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Abstract: Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production charac-
terized by high biomass and nutrient content. In this study, we investigated the effects of cassava
foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen
fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided
into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4),
and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment
lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing
50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher
average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as
well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase
(AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant
activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and
total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava
foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4),
immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore,
the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community
composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were
the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline
in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a
diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which
enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth
performance, and immunity in the goats.

Keywords: cassava foliage; antioxidant; immunity; ruminal bacterial; metabolites

1. Introduction

It is well established that forage is an important dietary resource for ruminants that is
critical for ensuring rumen health and improving production. In recent years, ruminant
husbandry has rapidly developed in China, and the total amount of ruminant livestock
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raised has greatly increased; the existing grassland area was limited, leading to a shortage
of high-quality forage [1–3]. As a result, large quantities of forage are imported every
year, increasing feed costs and affecting the sustainability of ruminant husbandry; the
importation of feed has become a key constraint on the development of animal husbandry
in China [1]. Goats are important ruminant livestock in the tropical and subtropical regions
of China, but cash crops were the dominant plant in these regions; the lack of native grass
brought about insufficient roughage supplies [3]. The pursuit of better exploitation of
locally available forage resources has caused an upsurge in related research.

Cassava (Manihot esculenta Crantz) is an important crop in sub-tropics and tropics
worldwide [4,5]. Cassava foliage is a byproduct of cassava production and is character-
ized by high biomass, digestibility and protein content, as well as low fiber content [6–8].
Therefore, cassava foliage represents an ideal feed source with the potential to aid the
sustainable development of local animal husbandry in the tropical regions of the world.
In less developed countries and regions lacking high-quality feed, adding cassava foliage
to animal diets has a positive effect on digestion, growth, and gastrointestinal tract devel-
opment [9–14]. However, for each ruminant species, there is an optimum percentage of
cassava foliage in the diet to maximize growth; for example, the ideal is 75% for sheep, 60%
for West African Dwarf goats, 50% for pigs, and 5% for geese [9,10,13,15]. Based on the
above studies, cassava foliage should support goat production in tropical China, but the
ideal ratio of cassava foliage supplementation remains unknown.

Previous studies have primarily focused on production without examining effects
on the gut microbiota and metabolite diversity. Microbial communities in ruminant di-
gestive tracts play a key role in forage digestion and absorption, converting plant mate-
rial into metabolites such as amino acids, ammonia, peptides, and short-chain fatty acids
(SCFAs) [16,17]. Many studies have shown that diet composition regulates ruminant growth
and development by affecting the rumen microbiota and associated
metabolites [18–20]. In previous studies [13,21], the addition of cassava foliage to the
diet of geese affected intestinal microbial diversity and gene function, promoting growth
performance. However, the effects of cassava foliage addition on rumen microecology
remain unknown. To more efficiently utilize cassava foliage in animal diets, understanding
its effects on gut microorganismal community composition and metabolism will be essen-
tial for determining precision animal nutrition. Thus, this study investigated the effects
of cassava foliage addition on antioxidant capacity, growth performance, immunity, and
ruminal microbial metabolism in goats from tropical China.

2. Materials and Methods

The animal experiments in this study were approved by the Animal Care and Use Com-
mittee of the Chinese Academy of Tropical Agricultural Sciences (No. CATAS-20140101).
All experimental procedures were performed in agreement with relevant guidelines.

2.1. Animal, Diet, and Sample

Twenty-five Hainan black goats of similar body condition (10.20 ± 0.86 kg) were
randomly assigned to five treatment groups (n = 5 per group). Animals were housed
individually and offered free access to fresh water. Their diet consisted of 50% goat feed
and 50% forage; feed was provided twice daily at 07:30 and 17:00. The dietary ingredients
and nutrition composition were formulated to meet NRC (2007) recommendations and
previously described nutritional requirements [22]. The same amount of goat feed and
forage was provided to each treatment group, but the composition of the forage varied by
treatment. The forage contained varying amounts of cassava foliage silage in place of king
grass: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5). The chemical composition of
the goat diet (including concentrate, cassava foliage silage, and king grass) for each treat-
ment group is described in Table 1. The feeding experiment lasted for 70 days (including a
10 day adaptation period and a 60 day treatment period).
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Table 1. Ingredients and nutrient composition of the concentrated goat feed, cassava foliage, and
king grass forage (all units g/kg, as feed).

Ingredients T1 T2 T3 T4 T5 Cassava
Foliage King Grass

Maize 335 335 335 335 335
Soybean meal 90 90 90 90 90
Wheat bran 49 49 49 49 49

Salt 7 7 7 7 7
Shell powder 7 7 7 7 7

Sodium bicarbonate 7 7 7 7 7
Premix a 5 5 5 5 5

Cassava foliage 0 125 250 375 500
King grass 500 375 250 125 0
Nutrition

ME (MJ/kg) b 9.2 9.2 9.3 9.2 9.3
Crude protein (g/kg) b 166 168 168 172 176 172 114
Neutral detergent fiber

(g/kg) b 448 440 433 428 422 289 658

Acid detergent fiber
(g/kg) b 281 275 270 267 260 250 333

Calcium (g/kg) b 8.0 7.9 8.3 8.2 8.0 8.9 1.7
Phosphorus (g/kg) b 2.5 2.2 2.2 2.3 2.4 3.3 1.0

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage
with 50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. a The
premix provided the following per kilogram of diet: VA 15,000 IU; VD 5000 IU; VE 50 mg; Fe 9 mg; Cu 12.5 mg;
Zn 100 mg; Mn 130 mg; Se 0.3 mg; I 1.5 mg; and Co 0.5 mg. b Analyzed values.

The measurement of average daily gain (ADG), average daily feed intake (ADFI), and
the feed conversion ratio (FCR) were conducted as previously described; the details are as
follows: each goat was weighed on the first and last day of the treatment period to calculate
ADG, amounts of feed provided and the residual of each goat were recorded daily during
the treatment period to calculate DMI, and the FCR was the ratio of ADFI:ADG [3]. About
4 mL of blood samples were taken from each goat’s jugular vein by applying a vacutainer
(no additive) before morning feeding at 60 days of the treatment period. The above samples
were centrifuged at 3000× g for 20 min at 4 ◦C, and the serum was separated into three
parts and stored at −20 ◦C for biochemical indexes, antioxidant capacity, and immunity
factors analyses. The protocol was according to methods described by Li et al. [3] and
Wang et al. [19]. Ruminal fluid samples were collected one hour before the morning feeding
on the last day of the animal experiment. The pH of the fluid samples was measured
immediately after collection using a pH meter. The fluid samples were then divided and
stored at either −20 ◦C for later assessment of the rumen fermentation index or −80 ◦C for
later analysis of ruminal bacterial communities and their metabolites [3,19].

2.2. Chemical Analysis

Rumen fermentation characteristics were measured via gas chromatography
(GC-2014B, Shimadzu, Kyoto, Japan), while blood-based biochemical indicators were
analyzed using commercially available kits (Sigma Aldrich, St. Louis, MO, USA) according
to the manufacturer’s instructions with an automatic biochemical instrument (PUZS-600B,
Langpu New Technology, Co., Ltd., Beijing, China). Both antioxidant and immune indica-
tors were evaluated using commercial kits (Nanjing Jiancheng Biotech, Nanjing, China).
The above assessments followed protocols described by Li et al. [23] and Wang et al. [19].

2.3. Microbial Diversity Analysis

The bacterial communities within ruminal fluid samples were characterized by extract-
ing microbial DNA using the E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA).
The DNA quantity and quality were detected by a NanoDrop 2000 UV-Vis spectrophotome-
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ter (Thermo Scientific, Wilmington, NC, USA). The 338F and 806R primers were used to
amplify the V3–V4 region of DNA on a standard PCR thermocycler (GeneAmp 9700, ABI,
Waltham, MA, USA). The high-quality PCR products were then sequenced on an Illumina
MiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA) with paired-end 250 bp reads [2].

Raw sequence data were processed using MOTHUR [24]. Clean reads were clustered
into operational taxonomic units (OTUs) using a confidence threshold of 97%. Alpha
diversity (i.e., OTU number and Shannon/Simpson’s diversity indices) and beta diversity
(as determined via non-metric multidimensional scaling [NMDS]) were quantified using
QIIME2. Rumen bacterial community structure was analyzed at the phylum and genus
levels using the Silva database (version 138), with a similarity cut-off of 70%. To identify
rumen bacteria unique to each dietary group, the linear discriminant analysis effect size
(LefSe) tool was used with a linear discriminant analysis (LDA) score greater than 4.0 [25].
Bioinformatics analyses were performed in BMKCloud (Biomarker Technologies Co., Ltd.,
Beijing, China). All raw sequence data were deposited into the NCBI Sequence Read
Archive (SRA) database (No. PRJNA951504).

2.4. Metabolome Analysis

The ruminal fluid samples were combined with pre-chilled methanol and L-2-chloroph-
enylalanine in tubes. These were mixed well on a vortex, and mixtures were then ultrasoni-
cated and centrifuged. The supernatant was collected, and a QC (quality control) sample
was prepared; the remaining samples were then pooled and evaporated in a vacuum
concentrator. Next, the pooled samples were incubated with methoxyamine hydrochloride
and derivatized with BSTFA. The QC sample was cooled to room temperature, and then a
mixture of fatty acid methyl esters (FAMEs) was added to identify metabolites. Gas chro-
matography paired with time-of-flight mass spectrometry (GC-TOF-MS) was performed
using an Agilent 7890 gas chromatographer coupled with a time-of-flight mass spectrome-
ter. The analyzed system used a DB-5MS capillary column. Instrument parameters used
here follow previously reported protocols [18].

Raw data were analyzed in Chroma TOF (V 4.3x, LECO, St. Joseph, MI, USA), and
metabolite identification was performed using the LECO-Fiehn Rtx5 database. Peaks
with a relative standard deviation (RSD) of >30% or <50% in the QC samples were
removed [26]. In a follow-up metabolite data analysis, all samples were analyzed us-
ing principal components analysis (PCA) and partial least-squares discriminant analysis
(PLS-DA). Identified compounds were classified, and pathway information was obtained
from the KEGG database. Differentially expressed metabolites (DEMs) (p < 0.05) were
identified using Student’s t-tests and an orthogonal partial least-squares discriminant
analysis (OPLS-DA) based on variable importance in projection (VIP) values greater than
one. Differentially expressed metabolites in the KEGG pathway enrichment analysis were
identified using hypergeometric distribution tests. Heatmaps were generated using the
‘corrplot’ package in R and BMKCloud (www.biocloud.net, accessed on 3 April 2023).

The above procedures for sample preparation, metabolite separation and identification,
and data analysis are described in greater detail in a previous publication [18].

2.5. Statistical Analysis

After the Shapiro–Wilk test, all data in this study’s distributions accord with normal
distribution; the impact of cassava foliage inclusion on growth performance, blood bio-
chemical, antioxidant, immune, and rumen fermentation indexes of goats were investigated
using one-way analyses of variance as implemented in SAS v. 9.3 (SAS Institute Inc., Cary,
NC, USA). The orthogonal polynomial contrasts (linear and quadratic) were used to evalu-
ate the effect of the cassava foliage inclusion ratio in the goat diet. Duncan’s multiple range
tests were used to identify significant differences, and effects with p < 0.05 were considered
statistically significant.

www.biocloud.net
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3. Results
3.1. Growth Performance

The effects of the diet treatments on goat growth performance are shown in Table 2.
The ADG was significantly higher for goats on a diet including cassava foliage than for
those without (p < 0.05), but ADG did not differ among goats from T2, T3, T4, and T5
(p > 0.05). The ADFI was highest in the T3 treatments group (p < 0.05) and showed a trend of
first increasing and then decreasing. The FCR was significantly lower for goats consuming
cassava foliage than for controls (i.e., no cassava foliage included in diet) (p < 0.05), and
the four treatment groups (i.e., all diets including cassava foliage) had similar FCR, which
meant that added cassava foliage improves feed conversion efficiency.

Table 2. Effects of different diets on the growth performance of Hainan black goats.

Treatment T1 T2 T3 T4 T5 SEM
p-Value

T L

Average daily
gain (g/day) 32.2 ± 4.9 b 52.3 ± 4.5 a 53.5 ± 1.2 a 51.8 ± 4.0 a 59.5 ± 3.9 a 4.6 p < 0.05 p > 0.05

Average daily
feed intake

(g/day)
503 ± 9.6 b 504 ± 11.7 b 532 ± 10.6 a 485 ± 20.8 b 499 ± 21.8 b 7.6 p < 0.05 p > 0.05

Feed
conversion rate 16.9 ± 2.2 a 9.9 ± 0.86 b 10.0 ± 0.37

b 9.5 ± 0.71 b 8.5 ± 0.58 b 1.5 p < 0.05 p > 0.05

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage with
50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. T, treatment; L,
linear; SEM, standard error of the mean. Means within the same column with different letters are significantly
different (p < 0.05).

3.2. Blood Biochemical Indexes

As shown in Table 3, the addition of cassava foliage to the diet decreased the concentra-
tion of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE),
and triglyceride (TG) (p < 0.05); the concentrations were highest in T1 and lowest in T5
(p < 0.05). However, the concentration of albumin (ALB), blood urea nitrogen (BUN), total
cholesterol (TCHO), total protein (TP), and uric acid (UA) did not differ among treatments
(p > 0.05).

Table 3. Effects of different diets on blood biochemical indexes in Hainan black goats.

Blood
Element

T1 T2 T3 T4 T5 SEM
p-Value

T L

TP (g/L) 69.1 ± 2.7 69.2 ± 1.5 75.2 ± 4.3 73.0 ± 1.8 73.2 ± 2.9 1.2 p > 0.05 p > 0.05
ALB (g/L) 31.7 ± 1.1 30.9 ± 0.86 31.4 ± 0.72 31.7 ± 0.99 26.8 ± 5.1 0.9 p > 0.05 p > 0.05

BU
(mmol/L) 4.8 ± 0.39 5.0 ± 0.31 3.6 ± 0.72 4.2 ± 0.86 4.4 ± 0.96 0.2 p > 0.05 p > 0.05

CRE (g/L) 59.4 ± 6.5 a 55.8 ± 2.2 a 39.8 ± 7.0 b 42.3 ± 7.7 b 37.1 ± 8.2 b 4.5 p < 0.05 p > 0.05
UA

(µmol/L) 114 ± 30.0 159 ± 34.8 114 ± 73.0 171 ± 65.0 178 ± 60.3 13.9 p > 0.05 p > 0.05

GL
(mmol/L) 2.4 ± 0.36 2.4 ± 0.22 1.7 ± 0.73 1.7 ± 0.82 1.9 ± 0.79 0.2 p > 0.05 p > 0.05

TCHO
(mmol/L) 2.2 ± 0.25 2.0 ± 0.25 1.9 ± 0.48 2.0 ± 0.5 1.7 ± 0.44 0.1 p > 0.05 p > 0.05

TG
(mmol/L) 2.9 ± 0.86 a 0.57 ± 0.04 b 0.55 ± 0.06 b 0.55 ± 0.08 b 0.53 ± 0.08 b 0.5 p < 0.05 p > 0.05

ALT (IU/L) 37.7 ± 2.8 a 33.8 ± 1.4 ab 33.1 ± 1.7 ab 31.9 ± 3.8 ab 25.6 ± 4.9 b 2.0 p < 0.05 p > 0.05
AST (IU/L) 97.0 ± 3.7 a 92.1 ± 6.5 a 89.3 ± 3.6 a 76.2 ± 8.1 ab 56.7 ± 13.1 b 7.2 p < 0.05 p > 0.05

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage with
50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. T, treatment; L,
linear; SEM, standard error of the mean. Means within the same column with different letters are significantly
different (p < 0.05).
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3.3. Oxidative Status

Four antioxidant indexes (indicators of overall oxidative status) are shown in Table 4.
The concentration of GSH-Px, T-AOC, and T-SOD first increased and then decreased with
the addition of greater proportions of cassava foliage to the diet (p < 0.05). In contrast,
the MDA concentration showed the opposite pattern. Comparing treatments, T3 had the
highest oxidative capacity.

Table 4. Dietary effects on four antioxidant indexes in Hainan black goats.

Treatment T1 T2 T3 T4 T5 SEM
p-Value

T L

T-AOC
(U/mL) 21.7 ± 0.96 bc 24.2 ± 1.0 ab 24.8 ± 0.50 a 20.0 ± 0.95 c 15.9 ± 0.79 d 1.6 p < 0.05 p > 0.05

MDA
(nmol/mL) 11.8 ± 0.59 ab 10.4 ± 0.62 b 8.4 ± 0.54 c 12.7 ± 0.36 a 13.0 ± 0.49 a 0.8 p < 0.05 p > 0.05

T-SOD
(U/mL) 1881 ± 56.0 c 2211 ± 54.2 b 2428 ± 53.5 a 1830 ± 56.6 c 1555 ± 113.4 d 152 p < 0.05 p > 0.05

GSH-P
(U/mL) 397 ± 8.7 b 434 ± 18.2 b 481 ± 8.7 a 348 ± 9.1 c 321 ± 15.3 c 28.7 p < 0.05 p > 0.05

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage with
50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. T, treatment; L,
linear; SEM, standard error of the mean. Means within the same column with different letters are significantly
different (p < 0.05).

3.4. Immunity Status

Table 5 shows the immunity status of the study goats. Concentrations of C3, C4, IgA,
IgG, and IgM first increased and then decreased with the proportion of cassava foliage
added to the diet (p < 0.05). The moderate treatment (T3; 50% cassava foliage) had the
highest immune capacity.

Table 5. Effects of different diets on immune indexes in Hainan black goats.

Treatment T1 T2 T3 T4 T5 SEM
p-Value

T L

IgA (mg/L) 2842 ± 75.7 bc 3057 ± 67.0 ab 3202 ± 94.9 a 2828 ± 73.3 c 2267 ± 48.2 d 158 p < 0.05 p > 0.05
IgG (g/L) 19.0 ± 0.51 b 20.1 ± 0.71 b 22.2 ± 0.64 a 16.8 ± 0.32 c 15.4 ± 0.83 c 1.2 p < 0.05 p > 0.05

IgM
(mg/L) 2120 ± 88.3 b 2539 ± 78.3 a 2585 ± 68.2 a 1778 ± 56.7 c 1540 ± 57.5 d 431 p < 0.05 p > 0.05

C3 (mg/L) 665 ± 32.9 a 681 ± 29 a 714 ± 13.1 a 563 ± 27.4 b 543 ± 24.1 b 33.8 p < 0.05 p > 0.05
C4 (mg/L) 317 ± 25.9 bc 341 ± 21.4 b 424 ± 19.0 a 295 ± 15.9 bc 264 ± 12.2 c 27.1 p < 0.05 p > 0.05

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage with
50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. T, treatment; L,
linear; SEM, standard error of the mean. Means within the same column with different letters are significantly
different (p < 0.05).

3.5. Rumen Fermentation Index

Rumen fermentation index values for goats in different treatments are provided in
Table 6. Rumen pH and levels of acetate, isobutyrate, isovalerate propionate, and valerate
were similar among treatments (p > 0.05). The ruminal butyrate concentration was highest
in T2 (p < 0.05) and lowest in T5 (p < 0.05). The butyrate concentration decreased as the
proportion of cassava foliage increased (i.e., from T2 to T3, T4 and T5).
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Table 6. Effects of different diets on rumen pH and volatile fatty acids in Hainan black goats (all units
mol/100 mol).

Treatment T1 T2 T3 T4 T5 SEM
p-Value

T L

pH 7.1 ± 0.06 7.2 ± 0.08 7.1 ± 0.10 7.2 ± 0.12 7.2 ± 0.14 0.02 p > 0.05 p > 0.05
Acetate 54.6 ± 4.7 56.2 ± 1.8 56.4 ± 9.4 57.0 ± 4.0 54.6 ± 4.2 0.49 p > 0.05 p > 0.05

Propionate 10.9 ± 0.54 10.4 ± 0.65 9.2 ± 2.0 10.8 ± 0.37 10.6 ± 0.48 0.31 p > 0.05 p > 0.05
Isobutyrate 1.0 ± 0.15 0.90 ± 0.05 0.92 ± 0.24 0.90 ± 0.12 1.1 ± 0.12 0.04 p > 0.05 p > 0.05

Butyrate 5.5 ± 0.95 b 6.6 ± 1.2 a 6.0 ± 1.9 ab 5.7 ± 0.9 b 3.9 ± 0.79 c 0.45 p < 0.05 p > 0.05
Isovalerate 27.6 ± 4.8 25.5 ± 1.9 27.0 ± 8.3 25.3 ± 4.4 29.6 ± 4.7 0.78 p > 0.05 p > 0.05

Valerate 0.45 ± 0.09 0.41 ± 0.01 0.44 ± 0.19 0.38 ± 0.06 0.38 ± 0.03 0.01 p > 0.05 p > 0.05

Note: T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cassava foliage silage with
50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. T, treatment; L,
linear; SEM, standard error of the mean. Means within the same column with different letters are significantly
different (p < 0.05).

3.6. Diversity of the Rumen Microbiome

The α-diversity analysis results of the rumen bacterial communities are shown in
Figure 1, including cassava foliage in the diet affected the Shannon and Simpson diversity
indices for rumen bacterial communities (Figure 1A,B). The Shannon diversity index
was reduced in T3, and the Simpson diversity index was higher in T4 vs. T3 (p < 0.05);
this suggests that consuming cassava foliage resulted in lower α-diversity. A total of
915 OTUs were identified in the rumen microbiome. The five treatment groups had
807 OTUs in common, and only one OTU was unique to the T5 group (Figure 1C). In
the NMDS analysis, the rumen microbial communities varied significantly among the
five treatments (Figure 1D), suggesting that microbial community structure shifted in
response to cassava foliage consumption.

The composition of the rumen bacterial communities was also compared among treat-
ments (Figure 2). Bacteroidetes and Firmicutes were the two predominant phyla identified.
Bacteroidetes abundance increased with the proportion of cassava foliage, while Firmicutes
abundance decreased (Figure 2A). The Prevotella_1 and Rikenellaceae_RC9_gut_group were
the most common genera in the rumen bacterial communities (Figure 2B). The abundance
of both Butyrivibrio_2 and Prevotella_1 significantly increased with the proportion of cassava
foliage (p < 0.05). In addition, the abundance of unclassified bacteria decreased from 25.38%
(T1) to 20.53% (T5).

Differences in the rumen bacterial communities among treatments were detected
using the LEfSe method, and the microbial taxa specific to each group were identified
(Figure 2 C,D). Some biomarkers were enriched in the five groups. The genus Fretibacterium,
belonging to the family Synergistaceae, order Synergistales, class Synergistia, and phylum
Synergistetes, and genus Quinella, belonging to the family Veillonellaceae, were the microbial
taxa enriched in T1. Lactobacillus acetotolerans, which belongs to the order Lactobacillales
and class Bacilli, and the family Lachnospiraceae, which belongs to the phylum Firmicutes,
were enriched in T2. The genus Prevotellaceae_UCG_003 and family Prevotellaceae were
enriched in T3. The genus Candidatus Saccharimonas was enriched in T4. In addition, the
microbial taxa enriched in T5 included the order Bacteroidales, class Bacteroidia, and
phyla Bacteroidetes.
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microbiome. * Means significantly different (p < 0.05).



Microorganisms 2023, 11, 2320 9 of 19

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 2. Microbial community composition (phylum, (A) and genus, (B)) and comparison of mi-
crobial communities (via the LEfSe tool) of rumen microbiomes in goats fed diets with varying pro-
portions of cassava foliage (C,D). T1, 100% king grass; T2, 25% cassava foliage silage with 75% king 
grass; T3, 50% cassava foliage silage with 50% king grass; T4, 75% cassava foliage silage with 25% 
king grass; T5, 100% cassava foliage. 

3.7. Analysis of Rumen Metabolites 
The metabolomic analysis yielded 4913 features. These were used as a batch query 

against the human metabolome database (HMDB) to annotate 4330 individual samples 
with identified features. The identified metabolites were further divided into eight super-
classes and 20 categories (Figure 3) as follows: benzenoids (benzene and its substituted 
derivatives and phenol), eterocyclic compounds (quinolines and derivatives lipids and li-
pid-like molecules), lipids and lipid-like molecules (fatty acyls, glycerolipids, glycer-
ophospholipids, prenol lipids, sphingolipids, steroids, and steroid derivatives), organic 
acids and derivatives (carboxylic acid and derivatives), organic nitrogen compounds (or-
ganonitrogen compounds), organic oxygen compounds (organooxygen compounds), or-
ganoheterocyclic compounds (benzopyran, indoles and derivatives, pteridines and deriv-
atives, pyridines and derivatives, and quinolines and derivatives), phenylpropanoids and 
polyketides (cinnamic acid and derivatives, coumarin and derivatives, and flavonoids). 

Figure 2. Microbial community composition (phylum, (A) and genus, (B)) and comparison of
microbial communities (via the LEfSe tool) of rumen microbiomes in goats fed diets with varying
proportions of cassava foliage (C,D). T1, 100% king grass; T2, 25% cassava foliage silage with 75%
king grass; T3, 50% cassava foliage silage with 50% king grass; T4, 75% cassava foliage silage with
25% king grass; T5, 100% cassava foliage.

3.7. Analysis of Rumen Metabolites

The metabolomic analysis yielded 4913 features. These were used as a batch query
against the human metabolome database (HMDB) to annotate 4330 individual samples
with identified features. The identified metabolites were further divided into eight super-
classes and 20 categories (Figure 3) as follows: benzenoids (benzene and its substituted
derivatives and phenol), eterocyclic compounds (quinolines and derivatives lipids and
lipid-like molecules), lipids and lipid-like molecules (fatty acyls, glycerolipids, glycerophos-
pholipids, prenol lipids, sphingolipids, steroids, and steroid derivatives), organic acids and
derivatives (carboxylic acid and derivatives), organic nitrogen compounds (organonitrogen
compounds), organic oxygen compounds (organooxygen compounds), organoheterocyclic
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compounds (benzopyran, indoles and derivatives, pteridines and derivatives, pyridines
and derivatives, and quinolines and derivatives), phenylpropanoids and polyketides (cin-
namic acid and derivatives, coumarin and derivatives, and flavonoids).
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A comparative metabolomic analysis was used to determine how rumen metabo-
lites differed between goats fed diets with or without cassava foliage, finding significant
differences in their metabolic profiles (Figure 4). There were 881, 1782, 1189, and 1825
differentially expressed metabolites (418, 791, 651, and 1035 up-regulated and 463, 991,
538, and 790 down-regulated metabolites) obtained in the goats fed diets without cas-
sava foliage vs. those fed diets with cassava foliage (for T1 vs. T2, T1 vs. T3, T1 vs. T4,
and T1 vs. T5, respectively) (Figure 4). The ten differentially expressed metabolites with
the highest fold changes could be used as potential biomarkers of cassava-based diets
(Figure 5). The most highly up-regulated metabolites included sorbitan stearate, lysoSM
(d18:1), (S)-oleuropeic acid, 5-dehydroavenasterol, and naziminin A, while the most signifi-
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cantly downregulated metabolites included glutaric acid, 5-hydroxy-2-furoic acid, norfura-
neol, and D-glucuronolactone.
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Figure 4. Comparative metabolomics analysis of goat rumens in animals fed diets with varying
proportions of cassava foliage. T1, 100% king grass; T2, 25% cassava foliage silage with 75% king
grass; T3, 50% cassava foliage silage with 50% king grass; T4, 75% cassava foliage silage with 25%
king grass; T5, 100% cassava foliage. Volcano plots show the number of differentially expressed
metabolites among treatments ((A), T1 vs. T2; (C), T1 vs. T3; (E), T1 vs. T4; (G), T1 vs. T5). Heat
maps show the differences in metabolic profiles for goat rumens from different groups ((B), T1 vs. T2;
(D), T1 vs. T3; (F), T1 vs. T4; (H), T1 vs. T5).

A KEGG pathway enrichment analysis of the differentially expressed metabolites
revealed that diets including cassava foliage showed altered microbial community func-
tioning. A number of metabolic pathways were significantly enriched in T1 vs. T2 (n = 8),
T1 vs. T3 (3), T1 vs. T4 (2), and T1 vs. T5 (3) (Figure 6). The eight significantly en-
riched metabolic pathways in T1 vs. T2 included flavonoid biosynthesis, amino sugar
and nucleotide sugar metabolism, protein digestion and absorption, cysteine and me-
thionine metabolism, glycolysis/gluconeogenesis, prodigiosin biosynthesis, propanoate
metabolism, and Type I polyketide structures (Figure 6A). The metabolic pathways of
benzoate degradation, neuroactive ligand-receptor interaction, and steroid biosynthesis
were significantly enriched in T1 vs. T3 (Figure 6B). Meanwhile, lysine degradation and
type I polyketide structure pathways were significantly enriched in T1 vs. T4 (Figure 6C).
Finally, polycyclic aromatic hydrocarbon degradation, biosynthesis of siderophore group
nonribosomal peptides, and serotonergic synapse pathways were significantly enriched in
T1 vs. T5 (Figure 6D).
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Figure 5. Fold changes in differentially expressed metabolites in goat rumens from animals fed
diets with different amounts of cassava foliage ((A), T1 vs. T2; (B), T1 vs. T3; (C), T1 vs. T4;
(D), T1 vs. T5). T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% cas-
sava foliage silage with 50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100%
cassava foliage.

Microorganisms 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. KEEG pathway enrichment analysis of the differentially expressed metabolites observed in goat rumens from animals fed diets with different amounts 
of cassava foliage ((A), T1 vs. T2; (B), T1 vs. T3; (C), T1 vs. T4; (D), T1 vs. T5). T1, 100% king grass; T2, 25% cassava foliage silage with 75% king grass; T3, 50% 
cassava foliage silage with 50% king grass; T4, 75% cassava foliage silage with 25% king grass; T5, 100% cassava foliage. 

Figure 6. KEEG pathway enrichment analysis of the differentially expressed metabolites observed
in goat rumens from animals fed diets with different amounts of cassava foliage ((A), T1 vs. T2;
(B), T1 vs. T3; (C), T1 vs. T4; (D), T1 vs. T5). T1, 100% king grass; T2, 25% cassava foliage silage with
75% king grass; T3, 50% cassava foliage silage with 50% king grass; T4, 75% cassava foliage silage
with 25% king grass; T5, 100% cassava foliage.
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4. Discussion

Cassava foliage is rich in nutrients and highly digestible [6,7]. The ADFI, ADG, and
FCR are important indicators of animal feed value. Here, goat diets containing cassava
foliage promoted growth, consistent with effects seen for ruminants in West Africa [9,15].
However, it has also been reported that cassava leaves contain antinutrients (e.g., hydrogen
cyanide [HCN]), which may affect animal health and growth [27]. We found that ADFI
decreased as the proportion of cassava foliage increased (beyond 50%), while ADG and
FCR did not vary. This suggests that there was a limit to the benefits of adding cassava
foliage to the diet. Similarly, goose performance was higher on diets containing 5% vs. 10%
cassava foliage [13]. In conclusion, different animal species vary in their ability to thrive on
diets containing cassava foliage, and identification of the optimum proportion of cassava
foliage in the diet is necessary.

In general, blood biochemical indexes reflect whether nutrient digestion and metabo-
lism, as well as tissue and organ functioning, are normal; these indexes can, therefore, be
used as indicators of animal health and for the diagnosis of abnormalities [1]. Clinical
detection of serum CRE is one of the methods commonly used to understand renal function.
Reynolds et al. [28] observed similar CRE levels in goats fed with tannin-rich pine bark
vs. Bermuda grass. Similarly, Li et al. [13] reported comparable CRE concentrations in
geese fed different amounts of cassava foliage. However, in the present study, the CRE
concentrations in groups T3, T4, and T5 were lower than those in T1 and T2; this suggests
that higher proportions of cassava foliage in the diet (50%+) may damage renal health. TG
represents the largest lipids in animal bodies and a primary form of energy storage; their
concentration reflects liver lipid metabolism. Reynolds et al. [28] and Li et al. [3] reported
that roughage type had no influence on TG content. Nevertheless, here, diets containing
cassava foliage significantly reduced TG content. This suggests that cassava foliage may
have a role in regulating liver lipid metabolism. ALT and AST are primarily found in
liver and heart tissue cells. When these tissues become diseased, local enzyme activity
increases, leading to elevated concentrations of ALT and AST. In this study, ALT and AST
concentrations declined as greater proportions of cassava foliage were added to the diet.
This decrease in ALT and AST may imply that cassava foliage had a positive effect on heart
and liver health. However, this result is inconsistent with previous studies (e.g., [3,28]),
where ALT and AST concentrations did not vary among goats fed different forages. This
discrepancy may be related to the types of roughage used and the tolerance of the animals,
and further research is needed. Collectively, considering its influence on the health and
functioning of the heart, kidneys, and liver, the proportion of cassava foliage in tropical
Chinese goat diets should not exceed 50%.

Numerous studies have reported that cassava foliage contains multiple bioactive
compounds, including bioactive flavonols (e.g., apigenin, kaempferol, and rutin) and phe-
nolics [29–31]. Therefore, animal diets, including cassava foliage, can improve antioxidant
capacity. In a previous study of geese [14], greater cassava foliage content in the diet
enhanced antioxidative status. Similarly, cassava foliage intake can increase antioxidant
action in chickens [32]. Similar phenomena have been found in mammals. For example,
ethanolic extracts of cassava leaves significantly increased antioxidant enzyme serum levels
in Wistar rats [33], and piglets fed cassava residues also showed elevated antioxidant
capacity [31]. We observed that the antioxidant capacity first increased and then decreased
as the proportion of cassava foliage increased in the diet; the 50% cassava foliage group
showed the highest oxidative capacity. This discrepancy (as compared to other studies)
may be attributable to variations in dietary composition (e.g., in the supplements included
and the amount of cassava foliage), as well as in the digestive capacity of the study animals.

Organismal immunity status refers to the ability of natural defense mechanisms
to resist disease. To evaluate how cassava foliage impacts immune function in goats,
immunoglobulin levels were assessed. Cassava foliage inclusion raised the immunity status
of goats by increasing the value of immune indexes. In line with this result, earlier studies
have reported that feeding piglets cassava residues increased IgA levels and improved
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immunomodulatory functions [31]. Moreover, the use of fermented feed may improve
animal immune system functioning. Similarly, alfalfa silage promoted higher immunity
status in lactating dairy goats [34]. Fermented feed may improve immune ability by
supporting beneficial microorganisms and their metabolites. In conclusion, the inclusion
of cassava foliage can affect immunity status, but this relationship is dose-dependent and
needs to be carefully researched.

Volatile fatty acids (VFAs) in the rumen are produced by the microbial fermentation
of carbohydrates and can be used by ruminants to meet energy demands. The main VFA
components are acetate, propionate, and butyrate, with acetate accounting for the largest
proportion [34]. According to our data, the inclusion of cassava foliage inclusion did not
affect rumen pH nor the concentration of acetate or propionate but significantly affected
the butyrate concentration. As more cassava foliage was included in the diet, butyrate
levels decreased. This is consistent with the results of Harun et al. [35], who studied the
effects of cassava foliage on in vivo rumen fermentation; butyrate concentrations were
lower in cassava-foliage-fed groups, but other VFAs were unaffected. Butyrate plays an
essential role in cellular energy metabolism and the induction of apoptosis, as well as in
regulating immune function, inflammatory responses, and intestinal homeostasis [36,37].
Meanwhile, butyrate has also been shown to promote growth in ruminants and to enhance
dairy product quality [38,39]. Therefore, understanding the rumen microbial community
structure, especially the abundance and composition of butyrate-producing bacteria, will
be essential for optimal ruminant production.

The determination of rumen microbial community composition is helpful not only
for understanding ruminant physiology but also for the precise management of animal
nutrition to improve feed conversion efficiency [16]. Lately, many studies have shown how
diet can regulate rumen microbial community composition and metabolism; the rumen
microbiome has been linked not only to the host diet but also to host growth performance,
immune function, and physiological status, among other phenotypes [19,20,37]. For example,
Wang et al. [40] observed that the roughage type had a significant impact on rumen mi-
croorganisms and metabolites, thereby altering growth performance. Cassava foliage has
been widely used in ruminant diets because of its positive effect on production. However,
how cassava foliage affects rumen microbial communities remains poorly understood. In
the current study, an integrated approach of 16S rRNA sequencing and GC-MS-based untar-
geted metabolomics was applied to examine the goat rumen microbiome and metabolome
in order to assess any effects of cassava foliage inclusion in the diet. Cassava foliage in-
clusion treatments resulted in lower bacterial diversity and richness, as well as significant
differences in bacterial composition. However, these results are not consistent with studies
of intestinal microbes in monogastric animals. For example, the inclusion of cassava foliage
(5% by weight) in the diet of geese elevated their intestinal microbial diversity [21]. In
addition, supplementation with fermented cassava residues in the diet of piglets did not
significantly alter gut microbial diversity [31]. Therefore, ruminants and monogastric
animals must have fundamental differences in their digestive capacity.

As in previous studies, Prevotella had the highest abundance in goat rumen microbial
communities; Prevotella is closely linked to the digestion and metabolism of fiber and
proteins [20,41,42]. Hence, Prevotella represents a core microbial taxa in rumen communities.
In the rumen, Prevotella degrades and utilizes starch and plant cell wall polysaccharides,
such as pectin and xylan, producing large amounts of SCFAs for the host [43,44]. Comparing
sheep fed corn silage vs. corn stalks [45], those fed corn silage showed a greater abundance
of Prevotella, as well as differences in fiber and protein levels. In this study, similar results
were observed: Prevotella abundance first increased with the proportion of cassava foliage
in the diet before decreasing. This could be due to changes in the fiber-to-protein ratio in
the diet, leading to adaptive variation in Prevotella abundance to more efficiently extract
nutrients from roughage.

We also demonstrated that the Rikenellaceae_RC9_gut_group (family Rikenellaceae)
was the second most common bacterial taxa in the goat rumen. Rikenellaceae has been
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linked to the degradation and absorption of structural carbohydrates, producing acetic
and propionic acid; it ensures that the rumen maintains an appropriate ratio of short-chain
fatty acids [20,46]. Yang et al. [47] and Zhang et al. [20] found that rumen Rikenellaceae
abundance was positively correlated with the digestion, absorption, and metabolism of
nitrogen, leading to downstream effects on animal production. Similarly, Li et al. [34]
found that a greater abundance of Rikenellaceae supported sheep fattening. However, the
abundance of Rikenellaceae among groups was very similar, but there were clear differ-
ences in growth production. This may be due to divergence among animal species in
Rikenellacae abundance.

Here, an interesting finding was that the abundance of Butyrivibrio_2 was significantly
higher in the cassava foliage addition treatments. Butyrivibrio exists in human intestines
and animal rumens; it ferments carbohydrates and cellulose to produce butyric acid, which
plays an essential role in regulating antioxidant capacity, cellular energy metabolism, and
immunity, as well as in protecting the structural morphology and functional stability
of the intestinal epithelium [37,39]. Butyrivibrio utilizes higher cellulose or lignocellu-
losic in ruminants and humans [39,48]. Liu et al. [49] found that Buryrivibrio was more
abundant in yaks than cattle, which could explain the higher digestibility of fiber for
yaks vs. cattle. However, the presence of other bioactive compounds in the diet might
also affect Buryrivibrio abundance. Consistent with study results, Wang et al. [19] reported
higher rumen butyric acid levels and Butyrivibrio abundance in dairy cows fed with inulin,
a polysaccharide that is particularly concentrated in Jerusalem artichoke (Helianthus tubero-
sus L.) tubers. In conclusion, understanding how cassava foliage-based diets alter rumen
Buryrivibrio abundance will require more in-depth research.

Sorbitan stearate is used in the food manufacturing industry as a food emulsifier,
stabilizer, and flavor modifier [50]. LysoSM (d18:1) is considered an intermediate in
sphingolipid metabolism, which has generally been linked to human heart health [51,52].
Dehydroavenasterol belongs to the class of organic compounds known as stigmastanes and
derivatives and is an intermediate in the biosynthesis of steroids, as well as a participant
in lipid metabolism [53]. Niaziminin A belongs to the class of organic compounds known
as phenolic glycosides and represents one of the main physiologically active components
found in Moringa oleifera [54,55]. These up-regulated metabolites are related to either the
digestion and metabolism of nutrients or the anabolism of bioactive substances, illustrating
how feeding cassava foliage could promote nutrient utilization and host health.

Glutaric acid is an end product of organism metabolism of certain amino acids (e.g.,
lysine and tryptophan); high levels of glutaric acid are associated with metabolic issues,
causing adverse health effects [56]. Consistent with the present study, Zhang et al. [20]
also found that the dietary protein level affected the glutaric acid concentration of the
rumen. Furoic acid is a metabolite and marker of host exposure to furfural, a confirmed
carcinogen dangerous to animal health [57]. Norfuraneol has been detected in several
different foods, such as beer, blackberries (Rubus spp.), evergreen blackberries (Rubus
laciniatus), and various fruits. Thus, norfuraneol may be a potential biomarker for the
consumption of these foods. Glucuronolactone is a key structural component of plant
connective tissues that are routinely referred to as a natural substance; it has been shown
to ameliorate liver injury [58]. Meanwhile, glucuronolactone is a popular ingredient in
energy drinks because it can effectively increase energy levels and improve alertness [59].
These results suggest that feeding cassava foliage could decrease the abundance of metabo-
lites that hinder nutrient metabolism, are hazardous to host health, and limit structural
carbohydrate utilization.

Previous studies have also shown that diet can affect rumen metabolite composition
and alter metabolic pathways. For example, Li et al. [34] found that the inclusion of
pelleted TMR in the diet up-regulated amino acid metabolism and steroid biosynthesis in
lambs, contributing to better production. Wang et al. [19] observed differentially enriched
metabolic pathways in dairy cows fed dietary inulin supplements; these pathways included
amino acid metabolism, vitamin metabolism, nucleotide metabolism, and plant secondary
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metabolites biosynthesis. These results are generally consistent with the findings of our
study but identify different pathways. However, Zhang et al. [20] reported that higher
dietary protein levels significantly affected the TCA cycle pathway, which is a key pathway
for the synthesis and/or conversion of glucose, amino acids, and fatty acids. In summary,
both dietary and functional ingredients had an important influence on the metabolic
pathways identified for differentially expressed metabolites.

5. Conclusions

Overall, feeding goats a diet containing 50% cassava foliage silage resulted in beneficial
effects on animal health and performance, as reflected by higher ADFI, ADG, and feed
conversion efficiency. A cassava foliage-supplemented diet also enhanced the antioxidant
activity and immunity status of goats. Moreover, the addition of cassava foliage altered
rumen fermentation, rumen bacterial community, and metabolism in goats, leading to a
greater abundance of Prevotella_1 and Butyrivibrio_2 and higher concentrations of beneficial
metabolites such as butyric acid; at the same time, there was a decrease of metabolites
that hinder nutrient metabolism and represent health hazards. In summary, the present
study highlighted that the cassava foliage diet had a positive effect on the goats’ rumen
micro-environment while also, in turn, improving antioxidant and immunity capacity
and then promoting growth performance. However, the molecular mechanism of cassava
foliage promoting the production of beneficial microorganisms and metabolites in the
rumen and their impact on intestinal barrier function were worth exploring.
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