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Figure S1. PrtP protein homologs from plant derived lactic acid bacteria (LAB) strains.

The entire PrtP homologous protein sequences were used to build a phylogenetic tree, with the tree topography determined by
the neighbor-joining method. Bootstrapping with 100 replicates was used to assess tree reliability. Most branches were
supported by bootstrapping above 70%, as shown by the thick lines. The phylogenetic tree is shown as a radial tree (A) and a
circular cladogram with metadata layers (B). The PrtP homologs were discovered using genome sequences of LAB strains
derived from various plant isolates. The LAB strains were from the National Food Institute Culture Collection (NFICC), and the
proteases were named PrtP, followed by the name of the LAB strain. Three PrtP homologs (red) were found in a single LAB
strain, with names including the last letter of the corresponding contig names. The LAB strains included different species (node
color). The black branch lengths of the radial phylogenetic tree were proportional to the Jukes-Cantor distances, as indicated by
the scale bar. The circular cladogram showed five metadata layers #1 — #5. The metadata layer #1 to #4 were colored according
to the gray scale bar values. Metadata layer #1 displayed the predicted likelihood for a secretory signal (SS) peptide, whereas
metadata layer #2, #3 and #4 displayed the protein sequence identity, similarity and coverage of pairwise HHpred comparisons
between PrtPwg, and each of listed PrtP homologs.
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Figure S2. Phylogenetic three of PrtP protein homologs based on their whole protein sequences.

The entire protease sequences were used to construct the radial phylogenetic tree. The names of the LAB strains were provided
as part of the protease name to distinguish between the proteases with the same name. The LAB strains derived from plant
sources were from the National Food Institute Culture Collection (NFICC). The neighbor-joining method was used to generate
the tree topography. Black branch lengths were proportional to the Jukes—Cantor distances, indicated by the scale bar.
Bootstrapping with 100 replicates was used to assess the tree reliability. All branches were verified with bootstrapping above
70 %, as shown by the thick lines. PrtP homologs were found in different bacteria strains of different species (outer circle layer)
that were derived from different origins (inner circle layer). Three PrtP homologs (red) were from Leuconostoc

pseudomesenteroides NFICCI6 like the four PrtP homologs (blue) were from Lactobacillus helveticus CNRZ32. The clusters of

PrtP homologs were assigned | — Xlll based on the phylogenetic tree in figure 1, but follow the same order in this tree, counting

clockwise after subtilisin. PrtP homologs marked with asterisks were included for further structural analysis.
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Figure S3. Predicted aligned error (PAE) plots for AlphaFold 2 (AF) models.

PAE provided a distance error for every pair of residues in each AF models of the PrtP homologs. AF had created five structural
models for every PrtP homolog that were ranked from 1 to 5. The PAE values were shown as pixels in the heat maps and ranged
from 0 to 35 A. The residue numbers of the proteases were displayed along the horizontal and vertical axes, indicating PAE
value for the corresponding residue pair. The prepeptides, with the exception of PrtPneiccost, Were not included in the structure
models and thus not in the residue numbers. Low PAE values (< 5 A) indicated that the relative position of two domains were
confidently predicted.
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Figure S4. Multiple sequence alignment (MSA) depth for AlphaFold 2 (AF) models.

The plots showed the quality of the MSA used for AF structure modeling. The numbers of protein sequences were shown along
the vertical axis, whereas the amino acid position of the query sequence was shown along the horizontal axis. The prepeptides,
with the exception of PrtPyriccosn, Were not included in the structure models and thus not in the residue numbers. The coverage
and identity of the protein sequences to the query sequence was displayed. The plots were output from the ColabFold with the
AF implementation, of which the PrtP homologs were used as query sequences.
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Figure S5. The predicted local distance difference test (pLDDT) for AlphaFold 2 (AF) models.

The plots showed pLDDT (0 — 100) along the vertical axes and the residues numbers of the proteases along the horizontal axes,

illustrating the confidence of each amino acid position in each structure model (rank_1 — rank_5). The prepeptides, with the
exception of PrtPyriccosn, Were not included in the structure models and thus not in the residue numbers. The plots were output
from ColabFold with the AF implementation, of which the PrtP homologs were used as query sequences.
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1 - 13 15 13 10 18 16 16
2 13 - 77 15 12 13 84 10
3 15 77 - 14 40 12 91 8.0
4 13 15 14 - 32 83 44 12
5 10 12 40 32 - 20 19 39
6 18 13 12 83 20 - 38 69
7 16 84 9.1 44 19 38 - 82
8 16 10 8.0 12 39 69 82 -

Figure S6. Intramolecular comparison of fibronectin type-lli-like (Fn) domains.

1 2 3 4 5 6
1 - 1" 15 12 15 13
2 " - 16 29 13 14
3 15 16 - 18 16 13
4 12 29 18 - 15 6.9
5 15 13 16 15 - 14
6 13 14 13 6.9 14 -

The structure of the (Fn) domains were superimposed in pairs within PrtPus22337 (A) and ScpC (B). The RMSD values were given
for each pair of Fn domains.
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Figure S7. Long tandem repeats in the cell wall spacing (W) domain.
The W-domains of the PrtP homologs were shown as turquoise bar plots, in which darker colored boxes indicated the relative

positions of long tandem repeats. The sequence pattern of the tandem repeats were given in top of figure A, B and C.
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