MOFA User Manual

Marc Griesemer Ali Navid

Table of Contents

1. INtroduction tO IMOFA...........eeciiiiieeneniiiiiniemuesisisiimsss
2. USEr REQUITEMENLScccuuuiervreeiirineiirisiiirisisissisissssssmsiemismssssmsssissmsssssssssssssssssssssssssssssnsssns
2.1Hardware and software reqUIir@mMeNts........ccciiieeruuiiiiinniineenmnniiiieiiieemmsiimmessssssitssssssssses

2.2 SIMUIation reqUIrEMENTSeiiiiiiiiiiiiiiiiiiiiiieeraniiiieetiteesssssiissttteessssssssssssssesssssssssssssssssssasssss
b R UL O 0o 1 T =T 1o LSRRI
2.2.2 SErUCtUre Of INPUL AFBUMENTS c..uiiiiiiiiieeitie et st e st et este e srtee e teeesaaeesateessbeesateessseesabaesseesnsaeensasensseensseess
2.2.3 RUNTIME FACTONS ..ttt ettt ettt e ettt e e e e e e s abe e et e e e e e seaanbeeeeeeeeee s nbabeeeeeeesasannbeeeeaeeeeesaannnnees

I 2 17 13 o 1| o 1 Lo 1 PN
4. MOFA FUNCEION SEPUCTUFIE ouuuueeeeeeireeeererereesseirseesesessessessssssnne
4.1 INdeX Of IMOFA fUNCHIONS ..cuuieuiiiiiiiieieieiteeeietereeeeiteesteesrassresssessssssssesnsessssesssasssassssssssssasssasssnsennns

4.2 Functions for running a SiMulation ...
2t ' o = 1Y o [SR PPPP
o oo Y[o T 0T D' o o T U PSP PP PPPPRTON

5. An example MOFA analysis using an E. coli model....................ceevviveeuericiiirivveenssssssnvnnnsssssnns
6 Normalized Normal Constraint (NNC) MetRod.................eeeeeeeeeiiiiiiiinininnnnnnseneeenennensssnnssssesses
A 0 T 11 13 L X3

RESOIOINCES ...cceuueeeiiriereeniiiiiiiienuiiiisiiiieniisisssssisses

1. Introduction to MOFA

MOFA is a COBRA toolbox (1-3) extension using MATLAB® for performing multi-objective
analysis of trade-offs among different objectives of a biosystem using constraint-based models
of biochemical processes. This document outlines the software. Any queries regarding use of
MOFA are welcome and should be directed to Ali Navid (navid1@IInl.gov).

2. User Requirements

2.1 Hardware and software requirements

No specific hardware requirements are necessary beyond what MATLAB needs. The code uses
the GLPK solver that is included with the latest download of COBRA Toolbox. No other LP solvers
are currently supported.

2.2 Simulation requirements

2.2.1 User Considerations

1. The user needs to ensure that model is well constrained and provides accurate FBA

solutions that do not violate mass balance and thermodynamic laws.
2. The user must confirm that the model would be valid (without errors) for optimization
using COBRA toolbox.

2.2.2 Structure of Input Arguments
MOFA needs information on the parameters of the simulation: namely, the model, the number
of divisions of the Pareto front, and the specified objectives. The user can use an input file (see
Table M1) or function arguments to supply the list of objectives. The program uses a modified
COBRA model object that has unique constraints for the defined objectives. The solution is the
n-dimensional (n=number of examined objectives) solution of the normalized objective values
that composes the Pareto front. One must use valid objectives contained in the model;
otherwise, the program will print an error message and exit. It is useful to check that the
objective names are correctly spelled and that there are no blank lines at the end of the list.
2.2.3 Runtime Factors
The time taken by the simulation depends on:

1. The number of objectives

2. The number of divisions

3. The objectives chosen.
Table M1: Structure of input file includes list of objectives, including the main objective

(name of the file).txt

COMMENT

(name of the objective to be optimized during MOFA iterations)
#COMMENT

(objective name 1)

(objective name 2)

(objective name n)

3. Installation
1. Install MATLAB® (http://www.mathworks.com); a license is required.
2. Download and install the COBRA toolbox as directed from
https://opencobra.github.io/cobratoolbox
3. Install MOFA by adding the package folder into the COBRA folder. Alternative locations
outside the MATLAB path for MOFA will require a path addition.

4. MOFA Function Structure
4.1 Index of MOFA functions

1 | mofa.m Main function
2 | min_max.m Finds the minimum and maximum fluxes of all objectives
3 | anch_pts.m Finds the anchor points, auxiliary function

4.2 Functions for running a simulation.

There are the two functions the user can use to conduct MOFA analyses, mofa and min_max. A
third function, anch_pts, determines the anchor points but is an auxiliary function used only by
the main MOFA program. This subsection gives a listing of the inputs and outputs of these
functions.

4.2.1 mofa.m

This is the main MOFA function for the code.

function [mofa_sol, mxhr, mihr, aphr] = mofa(model, inp_file, [], [], ndiv, mi_mx)

Inputs:
model COBRA model object
inp_file Input text filename with listing of objectives (string)
ndiv Optional: number of divisions (integer)
mi_mx Optional: Main objective minimized or maximized (string, ‘min’ or ‘max’)
Outputs:
mofa_sol | List of feasible values for Pareto points (matrix of doubles)
mxhr n member array (doubles) containing the calculated maximum values of each
objective.
mihr n member array (doubles) containing the calculated minimum values of each
objective.
aphr 2-D matrix (doubles) containing the anchor points. Its size is (nxn).

4.2.2 min_max.m
This function is used by the main MOFA function but can be called independently.

function [mxhr,mihr] = min_max(model, objc)

This function solves for the maximum and minimum fluxes of each objective. This is another
way of conducting flux variability analysis (FVA) (4). FVA is a method in COBRA that solves for

the upper and lower bounds of all steady-state reaction fluxes in a model. In the MOFA code,
this is done only for the objectives of interest.

Inputs:
model COBRA model object
objc the names of the objectives (cell array of strings)
Outputs:
mxhr n member array (doubles) containing the calculated maximum values of each
objective.
mihr n member array (doubles) containing the calculated minimum values of each
objective.

5. An example MOFA analysis using an E. coli model

First, initiate the COBRA toolbox:

>> initCobraToolbox

GLPK is the only supported solver at this time. If it is not the current solver, then the program
will switch to it for MOFA usage.

The E. coli model (iAF1260) (5) can be downloaded from:
https://www.embopress.org/action/downloadSupplement?doi=10.1038%2Fmsb4100155&file=m
sb4100155-sup-0006.zip

unzip the file and from the folder msb4100155-sup-0006 copy the file Ec_iAF1260 flux1.txt to
your COBRA folder. Change the designation of the file from .txt to .xml

We chose iAF1260 as an example because it is a widely used human-curated model. The
example MOFA analyses are meant solely to demonstrate the workings of our MOFA code,
rather than to provide novel biological insight.

The model should be imported to a COBRA model object.

The model can be loaded into MATLAB using the following command:

>> model = readCbModel(’Ec_iAF1260_flux1.xml’);

Then navigate to the directory where the MOFA folder is located.

The inputs for the MOFA analysis should be placed in an input file. The file
“mofa_Ecoli_sample_input.txt” has been included with our code.

For this analysis we examine 6 different objectives. The growth main objective (obf =
Ec_biomass_iAF1260_core_59p81M) and five other objectives (obj = {EX_02_e_, EX_co2_e_,
EX_ac_e_, EX_etoh_e_, EX_nh4d_e_} representing exchange reactions for oxygen, carbon
dioxide, acetate, ethanol, and ammonia, respectively.

The input file for the E. coli simulation with 6 objectives is shown in Table M2.

For a full list of available reactions, examine the ‘rxns’ and ‘rxnNames’
fields in the COBRA model object.

Finally, the number of divisions can also be specified:

>> ndiv = 5;

The number of divisions must be positive and greater than 3.

Table M2: Input file for the E. coli with objectives chosen from the iAF1260’s reactions (’
mofa_Ecoli_sample_input.txt’).

#enter the name of the objective to be optimized

Ec_biomass_iAF1260 core_59p81M

#enter the list of other objectives

EX_02_e_

EX_co2_e_

EX_ac_e_

EX_etoh_e_

EX_nh4d_e_

At this point, one can look at the model object and make modifications to the constraints and
other fields as necessary before calling the main MOFA function.

The MOFA function command is:
>> [mofa_sol, mxhr, mihr, aphr] = mofa(model,’mofa_ecoli_input.txt’
, 11, 11, ndiv, 'max’);

To review, the first argument is the model as a COBRA object; the second is the name of an
input file containing the list of objectives; the third is the list of objectives; the fourth gives the
main objective but since both are included in the input file, they are blank. The fifth and sixth
are the number of divisions and whether to maximize (‘'max’) or minimize (‘'min’) the main
objective, respectively. Only the first two arguments are mandatory. The last four are optional. If
the number of divisions and optimization sense are not supplied, the default number of
divisions is 10 and the main objective will be maximized.

A file showing the output of an example MOFA simulation (ndiv=5, input file=
mofi_ecoli_input.txt) titled “mofa_output.txt” is included. It lists the 1512 Pareto optimal
solutions that form the 6D Pareto front at a relatively low level of granularity. The results are
normalized, i.e., the fraction of the optimum value that the objective can attain given the model
constraints. Thus, the values will be between 0 and 1. All of the output values are provided both
in a tab-separated data file and in MATLAB variables for further analysis and graph plotting using
MATLAB or Excel.

6 Normalized Normal Constraint (NNC) method
Our MOFA code uses the NNC method of multi-objective optimization (6).
Problem Statement: The multi-objective optimization (MO) problem can be defined as:
min{F, () F(x) -~ F(0}hn=2 (1)
Subject to the constraints:
gix)<01<j<r (2)
hy(x) <01<k<s (3)
X <xi<x,,1<i<n, (4)
The vector x denotes the set of constraint variables and Fidenotes the ith objective.

Algorithm Steps:

Step 1: Initialize Simulation

a. Load SBML model or COBRA model object.
b. Process input file or lists of objectives.

Step 2: Find utopia/nadir points (maximum/minimum flux values for all objectives).

The points that contain the set of maximum and minimum values of all
objectives are called the

1. Utopia point
FU = [F(")F () F ™)) (5)
2. Nadir point
FN =[F'F K] (6)
Where FY = max[F; (x**)F, (") -+ Fy (x™)], i € {12, n}.

These points are used as reference points in objective space as there is not a way to
simultaneously optimize all objectives. In the NNC, the utopia point is used to normalize the
space in each dimension. This is essentially performing Flux Variability Analysis (FVA) on the
defined objectives. The difference between these two points gives the range for each dimension
in objective space, a vector:

V1
vn
Which leads to the normalized objectives,
E:m'ie{l'z'...n} (8)

Vi

Step 3: Find Anchor Points

The NNC method uses anchor points as reference vertices in objective space. The anchor points
are calculated by individually minimizing each objective (Fj) individually, subject to the problem
constraints, to obtain the jth anchor point, Fj(j = 1,...,n).

Step 4: Define utopia line (utopia hyperplane)

From the vertices of the anchor points, we can define a utopia hyperplane.
We define the direction of the utopia line vector
N = Fv — Fk= (9)
Then we compute a normalized increment along the direction N, for a prescribed number of
divisions x for each direction k:

Sp=—,1<k<n-1 (10)

1
x—1’

Parameter ¢;;is incremented by 6 between 0 and 1 and we use values of j where j €
{1,2,---,n}.

Step 5: Generate evenly distributed hyperplane points.

Evaluate a set of evenly distributed points on the Utopia hyperplane as
ij = 21]:1=1 aijk* (11)

where
0< 257% <1 (12)

and
Yk=1% = 1. (13)

Next the use the set of equally distributed points generated at the previous step to compute the

Pareto solution by solving the following LP problem at each point individually

minE, (14)
gix)<01<j<r (15)
h,(x)<01<k<s (16)

X <x; <xy,1<i<n, (17)

1. Load input file: define 2. Calculate max/min 3. Calculate the maximum of one
objectives, number of divisions, objective flux values. objective, while minimize the
and name of input problem file. remaining successively.

Generate Anchor
Points

Initialize Perform Flux Variability

Simulation Analysis

Define Generate and solve LP
Pareto Front problem

Create Utopia Hyperplane

6. Gather normalizedset 5. Traverseall points and 4. Grid n-dimensional
of Pareto points in solve for Pareto optimality objective space with
feasible objective space. each time. equally spaced points.

Figure M1: Schematic of MOFA workflow
Step 6: Gather Pareto points to form Pareto frontier.

The set of Pareto points is combined into the frontier.

Step 5 is performed repeatedly, traversing from point to point until all are covered. The
simulation also skips points close to the previous point. Figure M1 summarizes and categorizes
the workflow of the current version of the software.

7. Definitions

Flux variability analysis (FVA): for a given level of the cellular objective (e.g., biomass yield)
finding the upper and lower bounds of all steady-state reaction fluxes can be determined.

Anchor point: Axis point in multi-objective space where the objective interest is at its maximum.

Utopia (hyper)plane: the multidimensional plane formed by the connection of the anchor
points.

Pareto front(ier): The set of feasible points in objective space at points where
moving away from it improves the value of the others.

COBRA Toolbox: Constraint-Based Reconstruction and Analysis add-on to MATLAB®.

Normalized Normal Constraint (NNC) method: a multi-objective algorithm for generating an
equally spaced set of Pareto points.

*Feasible: Feasible solution found.

*Wasted Simulation: Infeasible or unbounded solution found at point.
* Definition refers to variables in the code.

References

1. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and
analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nature
protocols. 2019:1.

2. Schellenberger J, Que R, Fleming RMT, Thiele |, Orth ID, Feist AM, et al. Quantitative
prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0.
Nature protocols. 2011;6(9):1290-307.

3. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ. Quantitative
prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc.
2007;2(3):727-38.

4, Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based
genome-scale metabolic models. Metab Eng. 2003;5(4):264-76.
5. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale

metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Mol Syst Biol. 2007;3:121.

6. Messac A, Ismail-Yahaya A, Mattson CA. The normalized normal constraint method for
generating the Pareto frontier. Structural and multidisciplinary optimization. 2003;25(2):86-98.
3.

