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Abstract: The role of the gut microbiota in modulating the risk of respiratory infections has garnered
increasing attention. However, conventional clinical trials have faced challenges in establishing
the precise relationship between the two. In this study, we conducted a Mendelian randomization
analysis with single nucleotide polymorphisms employed as instrumental variables to assess the
causal links between the gut microbiota and respiratory infections. Two categories of bacteria, family
Lactobacillaceae and genus Family XIII AD3011, were causally associated with the occurrence of upper
respiratory tract infections (URTIs). Four categories of gut microbiota existed that were causally
associated with lower respiratory tract infections (LRTIs), with order Bacillales and genus Paraprevotella
showing a positive association and genus Alistipes and genus Ruminococcaceae UCG009 showing a
negative association. The metabolites and metabolic pathways only played a role in the development
of LRTIs, with the metabolite deoxycholine acting negatively and menaquinol 8 biosynthesis acting
positively. The identification of specific bacterial populations, metabolites, and pathways may provide
new clues for mechanism research concerning therapeutic interventions for respiratory infections.
Future research should focus on elucidating the potential mechanisms regulating the gut microbiota
and developing effective strategies to reduce the incidence of respiratory infections. These findings
have the potential to significantly improve global respiratory health.

Keywords: gut microbiota; respiratory tract infections; microbial metabolites; gut–lung axis

1. Introduction

The human gastrointestinal tract serves as a habitat for trillions of microorganisms,
including bacteria, fungi, viruses, and parasites [1]. This dynamic and balanced ecosystem
plays a vital role in various biological activities within the human body, such as digestion,
metabolism, and inflammation, by regulating multiple endocrine, neural, and immune
pathways [2,3]. Clinically, various factors can contribute to the dysregulation of gut
microecology, such as aggressive pathogens, prolonged use of antibiotics, physical mucosal
damage, extended fasting, and genetic factors [4,5]. The dysbiosis of the gut microbiota,
particularly the decrease in obligate anaerobes in critically ill patients, increases the risk of
infection [6], with respiratory infections being recognized as the most prevalent infectious
disease worldwide and as a leading cause of incidence and mortality. Previous studies have
revealed that some microbiota influence susceptibility to pathogens through the gut–lung
axis [7]. Moreover, several clinical studies have demonstrated the effectiveness of oral
probiotics, such as Lactobacillus plantarum and Lactobacillus casei rhamnosus, in reducing the
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incidence of ventilator-associated pneumonia, acute upper respiratory tract infections, and
COVID-19 infections [8–10]. Consequently, it becomes plausible to consider monitoring
respiratory tract infections by targeting the flora [11,12]. However, due to the challenges
associated with conducting high-quality clinical trials, confirming this causal relationship
in clinical patients has been difficult. Moreover, the identification of other specific intestinal
flora that may be potentially causally involved in the development of respiratory infections
poses challenges when relying solely on traditional methods.

Mendelian randomization (MR) is an emerging statistical method in epidemiology that
uses genetic variation as an instrumental variable to explore the causal relationship between
exposure and outcome [13]. Single nucleotide polymorphisms (SNPs) refer to the DNA
sequence diversity caused by a variation in a single nucleotide at the genomic level and
remain unaffected by acquired confounders [14]. Utilizing SNPs as instrumental variables
provides several advantages over randomly assigning exposures in artificial designs or
traditional randomized controlled trials (RCTs) [15]. This approach allows us to assess the
effect of the microbiota on infection while minimizing the impact of confounding factors.

In this study, we employed large-scale genome-wide association studies (GWAS) to
analyze the influence of gut microbiomics and metabolomics on the incidence of respiratory
tract infections. Following the guidelines outlined in the “STROBE-MR” (Strengthening the
Reporting of Observational Studies in Epidemiology-Mendelian Randomization) guide-
lines [16], we performed a microbiomics analysis using two-sample MR methods. Our
objective was to identify specific microbial species that may serve as modifiers in the context
of susceptibility to infection.

2. Materials and Methods
2.1. Source of Data on Exposure and Outcome

In our study, the exposure variable consisted of the gut microbiota, metabolites, and
functional pathways, while the outcome variable was respiratory tract infections (Figure 1).
The abundance data concerning the gut microbiota were obtained from MiBioGen’s GWAS
dataset [17], which comprised a meta-analysis of 24 cohorts and a total of 18,340 individuals.
This dataset included fecal microbiota data for various taxonomic categories (9 phyla, 16
classes, 20 orders, 32 families, and 119 genera) based on the 16S rRNA gene amplicon
sequences. After removing unknown species, a total of 122,110 associated SNPs were
retained for analysis. For the gut microbial metabolites, we searched the online databases,
namely the Human Metabolome Database (HMDB5.0) [18] and utMGene [19], resulting in
the identification of 316 blood microbial metabolites. Additionally, we matched the latest
GWAS data from three pooled cohorts: a study comprising more than 7824 adults that
investigated over 400 metabolites in blood [20], metabolic biomarker data from Nightingale
Health in the UK Biobank (2020), and data from the Framingham Heart Study involving
2076 participants [21]. Through this data-matching process, we obtained 83 relevant
metabolites for further analysis. Summary data concerning the microbial pathways were
primarily derived from the Dutch Microbiome Project, which investigated the composition
and function of the gut microbiome in 8208 individuals [22]. This analysis included
205 possible metabolic pathways related to microbial function.

GWAS summary data concerning the outcome factors were obtained from the online
database MRC IEU OpenGWAS [23]. The GWAS of LRTIs (case = 3135, control = 459,875)
were obtained from the UK Biobank dataset and of URTIs (case = 35,847, control = 182,945)
were from the FinnGen consortium R5. Both the exposed and outcome populations were
from the Europe.
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2.2. MR Analysis

Instrumental variables (IVs) must satisfy three assumptions [16]. (1) Relevance as-
sumption: IVs are related to the exposure studied. (2) Independence assumption: IVs are
independent of possible confounding factors. (3) Exclusion assumption: IVs do not directly
affect the outcome; they can only affect the outcome by influencing exposure factors.

We followed three core assumptions to identify the IVs we needed. First, setting a
statistical significance threshold of 1 × 10−5 [24], screening out genetic variant SNPs that
were strongly associated with the microbe but not directly associated with URTIs and LITIs,
and excluding minor allele frequencies (MAFs) with a threshold of 0.01. We assessed the
power of the instrumental variables using the F value [25], F = R2 × (N – 1 − i)/(1 − R2)
× i, and IVs with an F less than 10 were excluded. Where N is the sample size, i is the
number of valid SNPs, R2 = 2 × EAF × (1 − EAF) × β2(i < 10) or R2 = 2 × EAF × (1 − EAF)
× β2/((2 × EAF × (1 − EAF) × β2) + (2 × EAF × (1 − EAF) × N × SE2))(i ≥ 10) [26]. In
addition, considering that linkage disequilibrium may exist between IVs, we excluded them
based on a linkage disequilibrium parameter of 0.001 and a genetic distance of 10,000 kb [27].
Secondly, the online site PhenoScanner was used to screen for possible confounders with
the IVs (HDL cholesterol, cigarette, body mass index, and body fat percentage) and to
prevent these factors from interfering with the effect of exposure on the results [28].

To assess the genetically predicted specific association between the gut microbiota
abundance and respiratory tract infections, we employed five methods (inverse variance
weighted, MR Egger, simple mode, weighted median, and weighted mode). The inverse
variance weighted (IVW) method served as the main fixed-effects meta-analysis, while the
remaining four methods were utilized for secondary validation, reinforcing the reliability
of the results. The IVW method was used as the primary MR method, and results with an
IVW < 0.05 were taken as initial positives.

2.3. Sensitivity Analysis and Reverse Causation

To further explore the heterogeneity of the results, a sensitivity analysis was per-
formed to assess the heterogeneity among the SNPs associated with each microbial unit
via Cochran’s Q test [29,30], and heterogeneity was indicated if the Q value was less than
0.05. Using MR Egger regression, we could assess whether genetic instruments have a
horizontal pleiotropic effect on outcomes [31]. Finally, to ensure there is reverse causality,
we used the MR Steiger directionality test [32]. It calculates the variance explained in the
exposure and the outcome by the instrumenting SNPs, and it tests if the variance in the
outcome is less than in the exposure. When testing multiple exposure factors together,
there is an increased risk of a type I statistical error (α). To minimize this, we applied the
Bonferroni correction to adjust the test levels. The Bonferroni correction divides the desired
significance level (P) by the number of comparisons made (n) to maintain an appropriate
overall significance level [33]. In our study, we conducted the Bonferroni correction for
the analysis of the gut microbial abundance based on their classification (order: 0.05/1;
family: 0.05/3; genus: 0.05/15). Furthermore, for the analysis of the microbial metabolites,
we applied the Bonferroni correction by setting the corrected p-value to 0.05 divided by 9,
while the microbial pathway was 0.05/20.

All the data analyses were based on the R package (4.2.3): Two Sample MR0.5.7 [32]
and PhenoScanner [34].

3. Results
3.1. Gut Microbiota Abundance and Infection
3.1.1. URTIs

After applying the IVW method to assess the association between the gut microbiota
abundances and URTIs, a total of eight flora abundances were identified as being initially
significantly associated (p < 0.05). Subsequently, the causality of the family Rikenellaceae
was further confirmed via the MR Egger and weighted median methods. Additionally, the
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weighted median method supported the causality of the family Lactobacillaceae and genus
Flavonifractor (Figure 2A, Supplementary Table S1).
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However, after conducting the Bonferroni multiple corrections, only the family Lac-
tobacillaceae (OR = 0.889, 95% CI: 0.824–0.959) and genus Family XIII AD3011 (OR = 0.873,
95% CI: 0.798–0.955) remained significantly and causally related to URTIs (Table 1). Both
showed a negative correlation with the occurrence of URTIs (Figure 3A,B).

3.1.2. LRTIs

An initial causal relationship between 11 microbial genera and LRTIs was found,
including 1 order and 10 genera, and the weighted median further verified that there was
a statistically significant causal relationship between the genus Alistipes, genus Parapre-
votella, genus Ruminococcaceae UCG009 and genus Ruminococcus torques groups (Figure 2A,
Supplementary Table S1).
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Table 1. Summary results of the positive MR results and heterogeneity tests after correction.

Infections Exposures nSNP
MR Analysis Cochran’s Q Test MR Egger Intercept Causal

Direction *Method b SE p Value OR 95%CI Value p Value Value p Value

URTIs

Family
Lactobacillaceae 6

IVW −0.118 0.039 0.002 0.889 0.824–0.959 2.958 0.706

−2.56 × 10−3 0.907 TRUE
MR Egger −0.103 0.129 0.470 0.903 0.701–1.162 2.942 0.568

Weighted median −0.128 0.053 0.016 0.880 0.793–0.976
Simple mode −0.141 0.076 0.122 0.868 0.748–1.007

Weighted mode −0.138 0.066 0.092 0.871 0.765–0.992

Genus Family
XIII AD3011 12

IVW −0.136 0.046 0.003 0.873 0.798–0.955 9.950 0.535

−2.18 × 10−2 0.228 TRUE
MR Egger 0.125 0.208 0.562 1.133 0.754–1.704 8.297 0.600

Weighted median −0.076 0.064 0.234 0.927 0.818–1.05
Simple mode −0.045 0.097 0.651 0.956 0.791–1.156

Weighted mode −0.049 0.085 0.576 0.952 0.807–1.124

LRTIs

Order Bacillales 7

IVW 0.001 0.001 0.020 1.001 1.000–1.002 5.924 0.432

−9.13 × 10−5 0.897 TRUE
MR Egger 0.002 0.005 0.703 1.002 0.992–1.012 5.902 0.316

Weighted median 0.001 0.001 0.155 1.001 1.000–1.003
Simple mode 0.001 0.001 0.334 1.001 0.999–1.004

Weighted mode 0.001 0.001 0.307 1.001 0.999–1.003

Genus
Ruminococcaceae

UCG009
8

IVW −0.003 0.001 0.002 0.997 0.996–0.999 2.343 0.938

2.96 × 10−4 0.739 TRUE
MR Egger −0.006 0.010 0.572 0.994 0.975–1.014 2.222 0.898

Weighted median −0.002 0.001 0.037 0.998 0.996–1.000
Simple mode −0.002 0.002 0.223 0.998 0.995–1.001

Weighted mode −0.002 0.001 0.188 0.998 0.995–1.001

Genus
Paraprevotella 7

IVW 0.003 0.001 0.001 1.003 1.001–1.004 2.593 0.858

−1.00 × 10−4 0.844 TRUE
MR Egger 0.004 0.005 0.495 1.004 0.994–1.014 2.55 0.769

Weighted median 0.002 0.001 0.034 1.002 1.000–1.005
Simple mode 0.003 0.002 0.176 1.003 0.999–1.006

Weighted mode 0.003 0.002 0.156 1.003 0.999–1.006

Genus Alistipes 7

IVW −0.004 0.001 0.001 0.996 0.993–0.998 3.617 0.728

1.69 × 10−4 0.750 TRUE
MR Egger −0.007 0.009 0.443 0.993 0.975–1.01 3.503 0.623

Weighted median −0.005 0.002 0.010 0.995 0.992–0.999
Simple mode −0.006 0.003 0.063 0.994 0.989–0.999

Weighted mode −0.002 0.002 0.361 0.998 0.993–1.002

LRTIs Deoxycholate 11

IVW −0.004 0.002 0.005 0.996 0.993–0.999 11.086 0.351

3.31 × 10−4 0.149 TRUE
MR Egger −0.012 0.005 0.042 0.988 0.978–0.998 8.596 0.475

Weighted median −0.003 0.002 0.214 0.997 0.993–1.002
Simple mode 0.000 0.003 0.909 1.000 0.994–1.007

Weighted mode −0.001 0.004 0.767 0.999 0.992–1.006

LRTIs
Menaquinol 8
biosynthesis II 3

IVW 0.002 0.001 0.002 1.002 1.001–1.003 0.187 0.911

−1.83 × 10−5 0.980 TRUE
MR Egger 0.002 0.003 0.645 1.002 0.996–1.008 0.186 0.667

Weighted median 0.002 0.001 0.017 1.002 1–1.003
Simple mode 0.002 0.001 0.159 1.002 1–1.004

Weighted mode 0.002 0.001 0.160 1.002 1–1.004

* The “TRUE” results concerning the causal direction mean there is no reverse causation.
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The results after multiple corrections still showed a causal relationship between the
four related groups (Table 1), with the order Bacillales (OR = 1.001, 95% CI: 1.0002–1.002)
and genus Paraprevotella (OR = 1.003, 95% CI: 1.001–1.004) showing a positive correlation,
while the genus Alistipes (OR = 0.996, 95% CI: 0.993–0.998) and genus Ruminococcaceae
UCG009 (OR= 0.997, 95%CI: 0.996–0.999) were negatively correlated (Figure 3A,C).

3.2. Microbial Metabolites, Pathways, and Infections

A total of 83 accessible metabolites and 205 pathways to identify the key targets
were included. If only considering the p value of the IVW, there were 9 metabolites
(Supplementary Table S2) and 20 relevant functional pathways (Supplementary Table S3)
that seemed initial works (Figure 2B,C). However, only deoxycholate (OR = 0.996, 95% CI:
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0.993–0.999) and the superpathway of menaquinol 8 biosynthesis II (OR = 1.002, 95% CI:
1.001–1.003) were positively correlated with the incidence of ALRI after multiple corrections
(Table 1, Figure 3A,C).

3.3. Heterogeneity Test and Reverse Causality

A sensitivity analysis was performed for all the results. When using the MR Egger re-
gression intercept method, no evidence of the multiplicity of the exposure factor levels was
found, p > 0.05. Using Cochran’s Q test, no heterogeneity was found either, with p > 0.05.
To further verify whether there was an inverse causal relationship between these florae and
infections, we applied the MR Steiger directionality test. There was no reverse causality
between the exposures and various infections (Table 1, Supplementary Tables S1–S3).

4. Discussion

We have made significant strides in identifying specific gut microbiota that exert a
causal effect on the infection risk. The abundance of these microbiota has been shown to
play a pivotal role in either enhancing or diminishing the likelihood of infection. Notably,
the gastrointestinal and respiratory tracts share similarities in terms of the anatomical
structure and functional characteristics. This parallelism in early microbial colonization
of both sites facilitates a close interplay, particularly concerning colonization resistance
mechanisms [11].

The gut–lung axis serves as a vital conduit through which the gut microbiota influences
susceptibility to respiratory infections. This axis operates remotely, with the immune re-
sponse and microbial-associated molecular patterns playing integral roles [35,36]. However,
despite the progress made, the precise underlying mechanisms require further investigation.
Although existing studies have provided valuable insights, multiple potential pathways
warrant consideration.

The foremost gut microbiota is involved in maintaining the gastrointestinal mucosal
barrier and restricting the proliferation and spread of pathogens. Symbiotic bacteria exert
their protective effects by outcompeting pathogenic bacteria for nutrients, altering the in-
testinal microenvironment, inducing the production of antimicrobial factors in the intestinal
epithelium, and releasing metabolites such as short-chain fatty acids, polyamines, and bile
acids that enhance the barrier function of the intestinal mucosa [37,38]. This phenomenon,
known as colonization resistance, helps prevent the colonization of pathogenic bacteria [39].
For instance, Bifidobacteria reduce the intestinal pH through lactose fermentation, thus in-
hibiting the colonization of pathogenic E. coli [40]. Disruption of the microbial composition
can compromise the integrity of the mucosal barrier and increase intestinal permeability,
allowing bacteria to translocate and reach the mesenteric lymph nodes or even distant
organs [41,42]. Such remote crosstalk may disrupt the original colonization resistance in
the respiratory tract, leading to infection [43,44].

In addition to regulating the maintenance of intestinal epithelial cell turnover and
barrier function, microbial metabolites in healthy patients are involved in the regulation
of immune responses and inflammation [45]. Dysbiosis of the gut microbiota may down-
regulate the immune recognition mechanisms in the lungs, thereby reducing the ability to
clear viruses from the lungs [46]. From the perspective of local immunity in the respiratory
mucosa, gut microbes can influence the function of epithelial cells, macrophages, and
dendritic cells in the respiratory tract, driving IFN signaling to restrict pathogen replica-
tion [36,46,47]. In mouse experiments, dysbiosis of the gut microbiota altered the function
of the pulmonary mucosa-associated invariant T MAIT cells, leading to increased early
colonization of the lungs by Mycobacterium tuberculosis [44]. IL-17A and IL-22 may also be
important mediators of the association, with the former triggering an increase in pulmonary
GM-CSF stimulating alveolar macrophages to kill and clear pathogens [48], and symbiotic
bacteria stimulating the transfer of IL-22-producing group 3 innate lymphocytes to the
lungs to exert anti-pneumonia effects [49]. Furthermore, the transmission through the blood
and lymphatic system is linked to a systemic cellular response. For example, short-chain
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fatty acids regulate the formation of pro-inflammatory cytokines such as TNF-α, IL-12, and
IL-10 by activating innate immune neutrophils, macrophages, and dendritic cells [42,50].
They also contribute to the formation of an anti-inflammatory environment by inhibiting
NF-κB in B cells and promoting the production of extra-thymic regulatory T cells, thus
limiting the inflammatory process [51,52].

It is important to acknowledge that the human body operates as a complex system,
and the relationship between the gut microbiota and infection is not a simple one-way
interaction. Existing infections can disrupt gut microbiota homeostasis, thereby exac-
erbating pulmonary infections and potentially leading to sepsis, forming a detrimental
cycle [53]. Previous treatments of respiratory tract infections have often emphasized the
modulation of gut microbiota abundance [54]. However, the efficacy of common probiotic
interventions has shown inconsistent results [55,56]. Therefore, identifying specific targets
to modulate the gut microbiota may hold promise for disease treatment. Our study stands
as the first to utilize genetic variation as an instrumental variable in assessing the potential
causal relationship between individual gut microbiota and respiratory infections. This
approach offers novel insights into the complex interplay between the gut microbiota and
respiratory health.

In this study, we conducted separate analyses for URTIs and LRTIs, taking into
consideration the differences in the microbial communities originally colonized in these
regions [57]. In healthy individuals, the microbial abundance in the LRT is typically lower
compared to the URT [58]. The URT, being more exposed to the external environment, is
colonized by a diverse range of microbial species soon after birth, with Actinobacteria being
a dominant phylum [59,60]. On the other hand, the microbial composition of the LRT is
more variable due to the unique physiological environment characterized by factors such
as the oxygen partial pressure, pH, and temperature. These environmental differences may
influence the selection and growth of microbiota, leading to variations in the microbial
composition [61]. In the LRT, the phyla Bacteroidetes and Firmicutes are typically abundant,
and there is a notable genus abundance, including Prevotella and Veillonella [62]. Likewise,
in our results, the microbes affecting their susceptibility were inconsistent. For the incidence
of URTIs, only the family Lactobacillaceae and genus Family XIII AD3011 had a negative
relationship. Lactobacillaceae are consistently considered to be beneficial bacteria in the
human body [63]. In children with recurrent respiratory infections, a microbiota imbalance
is manifested by a significant decrease in the number of bifidobacteria and lactobacilli [54].
Oral intestinal probiotics have been proven to prevent bacterial pneumonia and help
accelerate recovery from respiratory viral infections. A meta-analysis of 12 clinical trials
showed that probiotics containing Lactobacillus prevent the incidence of URTIs [9]. In the
prospective study, long-term consumption of dairy products containing Lactobacillus casei
could also reduce the incidence of URTIs. These beneficial effects may be attributed to
the ability of Lactobacillus to stimulate the release of cytokines such as IL-4 and IL-10 and
the effective enrichment of IL-12, INF-γ, and TNF α in mediastinal lymph nodes, which
help limit the systemic spread of bacteria [64,65]. Moreover, in vitro, studies have also
shown that Lactobacillus and Bifidobacterium have inhibitory effects on pathogenic bacteria,
including Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae [66]. Among
the microbiota associated with LRTIs, order Bacillales and genus Paraprevotella increase the
risk, while genus Alistipes and genus Ruminococcaceae UCG009 may have a protective effect.
Although the mechanisms involved are still unknown, there is some clinical evidence
to support them. In studies of respiratory flora in patients with ventilator-associated
pneumonia, Bacillales were positively associated with multiple microbial alterations [67].
Moreover, in mouse models, Bacillales abundance also showed an increase in mice with
high-calorie diets and LPS-induced pneumonia [68]. Prevotella, a common symbiotic
bacterium in the lower respiratory tract, has been implicated in the pathogenesis of several
inflammatory diseases due to stimulating local and systemic immune responses [69,70].
Additionally, Prevotella has been found to be enriched in the intestine following infections
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with SARS-CoV-2 or tuberculosis, while Alistipes abundance has been observed to be
reduced in these infections [71].

Metabolites are thought to play an important role in the gut–organ axis, and we
selected 76 blood microbial metabolites that contained GWAS data. We only found a
directional relationship between the blood levels of deoxycholate and LRTIs. Deoxycholate,
produced primarily from bile acids by bacteria such as Ruminococcaceae and Enterobac-
teriaceae via 7a-dehydroxylated modifications, is a secondary bile acid that plays a role
in limiting the proliferation of pathogens [1]. Gut microbes regulate antiviral immunity
through secondary bile acids restoring the IFN signaling axis, thereby influencing virus
transmission [72]. Deoxycholic acid also prevents COVID-19 by inhibiting cytokine burst
and viral binding to angiotensin-converting enzyme inhibitor 2 [73]. Not only that, in
in vitro studies, secondary bile acids inhibited C. difficile spore growth, and the restoration
of secondary bile acids in the intestine contributed to the recovery of human colonization
resistance to C. difficile [74]. It has also been suggested that the ratio of fecal deoxycholic
acid to glycoursodeoxycholic acid is a strong predictor of recurrent C. difficile infection, and
this ratio is reduced in most recurrences (84%) [75]. However, it is important to note that
genetic data pertaining to these mechanism-related metabolites are currently lacking, and
the metabolites discussed in this paper represent only a fraction of the entire spectrum
of relevant compounds. Some of the metabolites with possible relationships in previous
studies still failed to be included in the analysis. For example, acetate, propionate, and
butyrate are short-chain fatty acids, mainly produced by the phylum Bacteroidetes and the
phylum Firmicutes, that regulate host immunity and metabolism by interacting with cell-
expressed G protein-coupled receptors [76]. Polyamines play a crucial role in promoting
the synthesis of intercellular linker proteins, which are essential for regulating paracellular
permeability and enhancing the integrity of the epithelial barrier [77]. Metabolic pathways
were likewise identified in the menaquinol 8 biosynthesis II metabolic pathway to have
a positive association with LRTIs. Menaquinol 8, a subtype of vitamin K2, is required for
spore formation and cytochrome formation in some Gram-positive bacteria [78]. Vitamin
K2 biosynthesis is associated with a variety of diseases and states, such as type 2 diabetes
mellitus and Alzheimer’s disease [79,80]. A positive correlation has been observed between
the vitamin K2 biosynthetic pathway and clinical prognosis in critically ill COVID-19
patients, suggesting a potential improvement in clinical outcomes [81].

We propose the hypothesis that the microbial abundance, microbial metabolites, and
functional pathways, which were identified as playing a causal role in respiratory tract
infections in this study, may be interconnected. Specifically, LRTIs might exhibit higher
susceptibility to gut flora metabolites through the bloodstream. It is noteworthy that various
gut microbes rely on the menaquinol 8 biosynthetic pathway. However, it should be taken
into consideration that menaquinol 8, synthesized by intestinal bacteria, is rarely absorbed
into the systemic circulation and remains undetected in the blood [82]. Consequently, the
lung-related mechanism of menaquinol 8 may rely on the blood metabolite deoxycholate.
Previous studies have provided evidence that the administration of exogenous vitamin K2
supplementation leads to an increase in fecal secondary bile acids and short-chain fatty
acids in both diabetic patients and mice [83]. Further validation is required to elucidate the
specific underlying mechanisms.

However, there are still some limitations in this paper. Firstly, some of the data selected
in this paper were old, and the latest possible data were not retrieved. Secondly, there is a
lot of variation from genes to phenotypes, and we manually removed the confounding bias
associated with confounding factors whenever possible. However, confounding factors
still existed, especially the unexplored. Finally, the populations included in this paper were
from Europe, and further external validation for other populations is still needed.
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5. Conclusions

Our study utilizing MR has successfully identified six bacterial groups that are associ-
ated with the incidence of respiratory infections. These findings not only provide valuable
clues for future research but also highlight the potential for regulation from a single vari-
able perspective. Additionally, we have uncovered microbial metabolites and pathways
that exhibit causal relationships specifically with LRTIs. Notably, deoxycholate and the
menaquinol 8 biosynthesis pathway have emerged as playing potential roles in infection de-
velopment. The exploration of whether exogenous supplementation or inhibition of these
factors can yield tangible benefits represents a promising avenue for future investigation.

In summary, our study not only expands our knowledge regarding the impact of the
gut microbiota on respiratory infections but also underscores the potential for targeted
interventions based on these findings. The identification of specific bacterial groups,
metabolites, and pathways opens new avenues for therapeutic strategies. A comprehensive
understanding of the underlying mechanisms will enable the development of effective
interventions that can modulate the gut microbiota and ultimately reduce the incidence
and severity of respiratory infections.
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