
 1

MOFA User Manual

Marc Griesemer Ali Navid

Table of Contents

1. Introduc+on to MOFA ... 2

2. User Requirements ... 2

2.1 Hardware and so.ware requirements ... 2

2.2 Simula6on requirements .. 2
2.2.1 User Considera/ons ... 2
2.2.2 Structure of Input Arguments .. 2
2.2.3 Run/me Factors ... 2

3. Installa+on ... 3

4. MOFA Func+on Structure .. 3

4.1 Index of MOFA func6ons .. 3

4.2 Func6ons for running a simula6on ... 3
4.2.1 mofa.m ... 3
4.2.2 min_max.m .. 3

5. An example MOFA analysis using an E. coli model ... 4

6 Normalized Normal Constraint (NNC) method .. 5

7. Defini+ons .. 8

References .. 8

 2

1. Introduc+on to MOFA

MOFA is a COBRA toolbox (1-3) extension using MATLABâ for performing mulF-objecFve
analysis of trade-offs among different objecFves of a biosystem using constraint-based models
of biochemical processes. This document outlines the soLware. Any queries regarding use of
MOFA are welcome and should be directed to Ali Navid (navid1@llnl.gov).

2. User Requirements
2.1 Hardware and so.ware requirements
No specific hardware requirements are necessary beyond what MATLAB needs. The code uses
the GLPK solver that is included with the latest download of COBRA Toolbox. No other LP solvers
are currently supported.

2.2 Simula6on requirements
2.2.1 User Considera/ons

1. The user needs to ensure that model is well constrained and provides accurate FBA
soluFons that do not violate mass balance and thermodynamic laws.

2. The user must confirm that the model would be valid (without errors) for opFmizaFon
using COBRA toolbox.

2.2.2 Structure of Input Arguments
MOFA needs informaFon on the parameters of the simulaFon: namely, the model, the number
of divisions of the Pareto front, and the specified objecFves. The user can use an input file (see
Table M1) or funcFon arguments to supply the list of objecFves. The program uses a modified
COBRA model object that has unique constraints for the defined objecFves. The soluFon is the
n-dimensional (n=number of examined objecFves) soluFon of the normalized objecFve values
that composes the Pareto front. One must use valid objecFves contained in the model;
otherwise, the program will print an error message and exit. It is useful to check that the
objecFve names are correctly spelled and that there are no blank lines at the end of the list.
2.2.3 Run/me Factors
The Fme taken by the simulaFon depends on:

1. The number of objecFves
2. The number of divisions
3. The objecFves chosen.

Table M1: Structure of input file includes list of objec8ves, including the main objec8ve
(name of the file).txt
COMMENT
(name of the objecFve to be opFmized during MOFA iteraFons)
#COMMENT
(objecFve name 1)
(objecFve name 2)
...
(objecFve name n)

 3

3. Installa+on
1. Install MATLAB® (h\p://www.mathworks.com); a license is required.
2. Download and install the COBRA toolbox as directed from

https://opencobra.github.io/cobratoolbox
3. Install MOFA by adding the package folder into the COBRA folder. AlternaFve locaFons

outside the MATLAB path for MOFA will require a path addiFon.

4. MOFA Func+on Structure
4.1 Index of MOFA func6ons

1
2
3

mofa.m
min_max.m
anch_pts.m

Main funcFon
Finds the minimum and maximum fluxes of all objecFves
Finds the anchor points, auxiliary funcFon

4.2 Func6ons for running a simula6on.
There are the two funcFons the user can use to conduct MOFA analyses, mofa and min_max. A
third funcFon, anch_pts, determines the anchor points but is an auxiliary funcFon used only by
the main MOFA program. This subsecFon gives a lisFng of the inputs and outputs of these
funcFons.
4.2.1 mofa.m
This is the main MOFA funcFon for the code.
funcFon [mofa_sol, mxhr, mihr, aphr] = mofa(model, inp_file, [], [], ndiv, mi_mx)

Inputs:

model
inp_file
ndiv
mi_mx

COBRA model object
Input text filename with lisFng of objecFves (string)
OpFonal: number of divisions (integer)
OpFonal: Main objecFve minimized or maximized (string, ’min’ or ’max’)

Outputs:

mofa_sol
mxhr

mihr

aphr

List of feasible values for Pareto points (matrix of doubles)
n member array (doubles) containing the calculated maximum values of each
objecFve.
n member array (doubles) containing the calculated minimum values of each
objecFve.
2-D matrix (doubles) containing the anchor points. Its size is (n×n).

4.2.2 min_max.m
This funcFon is used by the main MOFA funcFon but can be called independently.

funcFon [mxhr,mihr] = min_max(model, objc)

This funcFon solves for the maximum and minimum fluxes of each objecFve. This is another
way of conducFng flux variability analysis (FVA) (4). FVA is a method in COBRA that solves for

 4

the upper and lower bounds of all steady-state reacFon fluxes in a model. In the MOFA code,
this is done only for the objecFves of interest.
Inputs:

model
objc

COBRA model object
the names of the objecFves (cell array of strings)

Outputs:
mxhr

mihr

n member array (doubles) containing the calculated maximum values of each
objecFve.
n member array (doubles) containing the calculated minimum values of each
objecFve.

5. An example MOFA analysis using an E. coli model

First, iniFate the COBRA toolbox:
>> initCobraToolbox
GLPK is the only supported solver at this Fme. If it is not the current solver, then the program
will switch to it for MOFA usage.
The E. coli model (iAF1260) (5) can be downloaded from:
https://www.embopress.org/action/downloadSupplement?doi=10.1038%2Fmsb4100155&file=m
sb4100155-sup-0006.zip
unzip the file and from the folder msb4100155-sup-0006 copy the file Ec_iAF1260_flux1.txt to
your COBRA folder. Change the designaFon of the file from .txt to .xml
We chose iAF1260 as an example because it is a widely used human-curated model. The
example MOFA analyses are meant solely to demonstrate the workings of our MOFA code,
rather than to provide novel biological insight.
The model should be imported to a COBRA model object.
The model can be loaded into MATLAB using the following command:
>> model = readCbModel(’Ec_iAF1260_flux1.xml’);
Then navigate to the directory where the MOFA folder is located.
The inputs for the MOFA analysis should be placed in an input file. The file
“mofa_Ecoli_sample_input.txt” has been included with our code.
For this analysis we examine 6 different objecFves. The growth main objecFve (obf =
Ec_biomass_iAF1260_core_59p81M) and five other objecFves (obj = {EX_o2_e_, EX_co2_e_,
EX_ac_e_, EX_etoh_e_, EX_nh4_e_} represenFng exchange reacFons for oxygen, carbon
dioxide, acetate, ethanol, and ammonia, respecFvely.

The input file for the E. coli simulaFon with 6 objecFves is shown in Table M2.

For a full list of available reacFons, examine the ’rxns’ and ’rxnNames’
fields in the COBRA model object.
Finally, the number of divisions can also be specified:
>> ndiv = 5;
The number of divisions must be posiFve and greater than 3.

 5

Table M2: Input file for the E. coli with objecFves chosen from the iAF1260’s reacFons (’
mofa_Ecoli_sample_input.txt’).

#enter the name of the objecFve to be opFmized
Ec_biomass_iAF1260_core_59p81M
#enter the list of other objecFves
EX_o2_e_
EX_co2_e_
EX_ac_e_
EX_etoh_e_
EX_nh4_e_

At this point, one can look at the model object and make modificaFons to the constraints and
other fields as necessary before calling the main MOFA funcFon.

The MOFA funcFon command is:
>> [mofa_sol, mxhr, mihr, aphr] = mofa(model,’mofa_ecoli_input.txt’
, [] , [] , ndiv, ’max’);

To review, the first argument is the model as a COBRA object; the second is the name of an
input file containing the list of objecFves; the third is the list of objecFves; the fourth gives the
main objecFve but since both are included in the input file, they are blank. The fiLh and sixth
are the number of divisions and whether to maximize (’max’) or minimize (’min’) the main
objecFve, respecFvely. Only the first two arguments are mandatory. The last four are opFonal. If
the number of divisions and opFmizaFon sense are not supplied, the default number of
divisions is 10 and the main objecFve will be maximized.
A file showing the output of an example MOFA simulaFon (ndiv=5, input file=
mofi_ecoli_input.txt) Ftled “mofa_output.txt” is included. It lists the 1512 Pareto opFmal
soluFons that form the 6D Pareto front at a relaFvely low level of granularity. The results are
normalized, i.e., the fracFon of the opFmum value that the objecFve can a\ain given the model
constraints. Thus, the values will be between 0 and 1. All of the output values are provided both
in a tab-separated data file and in MATLAB variables for further analysis and graph plosng using
MATLAB or Excel.

6 Normalized Normal Constraint (NNC) method
Our MOFA code uses the NNC method of mulF-objecFve opFmizaFon (6).
Problem Statement: The mulF-objecFve opFmizaFon (MO) problem can be defined as:

min
!
{𝐹"(𝑥)𝐹#(𝑥)⋯𝐹$(𝑥)} , 𝑛 ≥ 2 (1)

Subject to the constraints:
𝑔%(𝑥) ≤ 0,1 ≤ 𝑗 ≤ 𝑟 (2)
ℎ&(𝑥) ≤ 0,1 ≤ 𝑘 ≤ 𝑠 (3)
𝑥'(≤ 𝑥(≤ 𝑥)(, 1 ≤ 𝑖 ≤ 𝑛! (4)

The vector x denotes the set of constraint variables and Fi denotes the ith objecFve.

 6

Algorithm Steps:

Step 1: Ini+alize Simula+on

a. Load SBML model or COBRA model object.
b. Process input file or lists of objecFves.

Step 2: Find utopia/nadir points (maximum/minimum flux values for all objec+ves).

The points that contain the set of maximum and minimum values of all
objecFves are called the

1. Utopia point
𝐹* = [𝐹"(𝑥"∗)𝐹"(𝑥#∗)⋯𝐹"(𝑥$∗)] (5)

2. Nadir point
𝐹, = [𝐹",𝐹#,⋯𝐹$,] (6)

Where 𝐹(, = 𝑚𝑎𝑥[𝐹"(𝑥"∗)𝐹"(𝑥#∗)⋯𝐹"(𝑥$∗)], 𝑖 ∈ {1,2,⋯𝑛}.

These points are used as reference points in objecFve space as there is not a way to
simultaneously opFmize all objecFves. In the NNC, the utopia point is used to normalize the
space in each dimension. This is essenFally performing Flux Variability Analysis (FVA) on the
defined objecFves. The difference between these two points gives the range for each dimension
in objecFve space, a vector:

𝐹A = B
𝜈"
⋮
𝜈$
E = 𝐹, − 𝐹* (7)

Which leads to the normalized objecFves,

𝐹-G =
.!/.!(!!∗)

2!
, 𝑖 ∈ {1,2,⋯𝑛} (8)

Step 3: Find Anchor Points

The NNC method uses anchor points as reference vertices in objective space. The anchor points
are calculated by individually minimizing each objective (Fj) individually, subject to the problem
constraints, to obtain the jth anchor point, Fj (j = 1,…,n).

Step 4: Define utopia line (utopia hyperplane)

From the verFces of the anchor points, we can define a utopia hyperplane.
We define the direcFon of the utopia line vector

𝑁G = 𝐹A$∗ − 𝐹A&∗ (9)
Then we compute a normalized increment along the direcFon 𝑁G&for a prescribed number of
divisions x for each direcFon k:

𝛿& =
"

!/"
, 1 ≤ 𝑘 ≤ 𝑛 − 1 (10)

 7

Parameter aij is incremented by d between 0 and 1 and we use values of j where 𝑗 ∈
{1,2,⋯ , 𝑛}.

Step 5: Generate evenly distributed hyperplane points.

Evaluate a set of evenly distributed points on the Utopia hyperplane as

𝑋3% = ∑ 𝛼%&𝐹A&∗$
%4" (11)

where
0 ≤ 𝛼%& ≤ 1 (12)

and
∑ 𝛼%& = 1$
&4" . (13)

Next the use the set of equally distributed points generated at the previous step to compute the
Pareto soluFon by solving the following LP problem at each point individually

𝑚𝑖𝑛 𝐹A$ (14)
𝑔%(𝑥) ≤ 0,1 ≤ 𝑗 ≤ 𝑟 (15)
ℎ&(𝑥) ≤ 0,1 ≤ 𝑘 ≤ 𝑠 (16)
𝑥'(≤ 𝑥(≤ 𝑥)(, 1 ≤ 𝑖 ≤ 𝑛! (17)

Figure M1: SchemaFc of MOFA workflow

Step 6: Gather Pareto points to form Pareto fron+er.

The set of Pareto points is combined into the fronFer.

 8

Step 5 is performed repeatedly, traversing from point to point unFl all are covered. The
simulaFon also skips points close to the previous point. Figure M1 summarizes and categorizes
the workflow of the current version of the soLware.

7. Defini+ons
Flux variability analysis (FVA): for a given level of the cellular objecFve (e.g., biomass yield)
finding the upper and lower bounds of all steady-state reacFon fluxes can be determined.

Anchor point: Axis point in mulF-objecFve space where the objecFve interest is at its maximum.

Utopia (hyper)plane: the mulFdimensional plane formed by the connecFon of the anchor
points.

Pareto front(ier): The set of feasible points in objecFve space at points where
moving away from it improves the value of the others.

COBRA Toolbox: Constraint-Based ReconstrucFon and Analysis add-on to MATLAB®.

Normalized Normal Constraint (NNC) method: a mulF-objecFve algorithm for generaFng an
equally spaced set of Pareto points.

*Feasible: Feasible soluFon found.

*Wasted SimulaFon: Infeasible or unbounded soluFon found at point.

* DefiniFon refers to variables in the code.

References

1. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. CreaFon and
analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nature
protocols. 2019:1.
2. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. QuanFtaFve
predicFon of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0.
Nature protocols. 2011;6(9):1290-307.
3. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ. QuanFtaFve
predicFon of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc.
2007;2(3):727-38.
4. Mahadevan R, Schilling CH. The effects of alternate opFmal soluFons in constraint-based
genome-scale metabolic models. Metab Eng. 2003;5(4):264-76.
5. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale
metabolic reconstrucFon for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic informaFon. Mol Syst Biol. 2007;3:121.

 9

6. Messac A, Ismail-Yahaya A, Ma\son CA. The normalized normal constraint method for
generaFng the Pareto fronFer. Structural and mulFdisciplinary opFmizaFon. 2003;25(2):86-98.

3.

