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The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a
DNA Sequence Possibly Encoding a Long Tubulin
Polymerization Promoting Protein (TPPP) but Not a
Fungal-Type One
Ferenc Orosz

Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; orosz.ferenc@ttk.hu

Abstract: The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were dis-
covered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the
species of the phylum contain an extremely long kinetosome composed of microtubular singlets
or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an
ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the
ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching
phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins,
which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in
flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that
they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type
one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids
into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support.

Keywords: Amoeboradix gromovi; ciliome; flagellum; fungi; p25alpha domain; pseudocilium; Sanchytrium
tribonematis

1. Introduction

The loss of the flagellum is an important step in the evolution of terrestrial fungi. How
many times this loss has occurred during evolution is somewhat disputed [1,2]. The exact
number also depends on which species are classified as fungi. The number of events within
the Holomycota clade seems to be reaching a resting point. The loss of flagellum is accepted
in amoeboid nucleariids, Microsporidia and terrestrial fungi [3]. A fourth independent
loss event occurred in Hyaloraphidium curvatum (Monoblepharidomycota) [4]. According
to the classical classification, flagellated fungi all belonged to the Chytridiomycota; this
view changed in 2006, when the Blastocladiomycota were also defined as a phylum [5],
then Neocallimastigomycota [6] and the early-branching Cryptomycota [7] (later named as
Rozellomycota [8]), which includes the non-flagellated Microsporidia [9], became indepen-
dent phyla. The classification of Tedersoo et al. [8] removed additional groups from the
Chytridiomycota and defined the Monoblepharomycota and Olpidiomycota as indepen-
dent phyla. Apart from these, aphelids [10] were classified as a new phylum among fungi as
Aphelidiomycota [8]. It was logical since aphelids branched off after Rozellomycota (Cryp-
tomycota) and was sister to all other fungi in their analysis. (This finding was supported by
others [11].) Finally (at least until now), the phylum Sanchytriomycota (sanchytrids) was
established as sister to Blastocladiomycota [3]. It should be noted that this classification
(i.e., eight phyla for flagellated fungi) is not yet generally accepted.

The loss of the flagellum is usually accompanied by the complete or the partial loss
of genes/proteins related to flagellar function [3,12–14]. The collection of genes/proteins
that are present only and exclusively in organisms with flagella or cilia (they are practically
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the same organelle) composes the ciliome [15]. Genes of the ciliome are generally absent
in species without cilium/flagellum [15]. Tubulin polymerization promoting protein
(TPPP)-like proteins seem to be part of the ciliome [12,16–20]. In a few cases, their role in
the formation of flagellum was proven experimentally [18–20]. Members of this family
stabilize microtubules and are characterized by the presence of the p25alpha domain(s)
(Pfam05517 or IPR008907) [17] that starts generally with a L(V)xxxF(Y)xxFxxF sequence.
The C-terminal part of the domain contains a very characteristic ‘Rossman-like’ sequence,
GxGxGxxGR (Figure 1). These proteins can be grouped on the basis of the length and
completeness of the p25alpha domain (long, short, truncated) and the presence of another
kind of domain(s) [17]. (For example, apicortins contain a partial (C-terminal) p25alpha
domain and a doublecortin (DCX) domain [21].) ‘Long’ TPPP (Figure 1) is present in
Opisthokonta (animals, flagellated fungi, and Choanoflagellata [12,17]), and contains a
‘long’ (full length) p25alpha domain. There is only long TPPP in animals thus long TPPP is
also named ‘animal-type’ TPPP [12,22]. A special, ‘fungal-type’ TPPP, which contains both
a full and a partial p25alpha domain (Figure 1), is present only in certain fungi [12,22,23].
In general, there is high homology between the C-terminus of the full-length domain and
the partial domain [23].
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Figure 1. Schematic structure of long (animal-type), short and fungal-type TPPPs. Highly conserva-
tive sequence motives are denoted with black (GxGxGxxGR) and striped boxes (L(V)xxxF(Y)xxFxxF).
aa—amino acid.

It was shown earlier that members of all phyla of flagellated fungi contain TPPP-like
proteins: Rozellomycota, Chytridiomycota, Neocallimastigomycota, Monoblepharomycota,
and Blastocladiomycota [12]; Olpidiomycota [23]; Aphelidiomycota [22]. On the other
hand, terrestrial fungi do not contain these kinds of proteins [12]. However, it was an open
question whether the members of the recently defined Sanchytriomycota phylum possess
TPPP-like (p25alpha domain containing) proteins.

2. Methods
2.1. Database Homology Search

A database homology search was carried out with an NCBI Blast search [24] (http:
//www.ncbi.nlm. nih.gov/BLAST/, accessed on 15 May 2023): sequences of various fungal
proteins containing p25alpha domain (e.g., Batrachochytrium dendrobatidis XP_006680205,
Chytriomyces confervae TPX65513, TPX78276, Neocallimastix californiae ORY36261, Spizel-
lomyces punctatus XP_016604112, XP_016606225) were used as queries against protein and
nucleotide databases to find similar sequences in Sanchytriomycota (Sanchytriaceae) us-
ing BLASTP and TBLASTN analysis. The accession numbers of sequences refer to the
NCBI GenBank database. The recent phylogenetic classification by Tedersoo et al. [8]
was followed.

2.2. Phylogenetic Analysis

Multiple alignments of sequences were conducted by the Clustal Omega program [25].
Bayesian analysis, using MrBayes v3.1.2 [26], was also performed to construct a phyloge-
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netic tree using whole sequences of TPPP proteins. Default priors and the WAG model [27]
were used, assuming equal rates across sites. Two independent analyses were run with
three heated and one cold chain (temperature parameter 0.2) for 4.0 × 10−6 generations,
with a sampling frequency of 0.01, and the first 25% of generations were discarded as
burn-in. The two runs were convergent.

2.3. Prediction of Unstructured Regions

Sequences were submitted to the IUPRED3 server freely available at http://iupred3
.elte.hu/ (accessed on 6 July 2023) [28]. It was used in ‘long disorder’ mode with
medium smoothing.

3. Results

Protein and nucleotide sequences available at the NCBI website, including transcrip-
tome shotgun assemblies (TSAs), whole-genome shotgun contigs (WGSs), and expressed
sequence tags (ESTs), were searched for the p25alpha domain containing sequences in
Sanchytriomycota. Sequences of various p25alpha domain containing proteins were used
as queries in the BLAST searches (cf. Methods). There were no protein hits, but such
nucleotides were found in Amoeboradix gromovi and Sanchytrium tribonematis as WGS se-
quences, namely, in A. gromovi JADGIF010000946 and in S. tribonematis JADGIG010000129.
The manual translation of these sequences indicated that S. tribonematis and A. gromovi
possibly contain a long (animal-type) TPPP of 174 and 180 amino acid length, respectively
(Figures 2–4). Both TPPPs contain the motifs characteristic for p25alpha domains; e.g.,
L(V)xxxF(Y)xxFxxF at the very beginning of the domain and GxGxGxxGR in the C-terminal
part (Figure 4). Structurally, the first half of these proteins is predicted to be ordered and the
second half, which includes the sequence corresponding to the partial p25alpha domain, to
be disordered (Figure 5).
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Figure 2. Suggested sequence of Amoeboradix gromovi TPPP. Numbers indicate the order of nucleotides
in JADGIF010000946.1 of whole genome shotgun sequences of A. gromovi. Yellow background
indicates the manually translated nucleotide sequence. The corresponding amino acids are shown
with capital letters.
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Omega program [25]. Highly conservative sequence motives are highlighted with red bold letters:
L(V)xxxF(Y)xxFxxF and GxGxGxxGR (cf. Figure 1). Identical and biochemically similar amino acids
are labeled by asterisk and colon, respectively. Grey background indicates the conservative sequence
of ‘partial p25alpha domain’ which is also present in apicortin and in duplicate in fungal-type TPPPs.

No other type of protein/transcript containing p25alpha domain (short TPPP, fungal-
type TPPP, apicortin) or DNA sequences encoding them was found in the BLAST search.
The two nucleotide sequences found were used as queries in the BLASTX search to find
the most similar proteins in the protein databases. (More precisely, only the part of the
sequences corresponding to the manually translated proteins was used.) The hits with
E-value smaller than 1 × 10−30 are listed in Tables 1 and 2. The results indicated that
these sequences are of fungal and animal origin. The best hits were long (animal-type)
TPPPs (i.e., TPPPs containing a full length p25alpha domain) of animal origin. There
are some fungal-type TPPPs (i.e., TPPPs containing a full length and a partial p25alpha
domains) among the hits; the lowest E-value among fungal-type TPPPs was obtained
for a Paraphysoderma sedebokerense (phylum Blastocladiomycota) protein (KAI9140125).
Long TPPPs of fungal origin were represented only by Amoeboaphelidium protococcarum
(Aphelidiomycota). Interestingly, a special protein, not known before, containing two
full length p25alpha domains was also obtained as one of the best hits (KAJ3407993,
Chytridiales sp.; phylum Chytridiomycota).
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Table 1. Best protein hits containing p25alpha domain when using Amoeboradix gromovi
JADGIF010000946.1 as a query in BLASTX search on NCBI protein database.

Scientific Name 1 Accession No. Phylum E-Value 2 Query
Cover Identity Length 3

Suberites domuncula ADX30619 Porifera 2 × 10−39 96% 47.43% 180
Hydra vulgaris XP_047138925 Cnidaria 2 × 10−36 87% 49.06% 167
Amphimedon queenslandica XP_003384590 Porifera 2 × 10−35 90% 47.56% 183
Chytridiales sp. JEL 0842 KAJ3407993 Chytridiomycota 3 × 10−34 93% 45.35% 507
Lytechinus variegatus XP_041483006 Echinodermata 3 × 10−34 91% 44.58% 171
Strongylocentrotus purpuratus XP_782492 Echinodermata 7 × 10−34 90% 46.34% 171
Acanthaster planci XP_022082363 Echinodermata 1 × 10−33 91% 45.51% 172
Xenia sp. Carnegie-2017 XP_046842992 Cnidaria 1 × 10−33 90% 44.24% 171
Paraphysoderma sedebokerense KAI9140125 Blastocladiomycota 2 × 10−33 92% 44.13% 330
Stylophora pistillata XP_022794224 Cnidaria 2 × 10−33 91% 45.78% 172
Exaiptasia diaphana XP_020906468 Cnidaria 4 × 10−33 91% 45.18% 172
Amoeboaphelidium protococcarum KAI3639621 Aphelidiomycota 8 × 10−33 97% 42.94% 190
A. protococcarum KAI3650757 Aphelidiomycota 3 × 10−32 97% 42.94% 190
Orbicella faveolata XP_020610915 Cnidaria 3 × 10−32 91% 45.51% 172
A. protococcarum KAI3631655 4 Aphelidiomycota 4 × 10−32 97% 42.94% 190
Batrachochytrium dendrobatidis OAJ42615 Chytridiomycota 6 × 10−32 98% 41.58% 258
B. dendrobatidis XP_006680205 4 Chytridiomycota 2 × 10−31 92% 43.50% 289
B. dendrobatidis OAJ42613 Chytridiomycota 2 × 10−31 92% 43.50% 299
Acropora millepora XP_029200582 Cnidaria 2 × 10−31 91% 44.58% 172
Acropora digitifera XP_015755004 Cnidaria 4 × 10−31 91% 44.58% 172
A. protococcarum KAI3652328 Aphelidiomycota 5 × 10−31 97% 42.37% 190
Anneissia japonica XP_033097468 Echinodermata 1 × 10−30 91% 43.37% 171
Dendronephthya gigantea XP_028409959 Cnidaria 1 × 10−30 90% 46.95% 205
Paramuricea clavata CAB4022691 Cnidaria 2 × 10−30 90% 46.67% 171
Lamellibrachia satsuma KAI0228059 Annelida 9 × 10−30 90% 42.59% 160

1 Yellow and green background indicate fungal and animal species, respectively. Blue background indicates
fungal-type TPPPs. 2 E-value is the measure of likeliness that sequence similarity is not by random chance. An
E-value smaller than 1 × 10−50 includes database matches of very high quality. Blast hits with E-value smaller
than 1 × 10−2 can still be considered as good hit for homology matches. 3 Magenta background indicates a protein
that contains two full-length p25alpha domains. All other data apply to long (animal-type) TPPPs. 4 Used for
phylogenetic analysis (Figure 6).
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Table 2. Best protein hits containing p25alpha domain when using Sanchytrium tribonematis
JADGIG010000129.1 as a query in BLASTX search on NCBI protein database.

Scientific Name 1 Accession No. Phylum E-Value 2 Query
Cover Identity Length 3

Hydra vulgaris XP_047138925 Cnidaria 9 × 10−41 88% 53.25% 167
Suberites domuncula ADX30619 Porifera 7 × 10−39 95% 48.21% 180
Amphimedon queenslandica XP_003384590 Porifera 6 × 10−38 87% 50.66% 183
Lamellibrachia satsuma KAI0228059 Annelida 5 × 10−36 88% 46.10% 160
Paraphysoderma sedebokerense KAI9140125 Blastocladiomycota 8 × 10−35 94% 41.81% 330
Xenia sp. Carnegie-2017 XP_046842992 Cnidaria 2 × 10−34 91% 45.68% 171
Helobdella robusta XP_009017134 Annelida 1 × 10−33 88% 45.57% 160
Lytechinus pictus XP_054770705 Echinodermata 1 × 10−33 93% 47.56% 170
Capitella teleta ELU16892 Annelida 2 × 10−33 90% 47.50% 169
Batrachochytrium dendrobatidis KAJ8323001 Chytridiomycota 6 × 10−33 98% 41.53% 258
Paramuricea clavata CAB4022691 Cnidaria 1 × 10−32 91% 48.12% 171
Strongylocentrotus purpuratus XP_782492 Echinodermata 1 × 10−32 91% 45.62% 171
Lytechinus variegatus XP_041483006 Echinodermata 1 × 10−32 93% 46.34% 171
B. dendrobatidis XP_006680205 Chytridiomycota 2 × 10−32 98% 41.53% 289
B. dendrobatidis OAJ42613 Chytridiomycota 2 × 10−32 98% 41.53% 299
Gigantopelta aegis XP_041378691 Mollusca 3 × 10−32 89% 44.87% 182
Dendronephthya gigantea XP_028409959 Cnidaria 3 × 10−32 88% 49.68% 205
Acanthaster planci XP_022082363 Echinodermata 7 × 10−32 91% 45.62% 172
Exaiptasia diaphana XP_020906468 Cnidaria 7 × 10−32 91% 45.00% 172
Amoeboaphelidium protococcarum KAI3639621 Aphelidiomycota 1 × 10−31 85% 44.97% 190
Chytridiales sp. JEL 0842 KAJ3407993 Chytridiomycota 2 × 10−31 98% 42.61% 507
Orbicella faveolata XP_020610915 Cnidaria 5 × 10−31 91% 44.38% 172
Hydractinia symbiolongicarpus XP_057291302 Cnidaria 1 × 10−30 93% 45.83% 164
Clydaea vesicula KAJ3223392 Chytridiomycota 5 × 10−30 98% 42.39% 314
Stylophora pistillata XP_022794224 Cnidaria 7 × 10−30 93% 45.12% 172
Gigantopelta aegis XP_041378692 Mollusca 8 × 10−30 87% 46.41% 163
A. protococcarum KAI3650757 Aphelidiomycota 9 × 10−30 85% 44.30% 190

1 Yellow and green background indicate fungal and animal species, respectively. Blue background indicates
fungal-type TPPPs. 2 E-value is the measure of likeliness that sequence similarity is not by random chance. An
E-value smaller than 1 × 10−50 includes database matches of very high quality. Blast hits with E-value smaller
than 1 × 10−2 can still be considered as good hit for homology matches. 3 Magenta background indicates a protein
that contains two full-length p25alpha domains. All other data apply to long (animal-type) TPPPs.

A phylogenetic tree of p25alpha domains was constructed (Figure 6). Full-length
p25alpha domains of long- and fungal-type TPPPs were used. Since the Sanchytriomycota
TPPPs belong to long (animal-type) TPPPs, thus long TPPPs of Fungi were involved from all
the species containing it. Domains of the most similar animal long TPPPs (cf. Tables 1 and 2)
and that of long TPPPs of some reference genomes were also included. It should be noted
that in the case of long TPPPs, the p25alpha domain represents almost the whole sequence
of the protein (cf. Figure 1). Full p25alpha domains of selected fungal-type TPPPs were also
included from all the phyla which contain them (Aphelidiomycota, Blastocladiomycota,
Chytridiomycota, and Olpidiomycota.) Both full-length 25alpha domains of the TPPP of
the above-mentioned Chytridiales species were used in the phylogenetic analysis.

The p25alpha domains of animals and fungi form separate clades (Figure 6). The
animal clade is supported by high Bayesian posterior probability (BPP). Within fungi, there
are two clades: Sanchytriomycota + Blastocladiomycota, supported by maximal BPP, and
all the other fungi (except the earliest branching Rozellomycota). In the former clade,
Sanchytriomycota, supported by maximal BPP, is a sister to Blastocladiomycota. In the
latter clade, there are two sister clades; one of them contains most of the Chytridiomycota
(and the only Monoblepharomycota) in a sister position to Olpidiomycota; the other one
contains Aphelidiomycota and a few Chytridiomycota. Within Chytridiomycota, the
classes (Chytridiomycetes, Spizellomycetes, Rhizophydiomycetes) are well separated. It
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can be seen on the tree that belonging to certain phyla or classes “overwrites” whether
the p25alpha domain originates from long (animal-type) or fungal-type TPPP. Long- and
fungal-type TPPPs are always sisters to each other within a given phylogenetic unit. This
finding is held in the case of Chytridiomycetes, Rhizophydiomycetes, and Aphelidiomycota
as well.
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indicate that the branch was supported by the maximal Bayesian posterior probability (BPP) and
≥0.95 BPP, respectively. All the other branches were supported by BPP ≥ 0.5. p25alpha domain of
Monosiga brevicollis XP_001743131 was used as outgroup. Species names with capital letters indicates
fungal-type TPPPs. The box with dotted lines includes fungal-type TPPP paralogs being present only in
some Chytridiomycota. Monobleph.—Monoblepharomycota; Rhizophydiom.—Rhizophydiomycetes.
The accession numbers of proteins are listed in Tables 1, 2, and S1.
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4. Discussion

S. tribonematis [29–31] and A. gromovi [29,30] are closely related strains of chytrid-like
parasites of the green-yellow alga, Tribonema gayanum. They are the only known members of
the newly established phylum, Sanchytriomycota [3] and they are endowed with unusual
features. From our point of view, the nature and the structure of their flagellum are the
most interesting. Early-branching fungi, in general, reproduce by using motile flagellated
zoospores. However, posterior flagellum of amoeboid zoospores of sanchytrids drags
behind the cell without being involved in active locomotion, thus it can be considered as
a pseudocilium. It contains a long kinetosome (basal body) composed of microtubular
singlets, and the two orthogonal centrioles in their sporangia have nine microtubular
singlets instead of the canonical kinetosome with nine microtubule triplets [30,31].

Sanchytrids lack several flagellar components, such as axonemal dyneins, and almost
all the intraflagellar transport proteins [3]. Their kinetosomes also lost several components
of the centriolar structure, as well as Delta and Epsilon tubulins, which are essential for
centriolar microtubule assembly [3]. These losses explain why sanchytrids lack motile
flagella. Concerning the presence/absence of flagellar components, sanchytrids are at an
intermediate position between flagellated and non-flagellated lineages. Thus, according to
the opinion of Galindo et al. [3], sanchytrids are in an unfinished process of flagellum loss.

However, it should be noted that sanchytrids are not alone in this special position. As
mentioned, both species of the phylum parasitize the green-yellow alga, T. gayanum. The very
same alga has other fungal parasites, Aphelidium tribonematis [32] and Paraphelidium tribonema-
tis [33], which belong to the phylum Aphelidiomycota and did not lose their flagellum [34].
Based on the genomic/proteomic data published in references [11] and [35], it has been shown
that both of them possess a fungal-type TPPP (Figure S1 and [22]). However, species of another
genus of the phylum, Amoeboaphelidium, are characterized by the presence of a non-motile pseu-
docilium [10,36], similarly to sanchytrids. The presence of flagellar proteins was systematically
investigated in two species, Amoeboaphelidium protococcorum and Amoeboaphelidium occidentale,
where genomic/proteomic data are available [13]. Many, but not all, of the flagellar proteins
were lost, which fact parallels the sanchytrids. A. occidentale does not have a TPPP, but A. proto-
coccorum does have a long (animal-type) TPPP. It seems that the occurrence of a pseudocilium is
connected to the presence of the long, but not the fungal-type TPPP (Table 3). One can speculate
whether this is by chance or for some reason. The fungal-type TPPP differs from the long one in
that it contains the C-terminal part of the p25alpha domain twice. This partial p25alpha domain
is responsible for the tubulin/microtubule binding ability of TPPPs in animals from sponges
to mammals [37–39]. This may be due to the fact that this part of the domain is intrinsically
disordered (unstructured) (Figure 5) (i.e., so called IDP [40] or IUP [41]).

Table 3. Connection between TPPP-like proteins and flagellum in early branching fungi.

Phylum/Genus (Species)
TPPP-Like Protein Flagellum

Long TPPP
(Animal Type)

Fungal-Type
TPPP Apicortin

Rozellomycota Yes No Yes Yes
Aphelidiomycota Yes Yes No Yes

Aphelidium No Yes No Yes
Paraphelidium No Yes No Yes
Amoeboaphelidium

protococcorum Yes No No Pseudocilium
Amoeboaphelidium

occidentale No No No Pseudocilium

Neocallimastigomycota No No Yes Yes
Orpinomyces sp. No No No Yes

Monoblepharomycota No Yes Yes Yes
Gonapodya No Yes 1 Yes Yes
Hyaloraphidium curvatum No No No No

Chytridiomycota Yes Yes Yes Yes
Olpidiomycota No Yes No Yes
Blastocladiomycota No Yes No Yes
Sanchytriomycota Yes No No Pseudocilium

1 Data have not published yet. Gonapodya sp. JEL0774, KAJ3339789.1. https://www.ncbi.nlm.nih.gov/protein/
KAJ3339789.1. accessed on 4 July 2023).

https://www.ncbi.nlm.nih.gov/protein/KAJ3339789.1
https://www.ncbi.nlm.nih.gov/protein/KAJ3339789.1
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All phyla of flagellated fungi contain TPPP-like proteins, however, their distribution
varies with the phyla (Table 3). Chytridiomycota is the only phylum where both long
(animal-type) and fungal-type TPPPs and apicortin are present. Fungal-type TPPP, which
occurs only in fungi, can be found in five out of the eight phyla. Both long TPPP and
apicortin are present in four phyla. In general, it is true that all species of flagellated
fungi possess at least one TPPP-like (p25alpha domain-containing) protein. The only
exception is Orpinomyces sp. (phylum Neocallimastigomycota); other members of this
phylum contain an apicortin. Orpinomyces sp. strain C1A was fully sequenced (estimated
sequence completion was 94.4% [42]) but no TPPP-like protein was found by BLAST
search. There are some ongoing sequencing projects of the species of this genus (https:
//mycocosm.jgi.doe.gov/pages/fungi-1000-projects.jsf) (accessed on 6 July 2023); their
completion will clarify the reason of this hiatus.

Species from only two genera of the phylum Monoblepharomycota were fully se-
quenced; H. curvatum has no flagellum [4], thus, not surprisingly, lacks p25alpha domain-
containing proteins. Species of the Gonapodya genus possess fungal-type TPPP and apicortin.

At the time of its discovery, S. tribonematis was classified as a Monoblepharidomycetes [29],
and soon after, together with A. gromovi, sanchytrids were defined as a new fungal lineage
which remains incertate sedis within fungi [30]. Finally, phylogenomic analyses by Galindo
et al. [3] revealed that Sanchytriomycota form a well-supported, sister clade to Blastocla-
diomycota. The phylogenetic analysis of p25alpha domains of TPPPs fits to this view;
Sanchytriomycota is a sister to Blastocladiomycota, supported by maximal BPP (Figure 6).
Beside this fact, the phylogenetic tree confirms that fungal-type TPPP is a fungal innovation;
the clade of fungal proteins is well separated from those of choanoflagellates and animals,
which do not have this type of protein. An interesting point is that not all Chytridiomycota
TPPP/p25alpha domain can be found in the same clade. The unusual (different from the
species phylogeny) position of Caulochytrium TPPP was found earlier, too [22,23]; the reason
for it is not known. Another case is the species included in the dotted box in Figure 6 labeled
with ‘2’ following the species name. These TPPPs are so-called ‘outparalogs’ [43], which
are present in the same species (e.g., Chytriomyces confervare or Rhizoclosmatium globosum)
but the duplication event occurred earlier than the species speciation. They are grouped
with Aphelidiomycota, in accordance with previous results [22].

Why do sanchytrids (and some Aphelidiomycota) retain a non-motile flagellum?
The answer by Gallino et al. [3] is: “Since the primary flagellar function has been lost
in favor of the amoeboid movement, other selective forces must be acting to retain this
atypical structure for a different function in zoospores.” Their hypothesis is that the new
function may be a sensory one, more precisely, the reduced flagellum could be involved
in a phototactic response [3]. The sensory function seems to be a logical suggestion since
the non-motile ‘sensory cilium’ is well known in animals and specialized versions of non-
motile cilium are involved in many aspects of sensation [44]. The single photoreceptor
sensory cilium (PSC) or outer segment elaborated by each rod and cone photoreceptor cell
of the retina is a classic example [45,46], where the presence of a long (animal-type) TPPP
was shown [47].

Fungi consist of 18 phyla according to the latest classification by Tedersoo et al. [8].
The 19th is Sanchytriomycota. Among these, the eight early-branching clades are the
non-terrestrial fungi, which reproduce by using flagellated zoospores. In terrestrial fungi,
the flagellum is lost. Thus, fungi provide an ideal opportunity to test and confirm the
correlation between the occurrence of flagellar proteins (the ciliome), including very prob-
ably TPPP-like proteins, and that of the eukaryotic cilium/flagellum since the flagellum
occurs in some phyla and not in others. If the flagellum has been lost for a long time (e.g.,
terrestrial fungi), these proteins cannot be found in the genome/proteome, not even in
traces, in contrast to the situation in the flagellated species. Sometimes, they were preserved
as ‘relics’ in species at smaller phylogenetic distances (e.g., in the case of the green algae
genus, Ostreococcus, which—unlike other green algae, such as Chlamydomonas—lost its

https://mycocosm.jgi.doe.gov/pages/fungi-1000-projects.jsf
https://mycocosm.jgi.doe.gov/pages/fungi-1000-projects.jsf
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flagellum but contains a highly divergent TPPP ortholog [16]), in which case they may
acquire a new function. Sanchytrids may be a nice example of this phenomenon.

5. Conclusions

Fungi provide an ideal opportunity to test and confirm the correlation between the
occurrence of flagellar proteins and that of the eukaryotic cilium/flagellum since the
flagellum occurs in the early-branching phyla and not in terrestrial fungi. TPPP-like
proteins, which contain a p25alpha domain, also were suggested to belong to flagellar
proteins [16]. S. tribonematis [29–31] and A. gromovi [29,30] are the only known members of
the newly established fungal phylum, Sanchytriomycota [3]. The zoospores of the species
of the phylum contain a non-motile pseudocilium (i.e., a reduced posterior flagellum).
Although sanchytrids lost many of the flagellar proteins, here it has been shown that they
possess a DNA sequence possibly encoding a long (animal-type) TPPP but not the fungal-
type one characteristic for chytrid fungi. Phylogenetic analysis of p25alpha domains placed
sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny,
with maximal support.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/microorganisms11082029/s1; Table S1: Accession numbers of proteins
shown in Figure 6 not shown in Tables 1 and 2. Figure S1: Sequences of Aphelidium TPPPs.
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