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Abstract: This study reported the condition optimization for chlorophyll a (Chl a) from the microalga
Isochrysis galbana. The key parameters affecting the Chl a content of I. galbana were determined by a
single-factor optimization experiment. Then the individual and interaction of three factors, including
salinity, pH and nitrogen concentration, was optimized by using the method of Box–Benhnken Design.
The highest Chl a content (0.51 mg/L) was obtained under the optimum conditions of salinity 30‰
and nitrogen concentration of 72.1 mg/L at pH 8.0. The estimation models of Chl a content based
on the response surfaces method (RSM) and three different artificial intelligence models of artificial
neural network (ANN), support vector machine (SVM) and radial basis function neural network
(RBFNN), were established, respectively. The fitting model was evaluated by using statistical analysis
parameters. The high accuracy of prediction was achieved on the ANN, SVM and RBFNN models
with correlation coefficients (R2) of 0.9113, 0.9127, and 0.9185, respectively. The performance of these
artificial intelligence models depicted better prediction capability than the RSM model for anticipating
all the responses. Further experimental results suggested that the proposed SVM and RBFNN model
are efficient techniques for accurately fitting the Chl a content of I. galbana and will be helpful in
validating future experimental work on the Chl a content by computational intelligence approach.

Keywords: chlorophyll a; condition optimization; RSM; artificial intelligence algorithms

1. Introduction

Microalgae are a group of unicellular organisms and play a key role in the food
web. Some of them have been utilized as aquatic animal baits, chemical raw materials
and human health foods [1,2]. The haptophyte Isochrysis galbana is a well-known algal
species of commercial interest because it can synthesize large amounts of lipid, protein,
carbohydrate and other bioactive compounds, particularly long-chain polyunsaturated fatty
acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [3]. Therefore,
I. galbana has been one of the promising food sources for bivalves, larvae, crustaceans
and fish in mariculture [4]. In addition, I. galbana can grow in extreme environmental
conditions and has great potential in the treatment of wastewater with low heavy metal
concentration [3,4].

Generally, microalgae cell growth and chlorophyll production are modulated by
changing the culture conditions, such as temperature, light, salinity, pH and inorganic
salts [5–7]. Thus, screening the optimal growth pattern of I. galbana is the crucial step
for regulating the growth and photosynthesis of microalgae. Salinity is a key driver of
microalgal productivity and pigment because it can change the chlorophyll, fatty acid, and
other physiological and biochemical indexes of microalgae. Higher salinity hinders the
normal physiological and metabolic activities by inducing osmotic pressure of microalgae
cells, causing cell shrinkage and consequent damage of cell or cell components [8,9]. For
most microalgae species, the optimal pH growth range is between 7 and 9. It was found
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that microalgae had an above 20–25% increase in growth at the pH of 7.5 and 8.0 compared
with the growth at lower pH values [10]. Nitrogen is an indispensable nutrient factor for
microalgae growth and important for the photosynthesis of microalgae by participating in
the synthesis of proteins, nucleic acids, and chlorophyll molecules [11]. Nitrogen deficiency
is known to induce a wide variety of cellular responses in microalgae, including the
reduction in the chlorophyll content [12,13].

Response surfaces method (RSM) is a useful mathematical optimization model in
the analysis of multivariate quantitative processing experiments [14]. Therefore, it has
been frequently performed on optimal experimental designs to optimize algal growth
and pigment production [15–17]. Artificial Intelligence (AI) algorithms consist of several
types, including boosted regression tree (BRT), artificial neural network (ANN), support
vector machine (SVM) and radial basis function neural network (RBFNN), etc. These are
popular and effective modeling tools for predicting process performance due to their high
competence, accuracy and applications in many areas of science [18]. AI algorithms have
been used to improve microalgae conversion technology or to unravel the basic working
principles for microalgae [19,20]. ANN was used for modeling phytoplankton abundances
and to estimate the growth of polyculture microalgae by using key variables of solar
irradiance and temperature [11,12]. Furthermore, the optimization algorithm of genetic
algorithms (GA) was employed to change the weight and bias of ANN in order to improve
their performance and lower the mean squared error [21]. Additionally, SVM was applied
in the environmental variables affecting algae growth because of its good performance in
the presence of few datasets [22,23]. RBFNN was used to predict Chl a concentration as an
indicator for future water quality changes [24]. However, no study to date has made use
of AI algorithms’ capacity to simulate precisely the change of Chl a content for I. galbana
under different culture conditions.

In this study, the effects of salinity, pH and nitrogen concentration on the Chl a accu-
mulation were screened and RSM was applied to determine the optimum process variables.
Furthermore, ANN, RBFNN and SVM models were, respectively, developed to estimate
the Chl a concentration, and their predictive capabilities of with RSM were compared by
the performance indices and coefficient of correlations.

2. Materials and Methods
2.1. Culture Condition

I. galbana was obtained from the Institute of Oceanography, Chinese Academy of Sci-
ences and was inoculated into the 500 mL flask containing f/2 medium of 250 mL. The tem-
perature and intensity of illumination were set at 23 ± 1 ◦C 4000 µmol PhotonPAR/m2/s
and 12/12 h light-dark cycle. Three parallel samples were set in each experimental group,
and the inoculation rate of algae was 10%. In order to ensure uniform growth, daily random
exchange of conical bottles and shaking several times was conducted.

2.2. Determination of Chl a Content

The culture solutions were collected and 10 mL of mixed algal liquid was centrifuged
in the centrifuge tube at 4000 rpm for 20 min. After the supernatant was removed, 5 mL
90% acetone was added into the tubes and then the solution was quickly placed in the
refrigerator at 4 ◦C for 12 h. The absorbance of the supernatant at the wavelengths of
750 nm, 664 nm, 647 nm and 630 nm were, respectively, determined with a spectropho-
tometric device after centrifugation for 20 min. Chl a content is calculated according to
Formula (1) [25]:

Chl a (mg/L) = 11.85 × (A664 − A750) − 1.54 × (A647 − A750) − 0.08 × (A630 − A750) (1)

2.3. Single Factor Experiment

The effects of salinity, pH and nitrogen concentration on the growth of I. galbana
were studied by a single-factor optimization experiment. Three independent single-factor
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variables and varying concentrations of salt were added to separate algal cultures, and
the salinity concentration was from 10‰ to 50‰. The pH levels ranging from 6.0 to 10.0
were set up by phosphate buffer and the concentrations of nitrogen (15.0–135.0 mg/L)
were chosen by adding ammonium salt for the growth condition optimization. The algal
cells were inoculated into a 500 mL conical flask and then cultured in a light incubator.
After 3 days of incubation, the content of Chl a was determined as described above. Three
independently repeated experiments were performed.

2.4. Response Surface Methodology Model

According to the results of the single-factor optimization experiment, three-factor
and three-level experiment was designed. Salinity, pH and nitrogen concentration were
regarded as independent variables and Chl a content was chosen as the response value.
The interactive effects of these three factors on the growth of I. galbana were studied by the
response surface design method of Box–Benhnken Design in Design-Expert 8.0. The results
of the response surface were analyzed by quadratic regression, including the establishment
of the regression model, analysis of variance, drawing of 3D CONTOUR and prediction of
the best experimental conditions.

2.5. ANN Regression Model

ANN is one of the highly advanced methods due to its flexibility for various appli-
cations and excellent ability to deal with the complex non-linear relationships between
different variables. Since the ANN neural network is very sensitive to the initial weight
and threshold setting of the network, the specific parameters in the network model were
assigned to the ANN according to the previous study [26]. Then the ANN model was
established through the three-layer structure of 3 (input), 13 (hidden), and 1 (output) neu-
ron layers (3-13-1) artificial neural network toolbox in the MATLAB 2016a mathematical
software (Figure 1A). The input node number was the amount of salinity, pH and nitrogen
concentration while the output node number was the Chl a content. The experimental data
assessment was performed by random division with a standard approach; 80% of all data
were tested in training the network, 10% of all data for validation, and 10% of all data for
testing the network, to predict the best possible Chl a content.
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2.6. RBFNN Regression Model

RBFNN is based on supervised learning and is good at modeling nonlinear data.
RBFNN is a special feed-forward network and requires fewer training samples with a faster
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training speed. To date, there has been no attempt to model the Chl a concentration during
microalgal growth optimization using RBFNN. RBFNN consists of three layers of 3 (input),
7 (hidden), and 1 (output) neuron layers (3-7-1) and the structure is shown in Figure 1B. In
this analysis, the network parameters of learning rate were set to 100.

2.7. SVM Regression Model

SVM is another form of the artificial intelligence approach and can be used as an
effective tool for predicting the values in many fields, including classification, regression,
and time series prediction [22]. SVM also has presented a high accuracy for almost any
multivariate function. Herein, the SVM model was constructed by using a software package
LIBSVM toolbox (Faruto Ultimate 3.0 Version) installed in the MATLAB system [27]. The
hyperplane parameters, including kernel function, epsilon, box constraint, and gamma,
were opted before SVM modeling. Different hyperplane parameters were given in Table 1
and experimental data were divided into training and testing data with 13 and 4 experiment
values, respectively.

Table 1. SVM initial conditions settings in the LIBSVM toolbox.

Hyperplane
Parameters Parameters Hyperplane

Parameters Parameters

C 4 Kernel function ‘rbf’
Degree 3 Gamma 0.8
Epsilon 0.01

2.8. Performance Analysis of Models

Herein, we developed a methodology using MATLAB to achieve high-quality nu-
merical curve fitting by recording the number of cycles when the value of R2 was greater
than 0.91 (Figure 2). The performance of the models was determined by employing the
following indicators:

R2 = 1− ∑n
i=1 (Yp−Ye)

2

∑n
i=1 (Yp−Yie)

2

MSE =
n
∑

i=1

(Ye−Yp)
2

n

RMSE =

√
∑n

i=1 (Ye−Yp)
2

n

MAE = 1
n

n
∑

i=1
| Ye − Yp |

where n, Yp, Ye, Yie, R2, MSE, RMSE and MAE represent the number of experiments,
predicted value, experimental value, mean value of the experiment, coefficient of determi-
nation, mean square error, root mean square error and mean absolute error, respectively.
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3. Results
3.1. Single-Factor Experiment
3.1.1. Effect of Salinity

In the process of microalgae cell growth, salinity usually changes cell osmotic pressure
and affects its absorption of nutrients, subsequently leading to the change of growth and
biochemical composition of microalgae [28]. The effect of salinity on Chl a content was
tested at five different salinities (10‰, 20‰, 30‰, 40‰ and 50‰) and the result was shown
in Figure 3A. Chl a content increased at the range of 10–30‰ and reached the maximum
value of 0.47 mg/L at the salinity of 30‰. When the salinity was more than 30‰, the
content of Chl a showed a decreasing trend. Therefore, the optimum growth salinity of I.
galbana ranges was determined as 20‰ to 40‰.

3.1.2. Effect of pH

The effects of variation of pH (6.0, 7.0, 8.0, 9.0 and 10.0) on Chl a are shown in Figure 3B.
It has been observed from the figure that Chl a increased significantly by 44.4% at pH 8.0
with a maximum value of 0.39 mg/L compared to the values at pH 6.0. Then there was a
decrease in the Chl a content when the pH was over 8.0. Based on these results, a pH from
7.0 to 9.0 was selected as the optimum pH range.

3.1.3. Effect of Nitrogen Concentration

The effect of different nitrogen concentrations on the Chl a content was investigated
and the result was presented in Figure 3C. When the nitrogen concentration was at the
range of 15.0–75.0 mg/L, Chl a content increased with the increase in nitrogen concentration.
The maximum content of Chl a with 0.40 mg·L−1 was observed at the nitrogen concentration
of 75.0 mg/L and the minimum value was 0.29 mg·L−1 at the nitrogen concentration of
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105.0 mg/L. Therefore, the optimal growth nitrogen concentration of I. galbana ranged from
45.0 mg/L to 105.0 mg/L.
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concentration and pH on Chl a content; (F): response surface of the effects of nitrogen concentration
and salinity on the Chl a content.

3.2. Response Surface Analysis

Based on the results of the single-factor optimization experiment, three independent
process variables, including salinity, pH and nitrogen, affect the Chl a content of I. galbana.
Figure 3D presented the mutual effect of the pH and salinity, and Figure 3E presented
nitrogen and salinity while Figure 3F presented the interaction of the nitrogen and pH. The
response surface design and results of different environmental factors on the Chl a content
of I. galbana are shown in Table 2. A quadratic multinomial regression model was obtained
through the regression fitting of the experimental results:

The correlation coefficient R2 = 0.8935, indicated that 89.35% of the variation of Chl
a content in response value came from selected variables. MSE and RMSE values were
0.0095 and 0.0392, respectively, suggesting that RSM has a good prediction with experiment
data. Therefore, the quadratic polynomial regression equation can describe the relationship
between three factors and response value.

Chl a (mg/L) = 507.36 − 6.41A + 23.08B − 17.61C − 18.30AB − 29.70AC + 4.20BC − 101.99A2 − 165.59B2 − 86.23C2

Table 2. Analysis of variance of response surface quadratic regression model.

Source of
Variance

Sum of
Squares

Degree of
Freedom

Mean
Square F Value p Value Salience

Model 222,500 9 24,721.72 6.53 0.0109 Significant
A 329.10 1 329.10 0.087 0.7767 /
B 4261.28 1 4261.28 1.13 0.3240 /
C 2480.90 1 2480.90 0.66 0.4449 /

AB 1339.49 1 1339.49 0.35 0.5707 /
AC 3529.40 1 3529.40 0.93 0.3665 /
BC 70.46 1 70.46 0.019 0.8953 /
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Table 2. Cont.

Source of
Variance

Sum of
Squares

Degree of
Freedom

Mean
Square F Value p Value Salience

A2 43,800.30 1 43,800.30 11.57 0.0114 /
B2 111,500 1 111,500 30.49 0.0009 /
C2 31,304.67 1 31,304.67 8.27 0.0238 /

Residual 26,507.03 7 3786.72 / / /
Misfit term 5947.84 3 1982.61 0.39 0.7700 Inconspicuous
Error term 20,599.18 4 5139.80 / / /
Summation 249,000 16 / / / /

The variance analysis of the quadratic regression model of response surface was shown in Table 2. F value of the
model was 6.53, p-value was 0.0109 (p < 0.05), which indicated that the regression model was significant through
software fitting, and the F value of the misfit term was 0.39, p-value was 0.7700 (p > 0.05). It was indicated that the
regression model was suitable for the optimization of I. galbana growth. At the same time, the quadratic terms A2

and C2 were significant, B2 was extremely significant. The regression term p value corresponding to this model
was 0.0109 which was less than 0.05. The fitting degree of the regression equation suggested that the model
was effective in predicting Chl a content. The maximum predicted value in I. galbana was 0.51 mg/L, with the
corresponding cultural condition of salinity 30‰, pH 8.0, and nitrogen concentration 72.1 mg/L.

3.3. Statistical Analysis Using ANN

Output regression coefficient values for the training, validation, test and all data with
corresponding R values were 0.9305 (Figure 4A), 1.0000 (Figure 4B), 0.9985 (Figure 4C),
and 0.9565 (Figure 4D), respectively. The performance of the training model based on the
ANN was determined by the computation of statistical parameters in Table 3. The ANN
model predicted values for R2 and MAE of 0.9113 and 0.0229, respectively, after 159 cycles.
The observed MSE and RMSE values were 0.0087 and 0.0359, respectively, indicating that
the ANN model has a higher accuracy compared with RSM (Figure 5A). Meanwhile, a
correlation graph plotted between the actual values (red line) and ANN predicted values
(blue line) was presented in Figure 5B. Run 5, 7 and 17 error values between experimental
and ANN predicted was high value, and other run error values had less deflection of points.
The maximum predicted value of Chl a was 0.51 mg/L at the cultural condition of salinity
30‰, pH 8.0, and nitrogen concentration with 75 mg/L.
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Table 3. Statistical parameters comparison of RSM and artificial neural network models.

Parameters RSM ANN SVM RBFNN

R2 0.8935 0.9113 0.9127 0.9185
MSE 0.0095 0.0087 0.0086 0.0083

RMSE 0.0392 0.0359 0.0356 0.0344
MAE

Cycle number
0.0312
NaN

0.0229
159

0.0208
32

0.0169
1
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3.4. Statistical Analysis Using SVM

The SVM model was trained and its accuracy was calculated in terms of statistical
parameters (Table 3). The result showed that R2 of 0.9127, MSE of 0.0086 and RMSE of
0.0356 was for all data with 32 cycles. Moreover, the performance of the SVM models was
evaluated by analyzing the deviation of the data points with the residuals (Figure 5C). Only
run 16 has a high deviation value, so it can be seen that a higher frequency of residuals
was found around zero for the SVM model, confirming a remarkable agreement between
predicted values and experimental values. The maximum Chl a content was predicted with
0.51 mg/L with the condition of salinity 30‰, pH 8.0, and nitrogen concentration 75 mg/L.

3.5. Statistical Analysis Using RBFNN

The accuracy of the models developed from the RBFNN was first evaluated based on
the correlation coefficient R2 value (Table 3). This R2 value reached 0.9185 after one cycle,
which indicated the compatibility between the experimental and estimated values. The
model was further supported by the low values of MSE and RMSE with 0.0083 and 0.0344,
respectively. Additionally, it can be clearly observed that most of error values were closely
similar to zero in this experiment (Figure 5D). Although the error of runs 5, 7 and 15 for the
RBFNN model is quite high, the overall error is lesser as compared to RSM. Hence, it was
evident that the prediction accuracy of ANN models is remarkable when simulating the
concentrations of Chl a.

4. Discussion

Microalgal growth strongly depends on cultivation factors, such as cultivation tem-
perature, pH and nitrogen availability. Herein, a single-factor optimization experiment
was used to investigate the influence of salinity, pH and nitrogen concentration on the
Chl a content of I. galbana. In the previous salinity test, I. galbana grew in a wide range
of salinities from 10 to 65‰, and 35‰ was determined as the optimal salinity [29]. The
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optimum growth salinity of I. galbana ranges in this study was 20‰ to 40‰. The difference
in optimal salinity may depend on algal species and the algal products examined. For
the pH, our result was similar to the previous pH range of 7.0 to 8.0 used in other stud-
ies [30,31]. For example, as the most important factor influencing I. galbana (T-Iso) growth
rate, the optimal culture conditions occurred at pH 6.8 [32]. The optimal growth nitrogen
concentration for I. galbana was determined as 45.0 mg/L to 105.0 mg/L. This result was
consistent with the study that I. galbana grew very well in experimental units with 72, 144
and 288 mg/L nitrogen, which showed that nitrogen change in cultivation medium can
significantly influence the content of Chl a [33,34].

The performance of models used in the present study was summarized and compared
in Table 4. Among these models, ANN has been used most frequently in the fitting and
regression for microalgae condition optimization compared with other AI models. In
the present study, ANN had good prediction and model developing ability, with a high
R2 value and a low MAE among all the techniques. Our result was consistent with the
previously built ANN models which offered more accuracy and flexibility in modeling the
non-linear conditions compared to RSM methods. For example, a structure of 4 (input), 10
(hidden), and 1 (output) neuron layers based on the ANN model was built to investigate
the yield prediction of fatty acids methyl ester from exceedingly wet microalgae Chlorella
pyrenoidosa. A higher R2 value of 0.94 and minimum RMSE (0.38) of the ANN model over
the RSM model was observed, suggesting that ANN has better predictive ability than
RSM [35]. The ANN was also used as the medium optimization for Tetraselmis sp. FTC209
grown under mixotrophic conditions. The trained network of 3-10-1 architecture based on
the ANN produced the lowest RMSE (6.517) and a very high R2 (0.953), which was better
in predicting the lipid productivity than RSM with R2 (0.922) and RMSE (10.043) [36].

Table 4. The predictive results of RSM and different models on the Chl a content.

Numbers A B C
Chl a Content (mg/L)

Real Value RSM ANN SVM RBFNN

1 7.0 30 105.0 0.33 0.34 0.32 0.37 0.33
2 7.0 30 45.0 0.32 0.31 0.30 0.22 0.32
3 7.0 40 75.0 0.26 0.29 0.26 0.50 0.26
4 9.0 40 75.0 0.22 0.24 0.22 0.26 0.22
5 8.0 30 75.0 0.59 0.51 0.51 0.22 0.51
6 8.0 40 105.0 0.30 0.27 0.30 0.23 0.30
7 8.0 30 75.0 0.43 0.51 0.51 0.31 0.51
8 8.0 30 75.0 0.45 0.51 0.51 0.50 0.51
9 8.0 40 45.0 0.31 0.30 0.31 0.20 0.31

10 8.0 20 105.0 0.20 0.22 0.19 0.32 0.20
11 9.0 20 75.0 0.26 0.23 0.26 0.33 0.26
12 7.0 20 75.0 0.23 0.21 0.23 0.50 0.23
13 9.0 30 45.0 0.37 0.36 0.34 0.30 0.37
14 8.0 20 45.0 0.22 0.26 0.24 0.24 0.22
15 8.0 30 75.0 0.57 0.51 0.51 0.50 0.51
16 8.0 30 75.0 0.50 0.51 0.51 0.50 0.51
17 9.0 30 105.0 0.25 0.26 0.24 0.27 0.25

A—pH, B—salinity (‰), C—nitrogen concentration (mg/L).

For other models, the SVM and RBFNN were found to have good accuracy in the
Chl a prediction with R2 values of 0.9127 and 0.9185, but the RBFNN had a lower MAE
value and fewer cycles than the SVM model. Followingly, the RSM had an accuracy with
R2 values of 0.8935, and a low value MAE of 0.0312. In addition, the RMSE analysis
indicated that the RBFNN had the lowest value of 0.0344, followed by the SVM and
ANN with 0.0356 and 0.0359, respectively. The graph of predicted values versus actual
values indicated that the most of residual errors of RBFNN and SVM were closer to zero.
These results represented a good fitness of these three models and the strong relation
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between the real and predicted Chl a content. Similar results were reported in the previous
investigations where the RBFNN was used to analyze the predictive ability for the algal
growth or blooms prediction [37,38]. The algal bloom intensification in the mid-Ganga
River, India was simulated with the RBFNN model by detecting the change of in situ Chl a
concentration values. The RBFNN model exhibited satisfactory performance with a high R2

value (0.9779) as well as marginally lower root mean square percent error (4.79%) and mean
absolute percentage error (2.42%) [38]. The mathematical explanations of the SVM have
been well-established in the previous literature. The microalga biomass productivity of
Chlorella vulgaris was predicted by the SVM model with temperature, light-dark cycles, and
nitrogen-phosphorus ratios as the independent input variables. The SVM model exhibited
satisfactory performance with a low error (MAE of 0.0128 and RMSE of 0.0189) and a
high R2 of 0.911 [18]. Additionally, the SVM model showed an excellent performance
in the prediction of biodiesel production from microalgal oil of Nannochloropsis oculate.
The predicted coefficient of determination R2 was 0.965 and MSE was 0.0345, and the
performance improvement of 20.73% was observed with respect to the R2 in comparison to
RSM [39]. Similarly, when artificial intelligence modeling approaches, the ANN and SVM
were applied to predict CO2 biofixation with only 15 available experiment data, the SVM
model yielded low errors of MAE (0.0128) and RMSE (0.0189), with a high R2 of 0.911.

5. Conclusions

The optimization of cultivation parameters, like nutritional and environmental factors,
are very important for microalgal growth or pigment accumulation. In the present study,
the RSM with Design-Expert 8.0.6 software was adopted to identify the optimal cultural
condition which enhanced Chl a production from I. galbana. The optimum culture conditions
for Chl a concentration were determined as salinity 30‰, pH 8.0 and nitrogen concentration
72.1 mg/L, the maximum predicted value of Chl a content was achieved with 0.51 mg/L.
Furthermore, the RSM and three different artificial intelligence models namely the ANN,
RBFNN and SVM models, were used for modeling the Chl a content. The performances of
the established models were evaluated by using indicators of R2, MAE, RMSE and MSE.
Results suggested that the SVM and RBFNN exhibited a close alignment with experimental
results with high R2 value and fewer cycles, demonstrating that these models had better
prediction capability compared to the RSM model and were the potential option when a
few data need to be processed.
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