hBMC) population mainly
consists of leukocytes, with the majority being macrophages [56,57]. However, novel tech-
niques such as flow cytometry and single-cell RNA sequencing (scRNA-seq) revealed that
hBMC composition is more diverse and drastically changes over time [58–61]. Leukocytes,
especially macrophages, are most prevalent in colostrum and early milk as the immuno-
logical need of the infant is the highest during that period, but they decline over the first
two weeks postpartum to a basal level of 0–2% in mature breast milk. Therefore, luminal
and myoepithelial cells are the most abundant cell subsets in mature milk. The majority of
those are lactocytes—secretory epithelial cells derived from the mammary alveoli—which
produce and secrete typical milk components such as HMOs, lactose, micronutrients, fat,
hormones, and cytokines into breast milk [16,21,58–61]. Additionally, mesenchymal and
hematopoietic stem and progenitor cells have been identified to be present in human
milk [62–64]. Overall, the total cell number declines over time [16,65]. Despite the low
basal presence of lymphocytes in mature milk, increased lymphocyte numbers could be
observed after infection within the mother–infant dyad. This potentially provides the
infant with additional immunological support, and baseline lymphocyte levels are restored
after recovery [16,18,20]. Regarding other species, bovine milk contains macrophages,
neutrophils, lymphocytes, and, different to human breast milk, only a small proportion
of epithelial cells [66]. Within the dairy industry, the somatic cell count (SCC) of cattle
milk is a standardized feature for quality control and udder health, as mastitis in cows is
associated with an increased SCC and influences the quality of the product [67]. On the
contrary, for goat milk, naturally elevated SCC resulting from apocrine secretion within
their milk production has been described in the past, which does not correlate with the
presence of mastitis in goats [68].

4. Brief Overview of Retroviruses
4.1. Taxonomy

Retroviruses can infect a wide range of vertebrate species, including mammals, and
each subfamily has unique characteristics and pathogenic properties. The family Retroviri-
dae is subdivided into two subfamilies, Orthoretrovirinae and Spumaretovirinae. While the
first subfamily includes the six genera Alpha-, Beta-, Gamma-, Delta-, Epsilonretroviruses, and
Lentiviruses, infecting a broad range of different species, the Spumaretovirinae—commonly
known as foamy viruses—are subdivided into five different genera according to their
host tropism, including Bovispumaviruses, Equispumaviruses, Felispumaviruses, Prosimiis-
pumaviruses, and Simiispumaviruses [69]. Further, retroviruses can be divided into exoge-
nous and endogenous retroviruses, the latter also comprising retrotransposons, which are
transmitted via the germline. Exogenous retroviruses of the subfamily Orthoretrovirinae, the
focus of this article, encode all the properties required for viral replication and the release
of viral particles.
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4.2. Retroviral Particles

Retroviral particles are around 100 nm in diameter and are enveloped with a lipid
bilayer derived from the plasma membrane of the virus-producing host cell (Figure 1A).
The viral envelope (ENV) proteins are usually processed by a cellular protease from a
precursor protein into a transmembraneous glycoprotein (TM) and an external glycoprotein
(SU). Viral matrix (MA) proteins are myristylated and line the inner surface of the viral
envelope. The MA proteins surround the viral core, which is composed of viral capsid (CA)
proteins. The viral capsid contains two identical copies of a single-stranded RNA, which is
complexed by the nucleocapsid (NC) proteins. MA, CA, and NC are all derived from the
viral gag protein precursor, which is cleaved by the viral protease during the maturation of
the viral particles into the aforementioned components. Additionally, for some retroviruses
such as HIV, a linker protein p6 (6 kDa) has been described, connecting CA and the viral
membrane. Finally, retroviral particles contain the viral enzymes reverse transcriptase (RT),
integrase (IN), and protease (PRO).
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Figure 1. Scheme of retroviral particle and genome structure. (A) Retroviral particle structure
enveloped by the plasma membrane as lipid bilayer containing the envelope (ENV) proteins. The
matrix (MA) proteins enwrap the capsid (CA), protecting the nucleocapsid (NC) and viral RNA.
Moreover, the viral proteins integrase (IN), reverse transcriptase (RT), and protease (PRO) are present
in the capsid. (B) Schemes of integrated proviral genomes displaying simple and complex retroviruses
(here: HTLV-1). The genes are shown in rectangles, and the transcribed proteins from each gene are
listed below the respective gene.
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4.3. Genome Organization

The capped and polyadenylated RNA genome packaged into the infectious retroviral
particles is reversely transcribed by the viral RT and integrated into the host cell genome
upon infection of the host target cell. The integrated proviral DNA is flanked by long
terminal repeats (LTR) containing unique 3 (U3), redundant (R), and unique 5 (U5) regions,
which usually harbor important regulatory sequences with promotor activity which is
required for the regulation of viral gene expression (Figure 1B). Based on genome organi-
zation, retroviruses are classified into simple and complex retroviruses. Typically, simple
retroviruses contain gag, pol, and env genes, encoding for the three group-specific antigens
MA, CA, and NC (gag), the enzymes RT, IN, and PRO (pol), and ENV (env), respectively.
Complex retroviruses additionally encode for several regulatory and accessory proteins.
All human pathogenic retroviruses known to date, HIV-1, HIV-2, and the HTLVs, belong to
the complex retroviruses. For more details about retrovirus organization and replication,
additional reading is recommended [70,71].

5. Which Animal Retroviruses from the Family Orthoretrovirinae Are Transmitted by
Breast Milk?

Among the animal retroviruses, Alpharetroviruses infecting wild and domestic birds
but not mammals are excluded from this article. However, for the other five genera within
the Orthoretrovirinae, exogenous retroviruses infecting mammals and their transmission
routes, including milk transmission, are briefly described.

5.1. Betaretroviruses (Non-Human)
5.1.1. Jaagsiekte Sheep Retrovirus (JSRV)

JSRV (Table 1) is a Betaretrovirus infecting sheep and, rarely, goats [72]. It is the
causative agent of ovine pulmonary adenocarcinoma, a contagious neoplastic lung disease,
which leads to chronic respiratory disease, weight loss, and ultimately death [73]. Thus,
JSRV belongs to the oncogenic retroviruses, and the viral ENV protein has been described
as an oncogene, which is quite unique among retroviruses [74]. The tumors originate
from infected type II pneumocytes and Club cells (formerly known as Clara cells), which
produce pulmonary surfactant, leading to excess fluid build-up in the lungs [72]. The virus
itself can be transmitted via inhalation but also through the maternal route, though details
are unknown [75,76]. While JSRV mainly infects cells in the respiratory tract, infected cells
can also be found in lymph nodes and white blood cells [76,77]. Interestingly, JSRV can be
detected in somatic cells in colostrum and milk, for instance in milk macrophages, but not
in milk lymphocytes or mammary gland epithelia [76]. Vertical transmission most likely
occurs via infected cells present in colostrum and milk crossing over into the intestinal
barrier of newborn lambs [76]. Since there is no vaccine available, an infection with JSRV in
a flock is associated with high economic losses [78]. Recent studies also found retroviral
sequences with similarity to JSRV and enzootic nasal tumor virus (ENTV; see Section 5.1.4)
in dromedary camels in Saudi Arabia, which live in close proximity to sheep and goats,
suggesting interspecies transmission [79].

5.1.2. Mason–Pfizer Monkey Virus (MPMV)

MPMV (Table 1), a rare Betaretrovirus, causes immunodeficiency in rhesus macaques
[80,81]. This presents itself as AIDS-like symptoms, such as lymphadenopathy, weight
loss, and severe opportunistic infections [82–84]. The transmission of the virus occurs
horizontally and can be detected in saliva and milk in experimentally infected rhesus
monkeys [84,85]. However, there has been no evidence of MPMV transmission via breast
milk thus far.
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Table 1. Betaretroviruses.

Virus Natural Host Transmission Routes Site of Infection Refs.

Jaagsiekte sheep
retrovirus (JSRV)

Sheep, rarely
goats

Inhalation of the virus;maternal
route (milk)

Type II pneumocytes; somatic cells
in colostrum and milk; white
blood cells, lymph nodes and

other lymphoid organs;
bronchioalveolar epithelial cells;

respiratory tract

[72,76,77,86–89]

Mason–Pfizer
monkey virus

(MPMV)

Rhesus
macaques Horizontal transmission Infectious virus in saliva and milk [80,83–85,90]

Mouse mammary
tumor virus

(MMTV)
Mice Milk through intestinal

epithelium

Dendritic cells, B lymphocytes in
Peyer’s patches; T lymphocytes;

epithelial tissues, including
salivary gland, kidney, seminal
vesicle, epididymis, and testis

[91–100]

Enzootic nasal
tumor virus

(ENTV)
Sheep and goats

Horizontal transmission;
airborne route; nasal secretions;

transuterine and oral
transmission cannot be excluded

Nasal fluids; nasal epithelial cells;
Bowman glands [101–106]

5.1.3. Mouse Mammary Tumor Virus (MMTV)

The most prominent Betaretrovirus known for its transmission via milk is MMTV
(Table 1) [100,107]. Since its discovery in 1936 by John Bittner [100], the virus has been
extensively studied because of its closeness to human breast cancer [108]. MMTV is not
only transmitted as an exogenous retrovirus, but permanently integrated endogenous
proviruses (Mtv) are present in most inbred mouse strains [93,109]. After the transmission
of MMTV from mother to offspring, the oncogenic ‘milk factor’ can cause mammary
carcinoma and lymphoma in wild and experimental mice [92,100]. The target site of the
virus is the intestinal epithelium followed by epithelial tissues, including the salivary gland,
kidney, seminal vesicle, and testis [92]. Following absorption through the intestine, the
virus’ first target sites are dendritic cells and B lymphocytes succeeded by the activation of
T lymphocytes [91,92]. Thus, the infected lymphocytes carry the virus through the lymph
system into the mammary gland, causing neoplasms [95]. New evidence suggests a role of
MMTV in sporadic human breast cancer, but further studies are still needed [110,111].

5.1.4. Enzootic Nasal Tumor Virus (ENTV)

ENTV has characteristics of both Beta- and Deltaretroviruses, but it is closely related
to JSRV and infects predominantly sheep and goats (Table 1). Interestingly, ENTV is not
classified by the ICTV [69]. The main route of transmission is horizontal via the airborne
route and the nasal secretions contained therein [101,105]. After infection of the Bowman
glands in the upper epithelial airway, ENTV can lead to respiratory signs such as dyspnea,
nasal discharge and anorexia, and finally enzootic nasal adenocarcinoma [112,113]. Like
JSRV, ENTV is a carcinogenic retrovirus encoding an oncogenic ENV protein. Yet, the
vertical transmission of ENTV via breastmilk has not been observed, but transuterine and
oral transmission cannot be fully excluded [114].

5.2. Gammaretroviruses (Non-Human)
5.2.1. Feline Leukemia Virus (FeLV)

The most common cause of disease-associated death among domestic cats is attributed
to the Gammaretrovirus FeLV (Table 2). This virus infects horizontally and vertically via
several different routes of transmission [115]. The infectious virus can be found in vast
quantities in saliva, feces, urine, and milk. Therefore, transmission occurs mainly through
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contacts between cats, such as mutual grooming and biting, the shared use of litter boxes,
but also from queen to kitten while nursing via milk [115–119]. The initial infection starts
in the mucosa of the oropharynx, leading to viral replication in the tonsils and lymph
nodes. The viral spread of infected lymphocytes and monocytes through the lymphoid
tissue leads to the replication of the virus in the bone marrow. This is followed by the
infection of neutrophils and platelet precursors, resulting in secondary viraemia. Infected
cats show clinical symptoms such as weight loss, enlarged lymph nodes, fever, neurological
disorders, poor coat condition, leukemia, and in general a weak immune system [120–122].
Once infected, cats should be kept excluded from the outside world, especially from other
FeLV-naïve cats [117,118]. A vaccine is available to prevent initial infection [123].

Table 2. Gammaretroviruses.

Virus Natural Host Transmission Routes Site of Infection Refs.

Feline leukemia
virus (FeLV)

Domestic cats,
cats

Horizontal transmission;
friendly contacts, biting,

mutual grooming, shared use
of litter boxes and feeding

dishes; vertical transmission;
milk; from queen to kitten

Lymphocytes and monocytes in
lymphoid tissue; neutrophils;
saliva, feces, urine, and milk;

mucosa of oropharynx; tonsils
and lymph nodes; bone marrow

[115,117–122,124,125]

Gibbon ape
leukemia virus

(GaLV)
Captive gibbons Transmission not fully

understood

Neoplastic lymphocytic
infiltration in lymph nodes,
heart, liver, salivary glands,
mesentery, kidney, ureters,

pituitary, and choroid of eye;
bone marrow

[126,127]

Koala retrovirus
(KoRV)

Captive and
free-living

koalas

Horizontal and vertical
transmission; dam–joey

interactions with ingested
milk, pap and/or infected

fluids during perinatal period
and parturition; sexual

transmission not known

Unknown; no active virus
recovered in milk [126,128–130]

Murine leukemia
virus (MLV) Mice

Vertical and horizontal
transmission; breast milk;

between fighting mice

Macrophages (virus capture); T
and B cells; external secretions,

saliva, semen, uterine secretions;
Peyer’s patch (small intestine)

[131–134]

5.2.2. Gibbon Ape Leukemia Virus (GaLV)

The infection and transmission of GaLV has been studied in captive gibbons but
so far not in wild animals (Table 2). GaLV results from a transspecies transmission of a
retrovirus from an unknown host, but the initial host is still not identified [126]. This virus
might be able to infect non-leukemic fibroblastic cells, suggesting that the infectious virus
infiltrates lymph nodes, the heart, salivary glands, liver, kidneys, ureters, pituitary, choroid
of the eye, and bone marrow [126,127,135]. It can cause lymphoid tumors in sub-human
primates [135]. Yet, it is unknown whether GaLV transmits via breast milk.

5.2.3. Koala Retrovirus (KoRV)

KoRV can be found in captive and wild koalas and leads to severe immunodeficiencies,
usually followed by opportunistic infections such as chlamydial infections and/or neo-
plasias (Table 2) [126,136,137]. Thus, KoRV infection is a major threat to koalas. Like GaLV,
KoRV infection results from a transspecies transmission of a retrovirus from an unknown
host [126]. KoRV stands out from other retroviruses due to its distinct characteristics. While
KoRV-A, one strain of the virus, is currently undergoing endogenization, KoRV-B, the main
subtype, and KoRV-C, another subtype, are said to be exogenous strains [138]. Both vertical
and horizontal transmission take place, but the mechanism is not fully understood [128].
Transmission might occur through dam–joey interactions, for instance through the inges-
tion of milk and/or infected fluids or the contact of the joey with the teat. However, no
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active virus has been discovered in milk thus far [128–130]. Certain tissue types prone to
infection have not been discovered yet.

5.2.4. Murine Leukemia Virus (MLV)

The Gammaretrovirus MLV (Table 2) leads to leukemia and lymphoma in mice [139].
The infectious virus is mainly found in B and T lymphocytes in external secretions, saliva,
semen, and uterine secretions [131,134,139]. Transmission therefore occurs horizontally
between fighting mice and vertically mainly through breast milk [131,132]. Several studies
have contributed insights into the oral route of MLV transmission, which is described in
Sections 6.2 and 6.4.

5.3. Deltaretroviruses (Human and Non-Human)
5.3.1. Bovine Leukemia Virus (BLV)

BLV (Table 3), a virus that leads to significant economic losses in the dairy and meat in-
dustry, naturally infects cattle, water buffalo, yak, alpaca, and capybaras [140,141]. It causes
enzootic bovine leukosis, presenting itself as a contagious lymphoproliferative disease of B
cells [142–145]. Experimentally infected sheep serve as an animal model for the analysis of
leukemia and lymphoma development upon BLV infection [146]. Transmission transpires
horizontally and vertically through direct contact, nasal secretions, saliva, blood, fluids
around birth, and semen. Transplacental infection and infection through insect bites have
been shown as well [141,143,147–153]. While the presence of infectious BLV in milk and
colostrum makes breast feeding a risk factor for the vertical spread of BLV, both colostrum
and milk contain BLV-specific antibodies, which has been reviewed previously [141]. Al-
though it is proven that BLV is transmitted via colostrum and milk, the initial site of
infection after the ingestion of milk via the oral route is not known. Tumors associated
with BLV arise mostly from various immune cell populations, such as CD5+/- IgM+ B cells,
CD2+, CD3+, CD4+, CD8+ T cells, monocytes, and granulocytes in peripheral blood and
lymphoid tissues [144,154–158]. The migration of these infected cells leads to tumors in the
spleen and to a lesser extent in the liver, eye, heart, skin, lung, and lymph nodes [159–162].
Recently, a safe and effective vaccine against BLV based on an attenuated provirus has
been developed, which may substitute the ‘test and eliminate’ and ‘test and segregate’
strategy [163,164]. Finally, it should be mentioned that there are controversial studies about
a potential role of BLV in human breast cancer upon bovine-to-human transmission by
milk or meat [165–168].

5.3.2. Human T Cell Lymphotropic Virus (HTLV)

Human T cell lymphotropic virus type 1 (HTLV-1, Table 3), the only human onco-
genic retrovirus, was discovered in 1981 and infects about 5–10 million people worldwide,
which is probably an underestimation due to its silent transmission [169–171]. HTLV-
1 is the causative agent of HTLV-1-associated myelopathy/ tropical spastic paraparesis
(HAM/TSP), other inflammatory conditions, the incurable neoplasia adult T cell leukemia/
lymphoma (ATLL), or other adverse health outcomes [172]. Integrated HTLV-1 can pre-
dominantly be detected in CD4+ T cells in vivo; however, the virus is also detected in
CD8+ T cells, dendritic cells, and monocytes, albeit at much lower levels. The transmission
of HTLV-1 occurs via sexual intercourse, from mother to child, and through iaotrogenic
transmission, e.g., via cell-containing blood products [173]. Mother-to-child transmission
(MTCT) predominantly occurs via breastfeeding (ca. 80 % of MTCT) since abstaining from
breastfeeding, or feeding for less than 90 days, can extremely reduce MTCT [174,175]. The
risk factors for MTCT upon breastfeeding have been reviewed earlier, including amongst
others high proviral load in milk and blood as well as prolonged breastfeeding periods
for more than 6 months [176,177]. Yet, the molecular details of the oral route of HTLV-1
transmission are only partially understood, e.g., it is unknown which cells in breast milk
are crucial for HTLV-1 MTCT and which cells in the infant are infected first [178]. However,
abandoning breastfeeding is not an option, especially in developing countries [178]. To
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make matters worse, only a few countries screen pregnant women for HTLV antenatally.
Finally, if HTLV-1 is transmitted via MTCT, the lifetime risk of developing ATLL rises from
5 to 20% [179]. Thus, there is a need for further research in HTLV-1 MTCT, which is also
highlighted by the recent technical report of the WHO on HTLV-1 [180].

Unlike HTLV-1, the related but non-oncogenic HTLV-2 predominantly infects CD8+ T
cells in vivo (Table 3). However, the routes of transmission are supposed to be comparable
between these two viruses [181] but are less well investigated for HTLV-2 than for HTLV-1.
HTLV-2 is detectable in the breast milk of infected mothers [182], but there are only a few
reports on HTLV-2 MTCT by breast feeding, and comprehensive studies are lacking [183].
Although HTLV-2 is associated with increased cancer mortality, it does not induce hemato-
logic disorders and only occasionally associates with myelopathy [184,185]. Furthermore,
the two viruses display variations in their geographic distribution. HTLV-1 is widespread
in Japan, sub-Saharan Africa, South America, and the Caribbean [170], whereas HTLV-2 is
predominantly prevalent among indigenous populations in Africa and Indian American
tribes in Central and South America, as well as among drug users in Europe and North
America [184,186].

A few cases of HTLV-3 and HTLV-4 (Table 3) were reported from Cameroon [187,188].
Yet, the prevalence and transmission of these viruses are unknown, but it is estimated that
zoonotic transmission of HTLV-4 may have occurred through the hunting of gorillas which
were infected with the related Simian T-lymphotropic virus type 4 [189,190]. There are no
data on the milk transmission of HTLV-3 or HTLV-4.

5.3.3. Simian T-Lymphotropic Virus (STLV)

The simian counterpart of HTLV-1 was discovered shortly after the human form in 1982
and belongs to the primate T lymphotropic viruses (PTLV) [191,192]. While STLV-1 (Table 3)
causes ATL as its human counterpart, STLV-1 infection does not cause HAM/TSP upon
infection [193]. However, the reason for this difference is still unclear. HTLV, in particular
HTLV-1 and HTLV-3, appeared by cross-species transmission from monkeys to humans,
which is a process still ongoing in Africa [189,194]. Based on the cross-species transmission,
a high similarity of the HTLV-1/HTLV-3 and STLV-1/STLV-3 genome is given, e.g., 96% of
the Tax sequence is identical between HTLV-1a ATK and STLV-1 Papio anubis strain [195,196].
While the STLV-2 strain has only been reported in wild-born bonobos in captivity, STLV-4
has been detected with PCR in gorillas in Cameroon and seems to be endemic [197]. As
is known for other retroviruses, STLV is transmitted vertically from mother to child but
also horizontally within the colony. MTCT in Japanese macaques in Japan was verified
by Murata et al., demonstrating a correlation between aging and STLV-1 infection in the
first nine years of the monkeys [198]. However, horizontal transmission occurs upon fights
among monkeys as well. Moreover, due to several coinfections with other STLV strains
or virus strains, vertical transmission within the colonies seems reasonable for STLV-2,
STLV-3, and STLV-4. STLV-1 is the most investigated type of STLV, which was detected in
the PBMCs and saliva of Papio anubis [199]. Recently, STLV-1 infection of neuronal cells in
spinal cord regions and in brain cortical and cerebellar sections was shown [200].

Table 3. Deltaretroviruses.

Virus Natural Host Transmission Routes Site of Infection Ref.

Bovine leukemia
virus (BLV)

Cattle, water buffalo,
capybaras; experimental:

sheep

Horizontal and vertical
transmission; nasal

secretions and saliva; blood;
tissue; fluids around birth;

colostrum and milk;
transplacental; direct

contact; possible
transmission via insects

B lymphocytes; various
immune cell populations
such as CD5+ IgM+ and

CD5− IgM+ B cells; CD2+,
CD3+, CD4+, and CD8+;

monocytes and
granulocytes in peripheral

blood and lymphoid tissues

[141,143,144,147–
155,157,158,201]
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Table 3. Cont.

Virus Natural Host Transmission Routes Site of Infection Ref.

Human
T-lymphotropic

virus type 1
(HTLV-1)

Human
Vertical and horizontal

transmission; sexual contact;
contaminated blood

products; breast milk

CD4+ and CD8+ T cells;
dendritic cells; monocytes [177,202–210]

Human
T-lymphotropic

virus type 2
(HTLV-2)

Human
Sexual contact; blood

transfusion; breastfeeding;
contaminated needles

CD8+ T cells [181,186]

Human
T-lymphotropic

virus type 3
(HTLV-3)

Human Unknown PBMCs, detailed tropism
unknown [187,189]

Human
T-lymphotropic

virus type 4
(HTLV-4)

Human Probably through hunting
of wild gorillas

PBMCs, detailed tropism
unknown [188–190]

Simian
T-lymphotropic
virus type 1–4

(STLV-1)

Several non-human
primate species, e.g.,
Papio, Cerocebus, and

others; gorillas for
STLV-4

Horizontal and maternal
route; sexual contact;
aggressive behavior;

breastfeeding

CD4+ T cells; CD8+ T cells [190,191,198,211–
218]

5.4. Lentiviruses
5.4.1. Bovine Immunodeficiency Virus (BIV)

BIV (Table 4), a member of the genus Lentivirus with a global serologic presence,
infects cattle and buffalo and is transmitted vertically, in utero or transplacental, but also
via blood [219]. However, BIV remains poorly understood in terms of its effects on animal
health, pathogenesis, and transmission mechanisms. Yet, BIV is generally regarded as
non-pathogenic and lacks any known ability to induce severe diseases in cattle [220].
Integrated proviruses have been detected in PBMCs, specifically in CD3+, CD4+, CD8+,
and gamma-delta T cells as well as in B cells and monocytes [156]. Although BIV has been
detected in the blood and milk of BIV-seropositive cows [221], there is no evidence that BIV
is transmitted by milk [162].

5.4.2. Equine Infectious Anemia Virus (EIAV)

EIAV (Table 4) specifically targets macrophages and results in a long-lasting infection
in equids (horses, donkeys, ponies) [222]. EIAV is distributed worldwide and represents
a globally significant chronic disseminated disease in veterinary medicine. EIAV gained
recognition as the causative ’filterable agent’ responsible for the equine infectious anemia
(EIA) syndrome in 1904, establishing one of the early instances where a viral origin was
attributed to an animal disease [223]. The virus induces a persistent infection characterized
by recurrent febrile episodes that involve viremia, fever, thrombocytopenia, and wasting
symptoms. Among the genus Lentivirus, EIAV stands out due to its unique progression
from a chronic stage, marked by recurring peaks of viremia and fever, to an asymptomatic
stage of infection. Inapparent carriers, who show no apparent symptoms, remain in-
fectious throughout their lives, as evidenced by experimental transmission of blood to
naive animals [224]. Transmission occurs primarily through the transfer of infected blood,
e.g., by biting insects such as horseflies [225]. Less common routes of transmission occur
from mare to foal in utero, via milk, or sexually via semen; however, information is limited.

5.4.3. Feline Immunodeficiency Virus (FIV)

FIV (Table 4) infects domestic cats, lions, leopards, tigers, pumas, snow leopards,
jaguars, Pallas’s cats, flat-headed cats, cheetahs, and bobcats. FIV is not only detectable in
serum but also in blood cells, more specifically in CD4+ T cells, monocytes, CD8+ T cells,
and B cells. Moreover, FIV is present in mesenteric lymph nodes, saliva, genital secretions,
the brain, the thymus, bone marrow, spleen, and liver. Viruses are transmitted by biting,
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through sexual routes during mating (e.g., by semen), and vertically in utero and by
milk [125,226–229]. The death of kittens upon in utero transmission is frequently observed.
Interestingly, FIV is concentrated in milk early in lactation, and it can be experimentally
transmitted via milk during acute maternal infection [230,231]. Thus, FIV provides a
suitable model to study milk-borne retrovirus transmission. FIV-infected female cats
bred to an FIV-negative male are widely studied, and an inactivated whole virus vaccine,
Fel-O-Vax, has been developed [232].

5.4.4. Caprine Arthritis Encephalitis Virus (CAEV)

CAEV (Table 4) is a small ruminant lentivirus (SRLV) that primarily affects goats
and causes a multisystemic inflammatory and chronic disease known as caprine arthritis
encephalitis (CAE) [233]. The virus can be transmitted vertically from infected goats
to their offspring during pregnancy and postnatally via the ingestion of colostrum or
milk. Another form of transfer is horizontally through long-term contact between infected
animals [234,235]. CAEV infects various tissues and cells in the body, leading to arthritis
and inflammation in the joints, as well as neurological symptoms such as encephalitis. The
disease poses significant economic challenges as productivity decreases and veterinary
costs increase [233]. Control measures such as testing, culling of infected animals, and
biosecurity measures are critical to prevent the spread of CAEV in goat herds [235].

5.4.5. Visna-Maedi Virus (VMV)

VMV (Table 4) is also an SRLV, but it infects sheep and causes Visna-Maedi (VM),
a multisystemic inflammatory disease affecting various organs [236]. Like CAEV, VMV
is also transmitted vertically in utero via colostrum, milk, or through the inhalation of
respiratory secretions, resulting in the infection of the lungs [235,237]. Oral transmission
via milk is mediated via epithelial cells in the small intestine. Infected cells can not only
be found in blood, colostrum, milk, and the mammary glands but also in the lungs and
semen; however, the role of the latter in transmission is unknown. The target cells of
VMV are monocytes and macrophages [237]. Consequently, lesions induced by VMV
are characterized by mononuclear infiltration in target organs and inflammation [17,18].
Together, SRLVs cause VM in sheep and CAE in goats, multisystemic inflammatory diseases
affecting the lungs, central nervous system (CNS), joints, and mammary glands. In both
cases, symptoms take several months to years to develop.

5.4.6. Human Immunodeficiency Virus (HIV)

HIV-1 (Table 4), the etiologic agent of acquired immunodeficiency syndrome (AIDS),
is transmitted horizontally via sexual contacts via semen, cervicovaginal, and rectal secre-
tions, vertically from mother to child during pregnancy, child birth, or breastfeeding, and
iatrogenically via blood or blood products [238]. Depending on the transmission route,
different sites of entry may apply. On a cellular level, HIV infects CD4+ T cells or cells of
the monocyte and macrophage lineage. Nowadays, sexual transmission accounts for the
majority of HIV transmissions. Nevertheless, milk transmission plays an important role
in MTCT and accounts for more than half of pediatric HIV infections [5,239]. Numerous
studies have focused on the milk transmission of HIV and found that the risk of MTCT
increases with the proviral load in breast milk, the duration of breastfeeding, and with
inflammation in the mammary gland upon mastitis [239]. According to new guidelines, the
WHO recommends HIV-infected mothers to receive life-long antiretroviral therapy and,
under these conditions, to exclusively breastfeed for 6 months of age. Afterwards, comple-
mentary feeding should be added, but breastfeeding could continue until 24 months of age
or even longer [1,240]. It is common, especially in high-income countries, to implement
mixed feeding, a combination of breast milk and formula milk feeding. If mothers living
with HIV are under antiretroviral therapy, the WHO states that mixed feeding is better
than not to breastfeed at all [240]. However, mixed feeding is not recommended if mothers
are not under therapy or adherence to antiretroviral therapy is not guaranteed since mixed
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feeding increases the risk of HIV transmission. Moreover, if safe infant formula or access
to clean water are impaired, mixed feeding is discouraged as well since a lack of clean
water, antigens in formula, and poor hygienic conditions may promote the disruption of
the epithelial barrier and lead to an enhanced proinflammatory milieu in the infant, thus
enhancing the risk of HIV transmission [241]. Although the treatment of the HIV-infected
mother should be prioritized, routine pre-exposure prophylaxis (PrEP) of the infant should
be recommended as well, especially if the mother is not treated or if maternal viral load
is still detectable despite antiretroviral therapy [242]. Moreover, antiretroviral treatment
of the mother does not necessarily prevent HIV cell-to-cell transmission, making routine
infant PrEP even more advisable [239]. Thus, complementary actions are needed, since
the risk of transmitting HIV by breastfeeding increases with maternal post-partum HIV
acquisition, suboptimal adherence to antiretroviral therapy, and untreated maternal HIV
infection [243].

The related HIV-2 is less pathogenic than HIV-1 and also differs in its geographic
distribution since it is mainly found in West Africa, but high numbers of cases have also
been found in India, Europe, and the United States. As described for HIV-1, HIV-2 is
also transmitted via sexual contacts, MTCT, or iatrogenic transmission (Table 4); however,
transmission rates are lower [244].

5.4.7. Simian Immunodeficiency Virus (SIV)

SIVs are a group of viruses that infect various African primates, such as African green
monkeys and sooty mangabeys. These viruses are commonly found in the wild among
these primate populations but usually do not cause immunodeficiency. However, when
Asian macaques are intentionally infected with these viruses in a laboratory setting, they
develop a syndrome that is very similar to AIDS in humans [245]. Compared to HIV, SIV is
rather transmitted by sexual routes and aggression, while mother-to-infant transmission
is rare (Table 4) [245,246]. SIV infects short-lived, activated CD4+ T cells, monocytes,
macrophages, and dendritic cells [247].

Table 4. Lentiviruses.

Virus Natural Host Transmission Routes Site of Infection Refs.

Bovine
immunodeficiency

virus (BIV)
Cattle and buffalo

Vertical transmission; in
utero and/or

transplacental; blood;
exact mode unknown

Macrophages;
monocytes;

lymphocytes; CD3+,
CD4+, and CD8+ T cells;

B cells; milk-derived
leukocytes; liver; lung;

spleen; brain

[156,162,219–221,248]

Equine infectious
anemia virus (EIAV) Horses; donkeys susceptible

Mechanically on mouth
parts of biting flies;

whole blood;
transplacental,

colostrum, milk, semen

Monocytes;
macrophages [222–225,249–251]

Feline
immunodeficiency

virus (FIV)

Domestic cats, lions,
leopards, tigers, pumas,
snow leopards, jaguars,
Pallas’s cats, flat-headed

cats, cheetahs, and bobcats

Biting; during mating;
semen; vertical

transmission; milk; in
utero; transmission in

the wild possible
through sexual routes

CD4+ T cells; monocytes;
CD8+ T cells; B cells;
saliva, blood, serum,

plasma, genital
secretions; PBMCs,

brain, thymus, bone
marrow, mesenteric
lymph node, spleen,

liver

[116,226–230,252–254]

Caprine arthritis
encephalitis virus

(CAEV)
Goats

Vertical transmission;
colostrum; direct

contact; placentas may
represent transmission

route; rarely sexual
contact

Monocytes;
macrophages; semen;

genital tract; mammary
gland; brain; spinal cord;
lung; joints; liver; spleen;

lymph node; thyroid
follicle; intestinal

enterocytes

[233,235,255]
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Table 4. Cont.

Virus Natural Host Transmission Routes Site of Infection Refs.

Visna-maedi virus
(VMV) Sheep

Colostrum and milk;
aerosol transmission;
contacts between ewe

and lamb, oral
transmission via small

intestine

Monocytes and
macrophages; semen;

blood; milk; colostrum;
mammary gland; lung;

brain

[235–237]

Human
immunodeficiency

virus 1 (HIV-1)
Human

Horizontal and vertical
transmission; semen;

blood and blood
products; cervicovaginal

and rectal secretions;
maternal blood; breast

milk

CD4+ T cells; cells of
monocyte and

macrophage lineage;
mucosa; submucosa;
draining lymphatics;

gut-associated
lymphoid tissue; system
lymphatic tissue; vagina,

ecto- and endocervix;
inner foreskin; penile

urethra; rectum; upper
gastrointestinal tract;

bloodstream

[238,256–258]

Human
immunodeficiency

virus 2 (HIV-2)
Human

Transmission similar to
HIV-1; lower

transmission rates
CD4+ T cells [244]

Simian
immunodeficiency

virus (SIV)

African non-human
primates

Sexual routes and
aggression are
suggested; rare

mother-to-infant
transmission

Short-lived, activated
CD4+ T cells; monocytes;
macrophages; dendritic

cells

[245–247,259–261]

6. How Could Mammalian Retroviruses Enter Infants and Suckling Animals?

In order to develop prevention strategies for mammalian retroviral infections, it is
indispensable to understand the infection routes of retroviruses. Remarkably, despite this
very early and important step during viral infection, the mechanisms of oral retroviral trans-
mission are poorly understood, especially concerning the human retroviruses. Retroviral
oral transmission occurs in two different circumstances, during breastfeeding from mother
to infant or via sexual contacts crossing mucosal surfaces [238,262]. One major characteristic
of mammals is the feeding of their offspring via breastfeeding. During breastfeeding, the
infant first gets in contact with the milk via the mouth.

Observing mammals, there are six possible entry sites for mammalian retroviruses
using the oral route to infect different tissues or organs containing special immune cells:
(1) salivary glands, (2) tonsils, (3) the pharynx, (4) the stomach, (5) the small intestine,
and (6) the colon (Figure 2). In particular, the stomach, small intestine, and colon might
be difficult to pass for retroviruses since the pH value of the stomach is very acidic; for
example, in Homo sapiens, the pH ranges between 1.5 and 2 [263,264]. By contrast, the
tonsils but also the small intestine are inhabited by a plethora of immune cells and thus are
important as entry sites.
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6.1. Salivary Glands

The salivary glands are located within the mouth of mammals. An autoimmune
disease affecting the function of salivary glands is called Sjögren’s Syndrome (SS) and is,
besides other factors, associated with viral infections, in particular with HCV, EBV, HIV-1,
and HTLV-1 [265,266]. The labial salivary glands of SS patients infected with HTLV-1
were positive for the tax but not for the gag, pol, and env genes [267]. Moreover, the mode
of infection of salivary glands was investigated. HTLV-1 is able to infect salivary gland
epithelial cells (SGECs) in SS patients but not as expected via the formation of virologic
synapses but via biofilm-like structures. Thereby, the extracellular matrix proteins agrin and
tetherin contributed to the infection of SGECs with HTLV-1 [268]. MMTV is a Betaretrovirus
responsible for mammary carcinomas in mice, which is transmitted via milk to the newborn.
However, MMTV has been detected in humans within the saliva and salivary glands [269].
This shows that even species-specific retroviruses can cross-infect other mammals via
salivary glands as an entry site [270].
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6.2. Tonsils

The viral transmission of retroviruses occurs via different types of transfer. The most
common routes of infection with HIV occur via liquid exchange between HIV-positive
patients and uninfected people via semen or vaginal fluid, saliva, blood, or breast milk
[271,272]. During breastfeeding, but also during oral sex, body fluids are transferred
between two organisms. Upon these activities, tonsils represent the first lymphoid organ
within the oropharynx where retroviruses can enter the organism. The tonsil ex vivo
model is a well-established model in the HIV research area to investigate the function of
epithelial barriers upon viral infection. Using polarized tonsil epithelial cells and tonsil
tissue explants, Sufiawati et al. elucidated the effect of the two HIV-1 viral proteins Tat
and gp120 Env on disrupting the epithelial tight junctions to harm the barrier function
of epithelial cells [273]. This clearly demonstrated that cell-free HIV-1 gp120 is able to
interfere with the mucosal barrier, thus allowing HIV to overcome physical barriers in the
human organism [273,274]. Tonsils are also useful to study HTLV-1 transmission, but it
is unknown whether purified HTLV-1 Env has similar properties on the barrier integrity
of tonsils. Although HTLV-1 infected lymphocytes failed to break the epithelial barrier
using intestinal Caco-2 cells [275], it is still not settled whether the integrity of the epithelial
barrier remains unaffected by HTLV-1 as well. Noteworthily, HTLV-1 has been proposed
to cross the intestinal epithelial barrier by transcytosis via cell-free virions [275]. Recently,
Langlois et al. showed that tonsils are efficiently infected by viral particles pseudotyped
with HTLV-1 ENV ex vivo [276]. This model represents a useful tool for further ex vivo
studies on tonsils infected by HTLV-1. Besides the use of pseudotyped viruses, little is
known about tonsil infection with HTLV-1. A few decades ago, the tonsils of HTLV-1-
infected and uninfected patients were analyzed regarding their structure. The infection
with HTLV-1 implicated an atrophic change in the mantle zone of tonsils [277]. For the
counterpart of HIV-1 in cats, FIV, the oral route of viral transmission was also analyzed.
In oral lymphoid tissues, i.e., lymph node and tonsils, the FIV RNA was significantly
higher compared to mucosal tissue, e.g., tongue and salivary gland [278]. These data hint
at tonsils as a possible entry site of retroviruses. As a secondary lymphoid organ, tonsils
host a plethora of immune cells. Palatine tonsils outline the first line of defense in the
oropharynx, where immune defense against foreign pathogens takes place. Thus, especially
T and B cells are present in tonsils; however, plasma cells and dendritic cells (DCs) were
also detected [279]. Due to the unique function of DCs to present antigens, thus linking
innate to adaptive immunity, DCs might play an important role in retroviral transmission
by presenting (cis-infection) and transferring antigens to T cells (trans-infection) [280–282].
The important molecule for DC transfer to T cells is DC-SIGN. It has been shown that
HTLV-1 enhances dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN) expression on DCs, while the inhibition of this molecule interferes
with the HTLV-1 infection rate [280]. The role of cis- and trans-infection was also observed
for HIV-1 [283]. Dendritic cells are categorized into different subtypes: while cDC1 cells
have the ability to cross-present antigens, cDC2 cells are more potent to stimulate T cells.
Due to the function and presence of different subsets of DCs in the tonsils, the transfer
of retroviral particles by DCs to immune cells represents a very promising early event
important for the infection of mammals [279]. Besides DCs, macrophages are another
important immune cell type for retroviral transmission. In the MLV mice model, sentinel
macrophages capture the viral particle via CD169 receptor interaction with gangliosides,
followed by subsequent trans-infection of CD19-positive B cells via synaptic contacts [284].
After passing the secondary lymphoid organ, viral transmission further invades mammals
using the pharynx to reach the stomach, small intestine, and colon.

6.3. Pharynx

The pharynx serves as the transport path for food from the mouth to the stomach
via the esophagus. Moreover, this part of the gastrointestinal tract has respiratory func-
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tions [285]. Unfortunately, data regarding the transmission of retrovirus within the pharynx
are missing, although the tonsils are already located in the pharynx (see Section 6.2).

6.4. Gastrointestinal Tract: Stomach and Small Intestine

Studying the gastrointestinal (GI) tract is very challenging due to the long process of
digestion from the mouth to the anus. The transfer of retroviruses towards the stomach
is especially difficult to analyze in experiments. However, recently, the working group
from Uchil et al. and Haugh et al. established an innovative system to answer questions
on virus transfer within the body. Bioluminescence imaging (BLI) enables us to track viral
particles as well as to detect in vivo infection sites within the body [286,287]. Using MLV,
the vertical transmission from mother to child via breastfeeding was observed in neonatal
mice. Cell-free viral particles could be detected in the stomach content in the GI tract of
neonatal mice, which were fed by milk from the MLV-infected mother for three days [286].
Since the pH value of the stomach is very low, e.g., in Homo sapiens 1.5 to 2 [263,264],
retroviruses presumably do not survive the acidic environment. However, the effect of
the acidification in the stomach on the infectivity of retroviruses is, with the exception of
some older studies, largely unknown [288]. The pH value of newborns is higher compared
to adults, indicating that the survival of MLV in the stomach of neonatal mice is not as
challenging as in the stomach of adults [289,290]. The detection of viral components in
the GI is also true for HIV-1 and HTLV-1. The viral p24 protein was present in gastric
epithelium tissue samples of HIV-1-positive patients [291].

After surviving the acidic milieu in the stomach of mammals, another possible entry
site for viral infection is the small intestine. The habitation of HTLV-1-infected intracellular
epithelial lymphocytes, isolated from the small intestine in rabbits, supports the presence of
retrovirus in gut-associated lymphoid compartments [292]. Moreover, the Peyer’s patch and
mesenteric sac within the small intestine were colonized by MLV discovered by using the
BLI model in mice [286]. A retrovirus of sheep, JSRV, was recently shown to be transmitted
via milk to the lambs. Like MLV, JSRV was detected in the Peyer’s patch of a lamb using
immunohistochemical stains of the small intestine [77]. The most prominent immune cells
in the Peyer’s patch were represented by CD11c-positive DCs, followed by B cells [286].
This is also true for MMTV, since DCs and B cells in the Peyer’s patch were defined as the
first target sites of this virus [91,92]. These studies signify that the Peyer’s patch within the
small intestine represents an important site for retroviral infection and, thus, transmission.
Jiang et al. demonstrated that another cell type, mast cells, might play a role in HIV-1
transmission [293]. Mast cells are present in the mucosa of the gastrointestinal tract and
represent the main entrance of HIV-1 infection [294]. By expressing several attachment
factors, HIV-1 can bind to mast cells and will be transmitted by trans-infection to CD4+ T
cells. Regarding the human small intestine, cells were isolated from jejunal lamina propria
and characterized via receptor expression, e.g., CD83, CD86, DC-SIGN, CD207, and CCR7
as jejunal DCs. Interestingly, these jejunal DCs were able to transport HIV-1 through the
lamina propria mucosa for subsequent transmission into the blood [295].

Taken together, retroviral transmission can occur via different entry sites of mammals.
Despite several studies concerning different organs and tissues infected by mammalian
retrovirus (Figure 2), the final breakthrough to shed light on retroviral transmission is
still missing. Consequently, investigations of the molecular mechanisms of retroviral
transmission, especially for HIV-1 and HTLV-1, should be extended.
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