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Abstract: Secondary metabolites are not essential for the growth of microorganisms, but they play a
critical role in how microbes interact with their surroundings. In addition to this important ecological
role, secondary metabolites also have a variety of agricultural, medicinal, and industrial uses, and
thus the examination of secondary metabolism of plants and microbes is a growing scientific field.
While the chemical production of certain secondary metabolites is possible, industrial-scale microbial
production is a green and economically attractive alternative. This is even more true, given the
advances in bioengineering that allow us to alter the workings of microbes in order to increase
their production of compounds of interest. This type of engineering requires detailed knowledge
of the “chassis” organism’s metabolism. Since the resources and the catalytic capacity of enzymes
in microbes is finite, it is important to examine the tradeoffs between various bioprocesses in an
engineered system and alter its working in a manner that minimally perturbs the robustness of
the system while allowing for the maximum production of a product of interest. The in silico
multi-objective analysis of metabolism using genome-scale models is an ideal method for such
examinations.

Keywords: secondary metabolism; flux balance analysis; COBRA; multi-objective flux optimization;
systems biology; metabolic engineering; synthesis optimization

1. Introduction

Secondary metabolites (a.k.a. idiolites) are small, structurally diverse, chemical com-
pounds that are generated by plants and microbes. They are produced by secondary
metabolic processes during the stationary phase (idiophase) of an organism’s lifecycle that
follows its growth phase (trophophase). Although these compounds are not essential for
microbial growth, they confer a selective advantage to the organisms in their environments
and serve many diverse and important functions. These include roles in bacterial survival
and ecological interactions. For example, it has been shown that certain diatoms excrete
secondary metabolites to promote the growth of beneficial bacteria and encourage direct
physical interaction with them, while dissuading attachment by opportunist organisms
and hindering their growth [1].

Secondary metabolites are also economically and medicinally important. Many herbi-
cides, fungicides, bio-insecticides, antibiotics, immunosuppressants, antitumor drugs, and
other high-value bioactive compounds are byproducts of microbial secondary metabolism.
For example, certain alkaloid secondary metabolites (e.g., Taxol) have anticancer functions
and can be produced by a number of different fungi, but the yield significantly varies
between the different organisms [2].

Secondary metabolites are usually difficult to synthesize chemically. But, at times,
this method is preferred over harvesting from biological sources. This is because chemical
synthesis avoids problems like variable product quality that are associated with some
natural systems [3]. However, the complexity of certain secondary metabolites (e.g., most
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alkaloid molecules) often makes chemical synthesis difficult or impossible. For such
compounds, bioproduction and extraction is the most economically practical strategy [4];
to improve the harvest yield, there are many efforts underway to maximize the rate and
efficiency of the metabolic processes that produce these compounds. While in many cases
the organisms that are used for the production of secondary metabolites already have
the metabolic machinery needed to produce these compounds (e.g., many members of
Actinomycetaceae), sometimes—due to a desire for an increased growth rate or a need to
couple the production of the compounds to the synthesis of other biochemicals—microbial
chassis organisms such as E. coli are engineered to produce these compounds. The latter
process could be riskier than using naturally producing organisms because at times the
secondary metabolite or a byproduct of its production can end up being toxic to the chassis
organism.

2. Optimization of Microbial Production of Secondary Metabolites

Often, the natural rates of production of secondary metabolites are too low to be
industrially profitable. Thus, metabolic engineers spend a lot of time optimizing the rate
of production of these compounds. One way of ensuring that a compound of interest
is produced optimally is to accelerate the activity of primary metabolic pathways that
produce the precursors and reducing the equivalents that are needed for its production [5].
Simultaneously eliminating competing processes that could siphon away energy, nutrients,
or enzymatic capacity from the production of secondary metabolites also improves the
yield and rate of production.

Our ability to manipulate complex biosystems is continually improving and the field
of synthetic biology has made significant advances during the last decade. We are using
heterologous gene expression to add functions to chassis organisms for the production of
secondary metabolites (e.g., [6–10]). We also design novel synthetic gene circuits that encode
new biological behaviors, dynamics, and control in our engineered systems (e.g., [11–13]).
However, our control is still limited, and even when using microbial platforms whose
workings we know best, we are at the mercy of stochastic fluctuations and other nonlinear
interactions with our synthetically engineered circuitry that make it difficult to be fully
sure of engineering outcomes.

While it might be possible to pinpoint a handful of obvious competing processes
intuitively in model organisms, this will not be possible for system-level engineering.
This is because most of our intuitive ideas stem from reductionist ideas and studies. For
example, reductionist biochemical thinking would suggest that the overexpression of “rate-
limiting” enzymes should result in significant increases in the activity of certain desired
processes and this would lead to the increased production of one or more compounds
of interest. However, this is not the observed behavior. To identify all of the processes
that affect secondary metabolite production, and to predict changes that would optimally
improve production rate and yield, requires system-level analyses using computational
tools. System-level analyses have shown that the control of metabolic fluxes is not a single
biocomponent property but instead a network property that is distributed across many
enzymes [14–16] and is dependent on the topology of a network.

Manipulating complex biosystems to do our bidding is not trivial. This is because
oftentimes we are forcing a system to operate in a manner that contradicts the regulatory
rules that evolution has set forth for it. These regulations ensure maximum fitness for
a system in its ecological niche. We might not be able to overcome these regulations.
But if we have some understanding of a system’s most important objectives and how it
prioritizes them under different environmental conditions, then we can devise ways to
either work with the system’s regulations or “bend” them as much as possible to optimize
our engineering objectives. The metabolic systems of microorganisms, even well-studied
model organisms like E. coli, are too complex to learn about such tradeoffs using only
reductionist methods and targeted analyses. Comprehensive in silico analyses are needed
to fully grasp the multifaceted workings of complex biosystems.
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3. System-Level Computational Models of Metabolism

System-level computational analyses are possible today due to revolutionary advances
in high-throughput analytical technologies that permit the rapid and facile collection of
multiple types of system-level data [17–19]. There are many different types of models that
use process-appropriate mathematical formalisms to examine the operating principles of
bioprocesses and systems in general. Some of the most widely used and successful methods
for examining metabolic processes at a system-level are constraint-based reconstruction
and analysis (COBRA) methods. These methods utilize omics data, particularly annotated
genomes, to reconstruct the metabolic pathways that exist in a biosystem. The annotated
genome provides a list of enzymes that an organism can produce. Using this list of enzymes
with information found in biochemical databases such as KEGG [20], ModelSEED [21],
and MetaCyc [22], a list of reactions that can be catalyzed within a system are compiled.
This list is used to reconstruct the metabolic pathways in an organism and serves as the
basis for genome-scale metabolic models (GEMs) (see Figure 1). Currently there are several
tools available that allow for the rapid generation of draft GEMs for organisms [23–28].
The build metabolic model app available on the U.S. Department of Energy’s systems
biology knowledgebase (KBase) is one such tool [29]. One helpful advantage of using
KBase for developing draft GEMs is the availability of a unique app (merge metabolic
annotations) that allows for the import and combination of genome annotations from
multiple sources. This app can greatly help the process of curating draft GEMs [30,31] by
ensuring that the tool returns a more complete network reconstruction with few orphan
gap-filled reactions [32].

Figure 1. The process for developing genome-scale models of metabolism. The genome of the
organism is annotated using genome-annotation tools such as RAST [33], Prokka [34], or KOALA [35].
The annotated genome provides a list of enzymes that can be used with bioinformatic databases
such as KEGG [20,36], ModelSEED [21], and MetaCyc [22] to generate a list of all the reactions that
can occur in the organism at different times. This list when further curated with empirical data and
information from the literature provides a reconstruction of the metabolic network of the organism
that can be used for FBA and other types of COBRA modeling.

Detailed and accurate network reconstruction is particularly important for models
that are used for studying organisms that produce secondary metabolites. This is because
secondary and primary metabolism are tightly linked in these systems. The production
of secondary metabolites requires precursor metabolites that are produced by primary
metabolism. These include amino acids and short chain carboxylic acids. The precursors
are used by proteins that are translated from groups of colocalized genes that work together
to build the complex bioactive compounds. Polyketide synthases, non-ribosomal peptide
synthases, and terpene cyclases are some of the most important classes of these biosynthetic
gene clusters (BGCs). Most of the BGCs have characteristic catalytic domains that can be
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used to identify new gene clusters. This, along with the clustering characteristic of genes,
has been used to develop computational tools (e.g., antiSMASH [37,38] and PRISM [39,40])
that can be used to identify BGCs from genome sequence data. These tools are critical
for characterizing the secondary metabolism of organisms. The predicted biosynthetic
capability can be used to build detailed GEMs that fully account for the connections
between primary and secondary metabolism. The GEMs can then be used to identify the
best candidate gene clusters for incorporation into engineered heterologous hosts.

3.1. Flux Balance Analysis

Flux balance analysis (FBA) is a widely used mathematical method for using GEMs to
study metabolism in biosystems. FBA finds optimal metabolic steady-state activity fluxes
that satisfy constraints imposed by the metabolic network structure, mass balance, and the
availability of nutrients (see Figure 2). FBA uses the annotated genome-based metabolic
network reconstruction of a system. The reconstruction is gap-filled using empirical
data and fundamental biochemical and biophysical laws. The metabolic reactions are
mathematically represented by the stoichiometric matrix, S (m × n), where m is the number
of metabolites and n is the number of different reactions. FBA operates on assumptions of
mass balance and metabolic steady state. Based on these assumptions, the following set of
linear equations govern the system’s behavior:

dXi
dt

= ∑
j

Sijνj = 0 (1)

where Xi is the concentration of metabolite i, Sij is the stoichiometry of metabolite i in
reaction j, and νj is the flux of reaction j. Other constraints that are imposed on the model
based on experimental measurements limit the amount of nutrients that a system can
import and byproducts that are exported. Also, if information regarding the average
concentration of an enzyme and its catalytic turnover rate are available, flux through a
reaction can also be constrained. Thus, in properly bound FBA simulations all reactions
have a lower and upper boundary:

α ≤ νj ≤ β (2)

χ ≤ bi ≤ ϕ (3)

where bi is the export/import flux of species i; α, β are the lower and upper bound for
internal fluxes; and χ and ϕ are the lower and upper limits for transport fluxes. For FBA
simulations it is assumed that cells are at steady state. Balanced growth is assumed and
a biomass reaction with fixed stoichiometric values is added to the model. This reaction
quantifies the amounts of various metabolites that are needed to produce 1 g of biomass.

Once the GEM is appropriately constrained, FBA uses linear programming to solve for
a feasible steady-state flux vector that optimizes an objective function. The most common
objective function (cellular task to be optimized) is the production of biomass, i.e., cellular
growth. However, other biological tasks can also be used as objective functions. There
have been studies that have examined when and how such alternate objective functions
might best be used [41,42]. Also, algorithms have been developed that use experimental
data to infer the best objective functions for simulations [43,44]. Finally, as the use of FBA
models expand into the realm of whole-cell modeling [45–47], variants of FBA have been
introduced that loosen the rigid constraints imposed in classical FBA objective functions
and bypass the limitations of steady-state and balanced growth assumptions [48].
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Figure 2. Flux balance analysis (FBA) is the most widely used COBRA analysis method. The genome-
based metabolic network reconstruction is converted to the mathematically useful format of a matrix
that details the stoichiometry of all the reactions in the system. The model is constrained using
empirical data and fundamental physico-chemical laws. The system is assumed to operate at steady
state and linear programming is used to solve for a feasible flux pattern that optimizes the activity of
one biological objective.

FBA has been used to examine numerous biological topics that range from the fun-
damental nature of biological systems (e.g., [49–51]) to examining metabolism of deadly
pathogens (e.g., [52–55]), studying cancer (e.g., [56–59]), elucidating the effects of genetic
knockouts [60–62], and finding novel regulatory interactions [63]. The uses of FBA have
continually increased. Automated tools for the generation of draft FBA models [21,23–28]
have greatly helped this process. However, detailed analyses still require the use of human
curated models. Even with advances in automated draft model generation, the overall
process of developing high-fidelity models is still labor intensive [30,31].

Given the critical relationship between primary and secondary metabolism, system-
level knowledge of the metabolic capabilities of an organism is critical for choosing the
right biosystem for producing a secondary metabolite of interest. FBA studies are ideal
tools for system-level analyses that can provide this information. In this vein, GEMs
have been developed for several actinobacteria, particularly candidate members of the
genus Streptomyces [64–75], a family of soil bacteria with diverse metabolisms that are
known to produce a variety of different natural products, including anticancer drugs and
antibiotics [76]. By using FBA with these GEMs, novel links between central metabolism
and the production of secondary metabolites have been discovered. For example, it was
found that the flux of nitrogen uptake and assimilation can positively affect the rate of
antibiotic production in Streptomyces coelicolor [67,71]. Another study found that increasing
pH can initiate the induction of idiophase in Streptomyces peucetius [66].

FBA has also been used to study the metabolic characteristics of the transition from
active growth (trophophase) to idiophase. This transition is essential for the production of
secondary metabolites because genes coding for the biosynthesis of secondary metabolites
are usually not expressed at high growth rates [77]. The trophophase to idiophase transition
is accompanied by an extensive rearrangement of cellular metabolism [72]. To gain a
mechanistic understanding of these rearrangements, FBA was used to examine the flux
patterns in the model secondary metabolite producer S. coelicolor during trophophase and
idiophase [72]. FBA predicted that during the trophophase metabolites are mainly used for
the production of biomass, while during idiophase the resources are shunted toward the
production of secondary metabolites. The predicted flux pattern differences between the
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two phases were closely correlated with measured gene expression data. The correlation is
so reliable that discrepancies between gene-expression data and predicted fluxes can be
used to identify errors in genome annotation [72].

3.2. Multi-Objective Optimization

Optimizing the production and yield of a compound of interest usually requires en-
gineering new strains of microbes. This is because natural selection has primed cellular
metabolism for other biological objectives, such as growth and rapid adaptation to environ-
mental pressures. The overproduction of compounds that are important to humans but
have ancillary benefits for the biosystem are not prioritized. Cellular metabolism is tightly
regulated to ensure against such “wasteful” overproduction of secondary metabolites.
Therefore, efforts to overproduce secondary metabolites are often hindered by pathway
competition with prioritized processes that are linked to the production of biomass compo-
nents [78,79].

Given this divergence of biosystems’ and engineers’ objectives, engineering new
idiolite-producing strains requires finding genetic manipulations that can work around the
internal regulations of the systems while mitigating the fitness costs that may result from
the induced perturbation. It is important to ensure that our engineered alterations do not
drastically change the natural balance of biological objectives and subsequently the fitness
of a system for a given environment.

GEMs can be powerful tools for identifying targets for such genetic manipulations.
However, methods other than classical FBA need to be used. This is because FBA only
optimizes one biological objective, while we need to examine the tradeoffs between multiple
objectives. This is because evolution necessitates that organisms operate multiple critical
processes at once and maximize the distribution of their limited resources in a Pareto-
optimal fashion. A Pareto-optimal outcome is one where improvement in the performance
of one task would result in diminishment of the ability to achieve (one or more) other tasks.
To calculate Pareto-optimal solutions, examine the trade-offs between different objectives
and identify bioprocesses that could hamper production or optimum yield of a desired
product requires use of multi-objective (MO) optimization methods.

The multi-objective analysis of biological processes using constraint-based models is
not a new method of analysis. One of the earliest such studies was the use of phenotype
phase plane analysis (PPA) [80]. PPA was used to study the optimal uses of two model
organisms’ metabolic networks as they adapt from variations of two environmental con-
straints [81,82]. Thus, PPA examined the tradeoffs between three system objectives (growth
and the two constraints).

MO analyses are also preferred over plain FBA for optimizing the production of
desired byproducts. Again, this is because FBA only optimizes one objective function, and
unfortunately the usually optimized growth objective is often not appropriate for studying
the production of natural products. For example, an analysis of the production of certain
bioactive compounds by Streptomyces clavuligerus showed that the maximum ATP yield
is the best objective function and that neither the maximization of growth nor bioactive
compounds would agree with the experimental data [75]. If the objective that is optimized
by FBA is growth, then the analysis will primarily examine the primary metabolism. It
will ignore the secondary metabolism and production of compounds that are not biomass
components. To overcome this shortcoming of FBA, several MO optimization methods
have been developed to optimize the production of compounds of interest. We discuss
some of them below.
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3.2.1. OptKnock

One of the earliest MO optimization methods developed for strain engineering is
OptKnock [83]. OptKnock is a bilevel optimization tool that uses GEMs and mixed-
integer linear programing (MILP) to suggest gene manipulation strategies that result in
the overproduction of a compound of interest. OptKnock achieves this by aligning the
engineering objectives with the internal objectives of a biosystem. Thus, the proposed
alterations work with the system instead of against it. OptKnock accounts for the fact that
the metabolic flux distribution is controlled by system-specific internal objectives and that
the surest way of ensuring a process is active is to make it essential for optimizing primary
cellular objectives. To this end, OptKnock proposes genetic manipulations that make the
production of the desired compound essential for cellular growth. For typical OptKnock
simulations the maximization of biomass production (greater than a preset minimal level)
is treated as the primal optimization while a dual optimization problem solves for reaction
knockouts that maximize production of the compound of interest within the constraints set
forth by optimization of primal problem (See Figure 3).

Figure 3. A list of some bilevel optimization programs that have been developed for designing
microbial strains that maximize the production of compounds of interest. The outer and inner
optimization problems for each tool are listed.

OptKnock has been used for many strain design studies where the maximum produc-
tion of a compound of interest was the goal (e.g., [84,85]). OptKnock has subsequently been
updated with several variants. RobustKnock [86] expands upon OptKnock by identifying
and eliminating competing pathways that could divert flux away from the production
of compound of interest. OptReg [87] is a bilevel optimization platform that predicts the
gene expression/enzyme level adjustments that could lead to the increased production
of a compound of interest. OptORF [88] is another bilevel optimization platform that
predicts engineering strategies using combinations of gene knockouts, differential gene
expression, and the manipulation of regulatory pathways. OptFlux [89] is an open-source
computational systems biology software that identifies engineering targets using evolu-
tionary algorithms and simulated annealing. These meta-heuristic methods can work with
different types of objective functions, including nonlinear ones. OptFlux also allows for the
use of OptKnock for strain optimization.
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3.2.2. OptStrain

OptStrain [90] is a major upgrade to OptKnock for designing new strains. This
is because, unlike the other version of OptKnock, OptStrain can identify non-native
genes/enzymes that can be incorporated into a system in order to increase the production
of a desired compound. To inform OptStrain of the universal reactome, the developers of
OptStrain compiled a regularly updated large database of biochemical reactions. OptStrain
initially identifies a maximum yield pathway for the production of the desired compound
from a selected substrate. This step is not species specific and uses all reactions deposited
in the reaction database. OptStrain then uses combinatorial optimizations to search for
stoichiometrically balanced pathways that include the minimum number of non-native
reactions while satisfying the aim of maximizing the yield of the product. If GEMs are
available for multiple host organisms, OptStrain can also be used to choose the best host
for engineering projects. Once the set(s) of reactions/genes that need to be added to a
system are identified, OptKnock can be used to predict the gene knockouts that will couple
production of the compound of interest to cellular growth.

Bilevel optimization methods have been some of the most popular tools for strain
engineering during the past two decades and are still being used for designing microbial
strains that optimize the production of valuable products (e.g., [91,92]). Figure 3 lists some
of the prominent bilevel optimization tools and their inner and outer objective functions.

3.2.3. MultiMetEval

MultiMetEval [93] is an MO optimization tool that utilizes COBRA methods to cal-
culate the Pareto front between two cellular objectives. A Pareto front (see Figure 4) is
a collection of Pareto-optimal solutions. The process of calculating a two-dimensional
Pareto front (see Figure 4A,B) involves calculating the maximum ($max

1 ) and minimum
value of the first objective ($min

1 ) using a GEM and FBA. The GEM is then updated with
$max

1 as a fixed value for the first objective. The updated model is then solved for the
optimum value of the second objective ($2,0) when the first objective operates at $max

1 .
This is one Pareto-optimal solution and one point on the Pareto front. If one wants to map
the surface of the Pareto front using P points (including the one calculated at $max

1 ), the
GEM is constrained P − 1 times in an iterative fashion by the value:

v1,p = $max
1 − p× ∆

P− 1
(4)

p = {1, · · · , P− 1} (5)

∆ = $max
1 −$min

1 (6)

For each$1,p value, the optimum value of the second objective ($2,p) is calculated.
Two-dimensional Pareto fronts provide a wealth of information about the nature of

interactions between two processes (objectives) in a system. As can be seen from Figure 4A,
the interactions between objectives can be uncoupled, i.e., changes in the value of one
would not affect the value of the other. They can be fully linked, i.e., any improvement in
the operation of one requires an improvement in the value of the other. Alternatively, they
could be competing, where any increase in the activity of one objective leads to a reduction
in activity of the other. In most complex systems, the tradeoffs between objectives are not as
simple as what is shown in Figure 4A. Instead, in most complex systems, the tradeoffs are
multiphasic (see Figure 4B). This means that at different values for Objective 1, the nature
of its interaction with Objective 2 changes. This could mean that the nature of interaction
of an objective with another objective could change depending on its activity. For example,
it could switch from being positively coupled to the other objective to competing with it
(see the difference between Phases 2 and 3 in Figure 4B).



Microorganisms 2023, 11, 2149 9 of 17

Figure 4. Cont.
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Figure 4. Pareto fronts provide a wealth of information about the nature of interactions between
different system objectives. (A) The 2D Pareto fronts show the nature of interactions between two
system objectives. The interactions between objectives can be linked (improvement in one requires
improvement in the other), uncoupled (value of one has no effect on the value of the other), or
competing (increase in value of one lowers the value of the other). (B) In complex systems, the nature
of interactions between two objectives can change depending on their values. Such multiphasic
interactions can greatly help systems adapt to changes. Pareto fronts (depending on the number
objectives that have been examined) can be visualized in a variety of different ways. (C) The 3D
representation of a Pareto front can be used for visualizing the outcome of analysis from methods
like PPA. This figure shows tradeoffs between hydrogen production, carbon fixation, and growth in
Rhodopseudomonas palustris (based on results from Navid et al. [94]). (D) For analyses beyond three
dimensions, heatmaps can be used to visualize the results. Here, a heatmap representing the Pareto
front resulting from a seven-dimensional MOFA analysis of metabolism and biofuel production in
Chlamydamonas reinhardtii is shown.

MultiMetEval also provides a platform to comparatively analyze metabolic differences
between multiple GEMs. This can be used to identify organisms that are naturally adapted
to overproducing secondary metabolites. The tool was used to examine the production
capability of a large group of actinomycetes for different classes of secondary metabolite [93].
The study resulted in a number of interesting finds. One of the most intriguing finds was
that organisms that have the most productive and metabolically versatile metabolisms are
not the ones that are being used for biotechnology. Additionally, it was found that genome
size and the complexity of secondary metabolism do not correlate with an organism’s
productivity.

3.2.4. Multi-Objective Flux Analysis (MOFA)

While FBA studies typically optimize growth as the cell’s primary objective [42], it
has been shown that no single objective fully governs the behavior of a system. A study
examining the tradeoffs between double and triple combinations of various objectives in
microbes showed that a Pareto-optimal combination of three primary tasks—maximum
biomass yield, maximum yield of ATP, and the optimal allocation of resources—best
describes the measured flux distribution for a variety of organisms and conditions [51].
However, the fluxes predicted for Pareto-optimal combinations of the primary objectives
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do not exactly match with experimental results. The Pareto optimization of other biological
objectives that might be important for specific organisms and/or growth conditions could
help to reduce the observed mismatch. The examination of these “secondary” objectives
could also provide a quantitative measure of how these processes control the operation of a
cell. This knowledge will help guide synthetic biology and metabolic engineering efforts so
that the rates and yields of secondary metabolites are increased.

MO methods have been developed to study metabolic tradeoffs in systems that pro-
duce a variety of different high-value commodities such as biofuels (e.g., [95–99]). We
recently developed a curated GEM for Rhodopseudomonas palustris [94], a metabolically
versatile purple non-sulfur bacterium that has been studied as a model organism for the
production of hydrogen gas (H2) [100–102]. To gain a better understanding of the tradeoffs
between the different biological objectives (e.g., growth, ATP production, H2 production,
carbon fixation, metabolism of aromatic compounds), we developed an MO analysis tool
that we call multi-objective flux analysis (MOFA). Similar to Nagrath et al. [103], MOFA
uses the normalized normal constraint (NNC) [104] method for MO analyses. This en-
sures that MOFA’s output is an n-dimensional (n = number of objectives) Pareto front
comprised of a set of evenly distributed Pareto-optimal points, regardless of differences in
the magnitudes of the examined objectives.

We developed MOFA because we wanted to examine the tradeoffs between more than
a handful of objectives. Our high-dimensional (7 and 8 objectives) analyses provided us
with novel insights into R. palustris’ ability to produce H2 as a biofuel. As with the produc-
tion of secondary metabolites, we found that the production of H2 under all conditions
drastically reduces the organism’s growth rate [94].

We have since developed a Matlab version of MOFA that can be used with the COBRA
toolbox [105]. The COBRA toolbox is one of the most widely used platforms for computa-
tional systems-level analyses. We think this code would be useful for users of the COBRA
toolbox who are interested in conducting high-dimensional MO analyses. Thus, we are
including this code as a supplementary addition to this manuscript. A user guide is also
included with the Supplementary Materials.

3.3. System-Level Analysis of Microbial Communities

Given that secondary metabolites have a major role in how microbes interact with
their surroundings, engineering microbial communities can be one way of inducing the
production of secondary metabolites [106–109]. Changing the dynamics of multicellular
and multispecies systems by various means such as: altering the interactions between
constituents via engineered loss or gain of functions, adding or reducing a member’s
metabolic burden, or simply changing the community’s growth environment can result
in changes in the secondary metabolism of individual organisms and the community as a
whole. For example, one study has shown that dividing the metabolic pathways for the
production of the chemotherapeutic compound paclitaxel improved its production [110].
As another example, it has been shown that in microbial cocultures presence of organisms
that lower concentrations of metabolites that inhibit growth of another community member
can greatly boost overall community growth rate [111]. In case of production of secondary
metabolites, it has been shown that glucose interferes with biosynthesis of secondary
metabolites [77]. So, addition of an organism that is a voracious consumer of glucose and
producer of alternate forms of carbon could be a possible community engineering strategy
for improving production of secondary metabolites.

3.3.1. OptCom

One MO-based tool developed for examining interactions in microbial communi-
ties is OptCom [112]. OptCom was developed by the same group that also developed
OptKnock [83] and OptStrain [90]. As with these programs, OptCom utilizes bilevel opti-
mization to examine the tradeoffs between individual vs. community fitness objectives in a
multispecies microbial community. This allows for a quantitative and directed examination
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of the metabolic roles of each species in a community and the overall ecological niche.
The nested bilevel optimization problem in OptCom is formulated using species-level
objectives as the inner optimization while the community-level objective is optimized as
the outer optimization (see Figure 3). Each species in the modeled community has its own
biomass equation which is separately optimized in the inner level. The interactions between
the constituent members of the community are constrained by limits on the exchange of
metabolites between species. Community-level operation, such as the production of total
community biomass, is optimized as the outer problem.

OptCom has been used to examine different types of interactions (positive, negative, or
neutral) in microbial communities. This can be achieved by adjusting the inter-species flux
constraints, i.e., varying the community-level optimization problem. A subsequent update
to OptCom named d-OptCom [113] allowed for the simulation of transient changes in
biomass of each community member. d-OptCom also allows changes to the concentrations
of metabolites in the shared growth medium.

3.3.2. Community and Systems-Level Interactive Optimization (CASINO)

CASINO [114] is another bilevel optimization program that has been developed for
the examination of interactions in complex multicellular and multispecies communities.
CASINO uses community network properties to define the topology of a community.
The inner problem is the optimization of biomass for individual species, while the outer
problem is the optimization of biomass with the added aim of the optimum distribution
of resources between species. The method was used to extensively study the interactions
between the human gut microbiome and the host under different dietary regimens.

4. Conclusions

Genome-scale models of metabolism and COBRA methods have become indispens-
able tools for system-level analyses and metabolic engineering. COBRA methods have
been used widely to study the metabolism of microbes. They have provided novel insights
that have been used to engineer new microbial strains that have high production rates
for commercially, industrially, and medicinally important bioactive compounds. For ex-
ample, FBA simulation methods have been used with high-performance computing and
pathway-search algorithms to predict putative heterologous biosynthesis pathways for
over 6000 compounds in 70 different microbes [115].

While bilevel optimization tools and MO-based methods have been some of the
most often-used tools for synthetic biology and metabolic engineering, other types of
constraint-based modeling informed with different omics data could also contribute to
these efforts. For example, it has been shown that metabolic flux changes associated with
the transition of cellular metabolism from growth to idiophase closely correlate with gene
expression dynamics. This provides a possible route for examining secondary metabolism
in microbes by constraining GEMs with gene-expression data. Many tools have been
developed for this purpose (e.g., [54,116–122]), and their uses and differences have been
reviewed [123–125]. The deluge of heterogenous system-level data makes the use of these
types of modeling essential for elucidating the metabolic state of a system under different
conditions, particularly when the change in the environment is not biochemical but physical
(e.g., temperature change). Beyond GEMs, the development and use of detailed whole-
cell models [46,47] that account for the activity of every molecule in a system can greatly
expand the role of computational models in the analysis of organisms capable of producing
high-value bioactive compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11092149/s1. Code and manual for Matlab version
of MOFA. References [104,105,126–129] are cited in the Supplementary Materials.
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