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Abstract: This study aimed to characterize 300 Aeromonas spp. strains isolated from 123 ornamental
fish of 32 different species presenting with septicemia, skin lesions, and/or eye lesions. Within
the 300 strains, 53.0% were identified as A. veronii, 41.3% as A. hydrophila, and 5.7% as A. caviae.
Among the six virulence genes investigated, the most frequent were act (90.3%) and aer (79.3%).
More than 50% of A. hydrophila strains were positive for all the studied genes. A total of 30 virulence
profiles were identified, with the five main profiles identified comprising 75% of strains. Only five
strains were negative for all genes and were identified as A. caviae and A. veronii. The antimicrobial
susceptibility profile was performed for 234 strains, with sulfonamides presenting more than 50%
of the resistance rates. Susceptibility was observed mainly for cephalosporins, aminoglycosides,
chloramphenicol and piperacillin-tazobactam. Multidrug resistance was detected in 82.5% of the
studied strains, including A. caviae with 100% multidrug resistance, and A. hydrophila with 90.9%
multidrug resistance. The SE-AFLP analysis resulted in 66 genotypes of A. hydrophila, 118 genotypes
of A. veronii, and 14 genotypes of A. caviae, demonstrating the greater heterogeneity of A. veronii and
A. caviae. However, no direct correlation was observed between the genotypes and the strains’ origins
or virulence and resistance profiles.

Keywords: Aeromonas spp.; ornamental fish; PCR; antimicrobial resistance; AFLP

1. Introduction

The aquaculture industry has developed rapidly in recent decades and the ornamental
fish industry has contributed to this growth. Ornamental fish are valued for their beauty
and distinctive colors; however, the high demand for these animals means that their
commercialization is constantly growing. In parallel with the intensification of ornamental
fish production, there is an increase in infectious diseases [1].

Over the last two decades, the expansion of aquaculture has provided a satisfactory
understanding of the pathogenesis of bacterial diseases in fish. However, it is still consid-
ered insignificant when compared to knowledge about bacterial diseases in other animals
and humans [2].

High levels of morbidity and mortality caused by bacterial infections can be found
in farmed fish [2], and is acknowledged as a serious problem for the ornamental fish
industry [1]. Furthermore, these bacteria are also present in the microbiota of fish and
water, being characterized as opportunistic pathogens [3].
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Among these pathogens, the Aeromonas genus stands out. There are currently 36 species
described in the genus, among which A. hydrophila, A. veronii and A. caviae are the most
described in fish diseases [4,5]. Even though the advancement of molecular and phylogeny
methods were essential for the establishment of a recent taxonomy, there is still controversy
regarding the best technique for the rapid and assertive identification of these species [4,5].

Bacteria of the Aeromonas genus are commonly found in aquatic environments, and
can also be isolated from various animal species, foods, and soil [6]. Aeromonosis in
fish is transmitted horizontally from excreta or skin lesions, and can cause hemorrhagic
septicemia and ulcerative disease syndrome, affecting any fish species [3]. High mortality
can be observed between two and ten days after the onset of clinical signs, leading to
extensive economic losses in the industry [7,8].

The Aeromonas species can be considered primary or opportunistic agents affecting
immunocompromised fish and humans [6,9]. As part of the microbiota of fish and aquatic
environments, these bacteria are associated with the disease mainly in fish raised in farms
or in water reuse systems and in situations of stress and inadequate management [10].

Considering the financial and health importance of aeromonosis in aquaculture, the
rapid and reliable detection of Aeromonas species, as well as their pathogenic potential, is of
great interest to the sector. Similarly, the characterization of antimicrobial resistance profiles
is also highlighted, considering the problem of the low number of antibiotics authorized
for use in fish.

Therefore, the aim of the present study was to identify and determine the resis-
tance and genotypic profiles of Aeromonas isolates from ornamental fish, through matrix-
assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, PCR
for species confirmation and virulence genes detection, the disc diffusion susceptibility test,
and single enzyme amplified fragments length polymorphism (SE-AFLP).

2. Materials and Methods
2.1. Bacterial Strains

A total of 300 Aeromonas spp. strains were studied. These were previously isolated
from 123 fish of 32 distinct species between the years of 2016 to 2019; these animals
presented septicemia, skin lesion and/or eye lesions (Figure S1). This study was approved
by the Animal Use Ethics Committee (CEUA) of the School of Veterinary Medicine and
Animal Science, University of São Paulo, under the CEUA Process Number 6065110518.

The strains were isolated from samples of the affected organ/tissue of the fish or
from superficial swabs (ocular and skin lesion swabs). The swabs were placed directly in
Amies culture medium (ABSORVE™, CRAL, Cotia, Brazil), while the fish were transported
in appropriate bags to the laboratory and samples were then collected under aseptic
conditions and placed in sterile plastic bags for further processing. The fish and swabs
were kept refrigerated (4 ◦C) until their arrival at the laboratory for processing (up to 72 h).
For bacterial isolation, organ fragments or swabs were plated on MacConkey agar and
dextrin-ampicillin agar (Difco, Sparks, MD, USA). The plates were incubated in aerobiosis,
at 37 ◦C for 24 to 48 h. The characteristic isolated bacterial colonies (mostly non-lactose
fermenter in MacConkey agar, and yellowish colonies in dextrin-ampicillin agar) were
inoculated in 3 mL of BHI (Brain Heart Infusion) broth (Difco, Sparks, MD, USA) and from
this culture an aliquot (700 µL) was separated for stock at −86 ◦C with sterile glycerol
(300 µL).

2.2. Strains Reactivation and Hemolysis Evaluation

For strain reactivation, stock aliquots of the isolated strains (described above) were
thawed. To check purity and evaluate hemolytic activity, the strains were re-isolated on
MacConkey agar and blood agar (5% sheep blood) (Difco, Sparks, MD, USA). The plates
were incubated at 37 ◦C for 24 to 48 h in aerobiosis. For hemolysis evaluation, the blood
agar plates were observed through transmitted light. Hemolysis was classified as: Beta
hemolysis (β) when complete lysis was observed as clear transparent zone surrounding
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the colonies; Alpha hemolysis (α) when incomplete lysis was detected as a greenish discol-
oration of the medium surrounding the colonies; and Gamma hemolysis (γ) in the absence
of lysis characterized by no alteration of the medium.

The isolated bacterial colonies were sub-cultured in 2 mL of BHI broth (Difco, Sparks,
MD, USA) and further aliquoted for MALDI-TOF MS, DNA extraction and the Kirby–Bauer
disk diffusion susceptibility test.

2.3. MALDI-TOF MS Identification

For MALDI-TOF MS identification, ribosomal protein extraction was performed as
described by Hijazin et al. [11]. The protein spectra were captured by a Microflex™ mass
spectrophotometer (Bruker Daltonics, Inc., Billerica, MA, USA) and FlexControl™ v3.4
(Bruker Daltonics, Inc., Billerica, MA, USA) software using the MTB_autoX method. The
spectrophotometer was externally calibrated using the Bacterial Test Standard (BTS—Bruker
Daltonics, Inc., Billerica, MA, USA). The microbial identification was performed by Bio-
Typer™ 3.0 (Bruker Daltonics, Inc., Billerica, MA, USA) using the manufacturer’s criteria:
the species were assigned with log score values ≥ 2.0; scores ≥ 1.7 and <2.0 determined
only genus identification.

2.4. Molecular Identification and Virulence Genes Detection

The bacterial DNA was extracted according to the Boom et al. [12] protocol and
maintained at −20 ◦C until processing. For species confirmation, the following genes
were evaluated: gyrB for A. caviae detection [13], ahaI for A. hydrophila [14], and rpoB for A.
veronii [13] (Table S1).

PCR was also applied for the screening of six virulence genes, including genes that
encode heat-labile cytotonic enterotoxin (alt), aerolysin (aer), cytotoxic enterotoxin (act),
heat-stable cytotonic enterotoxin (ast), flagellin (fla) and hemolysin (hlyA). The respective
primers are presented in Table S1, and the reaction parameters were adjusted as described
by Khor et al. [15].

The C1000™ Touch Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA) was
used and the PCR reactions (50 µL) comprised 5 µL of genomic DNA, ultrapure water, 10X
PCR buffer, 1.5 mM MgCl2, 200 µM of dNTPs, 20 pmol of each primer, and 1 U of HOT
FIREPol DNA-polymerase (Solis BioDyne, Tartu, Estonia). Amplicons were detected by
agarose gel electrophoresis (1.5%) stained with BlueGreen™ (LGC Biotecnologia, Cotia,
Brazil). Images were captured under UV illumination by the Gel Doc XR system (Bio-Rad
Laboratories, Hercules, CA, USA) and the 100 bp DNA Ladder molecular weight marker
(New England BioLabs Inc., Ipswich, MA, USA) was used for further band analysis.

2.5. Single Enzyme Amplified Fragments Length Polymorphism (SE-AFLP)

The SE-AFLP was carried out according to the McLauchlin et al. [16] protocol, with
unique restriction by HindIII (New England Biolabs). The DNA fragments were detected
with electrophoresis at 90 V for 4 h in 2% agarose gel stained with BlueGreen™ (LGC
Biotecnologia, Cotia, SP, Brazil) and images were captured under UV illumination by the
Gel Doc XR system (Bio-Rad Laboratories, Hercules, CA, USA). The amplified fragments
were identified based on the molecular weight marker 100 pb DNA Ladder (New England
BioLabs Inc., Ipswich, MA, USA).

2.6. Antimicrobial Resistance Profiling

The antimicrobial resistance profiling was carried out using the Kirby–Bauer disk
diffusion technique, according to the standards defined in document VET01-S2 [17].

For inoculum preparation, the strains were cultivated in BHI broth (Difco, Sparks, MD,
USA) and incubated at 37 ◦C for 24 h. The turbidity of the culture was adjusted with sterile
saline solution (0.9%) to obtain an optical turbidity equivalent to 0.5 on the McFarland
standard (approximately 1 × 108 CFU/mL). Once adjusted, the bacterial suspension was
homogeneously distributed, with the aid of a sterile swab, on a Mueller Hinton agar plate
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(Difco, Sparks, MD, USA). Subsequently, the antibiotics discs were aseptically applied,
and the plates were incubated at 35 ◦C for 24 to 28 h, as previously described [18]. The
Escherichia coli ATCC™ 25922 (ATCC, Gaithersburg, MD, USA) was used as an internal
quality control.

The antimicrobials evaluated and their respective cut-off points are presented in Table
S2. The resistance profile of the studied strains was determined based on the cut-off points
available in CLSI documents M100, VET01S and VET04 [17,19,20]. Multidrug resistance
classification was determined as described by Schwarz et al. [21], considering resistance
to three or more antimicrobial classes. For enrofloxacin, florfenicol and gentamicin, the
results were also evaluated using the epidemiological cut-off points (ECOFF) according to
the VET04 document [19] (Table S2).

2.7. Statistical Analysis

The distribution of strain frequencies according to species and origin was carried out
using the SPSS 16.0 program (IBM SPSS Inc., Chicago, IL, USA). To evaluate the agreement
between MALDI-TOF MS and PCR techniques for Aeromonas species identification, the
Kappa coefficient (k) and the symmetry and homogeneity test were performed with Stata
12.0 (StataCorp LLC, College Station, TX, USA). The identified species and the hemolysis
phenotype were used as categorical variables, and the differences were analyzed using the
Fisher–Freeman–Halton test with two-sided probability estimated using the Monte Carlo
method. For the analyses carried out, a significance level of 5% was considered.

The Bionumerics 7.6 (Applied Maths, bioMérieux, Sint-Martens-Latem, Belgium)
software was used for the SE-AFLP cluster analysis. A dendrogram was constructed for
each Aeromonas species using the Dice coefficient and the UPGMA method (unweighted
pair group method with arithmetic mean). To distinguish genotypes, the cut-off point of
90% of genetic similarity was applied [22].

3. Results

The studied Aeromonas strains were isolated from 123 ornamental fish of 32 distinct
species, with a predominance of Carassius auratus (Linnaeus, 1758) (goldfish) (23.6%) and
Cyprinus carpio var. koi (koi carp) (13.0%). From the 300 studied strains, 235 (78.0%) were
isolated in 2016, 13 (4.3%) in 2018, and the remaining 52 strains (17.0%) were obtained in
2019. An average of 2.5 strains per animal was evaluated, considering the possibility of
variations in isolation sites and Aeromonas species.

The MALDI-TOF MS identification resulted in 158 (52.67%) strains of A. veronii,
125 (41.67%) of A. hydrophila, and only 17 (5.67%) of A. caviae (Table 1). The molecular
identification, on the other hand, resulted in 53.0% (159/300) of A. veronii strains, 41.3%
(124/300) of A. hydrophila, and 5.7% (17/300) of A. caviae (Table 1). Even though occa-
sional discrepancies between the techniques for the identification of these Aeromonas
species were observed, no significant difference was detected between them (asymptotic
symmetry test probability p = 0.7461); and they also showed good agreement according
to the Kappa coefficient (Kappa = 0.731; p < 0.001).

Table 1. Identification of Aeromonas species by MALDI-TOF MS and PCR techniques—N (%).

ID PCR
ID MALDI-TOF MS

Total
A. veronii A. hydrophila A. caviae

A. veronii 141 (89.2) 18 (14.4) 0 159 (53.0)
A. hydrophila 16 (10.2) 103 (82.4) 5 (29.4) 124 (41.3)

A. caviae 1 (0.6) 4 (3.2) 12 (70.6) 17 (5.7)

Total 158 (100) 125 (100) 17 (100) 300 (100)
ID PCR—PCR species identification. ID MALDI-TOF MS—MALDI-TOF MS species identification.



Microorganisms 2024, 12, 176 5 of 17

Interestingly, the results showed that, in 67.5% (83/123) of the fish, a single Aeromonas
species was recovered by culture, while 30.9% (38/123) presented two species, and in
only two animals (1.6%) were three species were detected simultaneously. Based on these
results, animal infection profiles were proposed considering the three identified species
of the Aeromonas genus. Thus, seven infection profiles (P1 to P7) were identified (Table 2),
of which P1, P2 and P4 are highlighted to present the highest frequencies corresponding,
respectively, to the species A. veronii and A. hydrophila detected separated and concomitantly.

Table 2. Distribution of infection profiles of Aeromonas species among the studied animals (N = 123).

Infection Profiles Species N (%)

P1 AVE 43 (35.0)
P2 AHY 37 (30.1)
P3 ACA 3 (2.4)

P4 AVE/AHY 29 (23.6)
P5 AVE/ACA 6 (4.9)
P6 AHY/ACA 3 (2.4)
P7 AVE/AHY/ACA 2 (1.6)

AVE—A. veronii; AHY—A. hydrophila; ACA—A. caviae.

From the identification of the Aeromonas strains, species distribution in relation to
origin was also evaluated, considering the affected fish species (Table 3) and their clinical
conditions (Table 4). Among these results, it is noteworthy that 70.6% of the A. caviae strains
were detected in animals presenting septicemia with or without associated ocular lesions.
Similarly, 64.7% of A. caviae strains were isolated from organ pool and eye samples.

Table 3. Frequency distribution of Aeromonas species according to the studied fish species—N (%).

Fish Species A. veronii A. hydrophila A. caviae Total

Carassius auratus (Linnaeus, 1758) 41 (52.6) 35 (44.9) 2 (2.5) 78 (100)
Cyprinus carpio var. koi 38 (53.5) 33 (46.5) 0 71 (100)
Trichogaster trichopterus (Pallas, 1770) 18 (64.3) 9 (32.1) 1 (3.6) 28 (100)
Trichogaster lalius (Hamilton, 1822) 1 (6.25) 14 (87.5) 1 (6.25) 16 (100)
Mikrogeophagus altispinosus (Haseman, 1911) 5 (33.3) 10 (66.7) 0 15 (100)
Danio rerio (Hamilton, 1822) 6 (66.7) 1 (11.1) 2 (22.2) 9 (100)
Symphysodon discus (Heckel, 1840) 6 (66.7) 2 (22.2) 1 (11.1) 9 (100)
Cichlasoma salvini (Günther, 1862) 6 (75.0) 0 2 (25.0) 8 (100)
Barbodes semifasciolatus (Günther, 1868) 4 (66.7) 2 (33.3) 0 6 (100)
Cichlasoma meeki (Brind, 1918) 1 (16.7) 2 (33.3) 3 (50.0) 6 (100)
Pterophyllum scalare (Schultze, 1823) 4 (66.6) 1 (16.7) 1 (16.7) 6 (100)
Poecilia reticulata (Peters, 1859) 2 (40.0) 3 (60.0) 0 5 (100)
Trichopodus leerii (Bleeker, 1852) 2 (40.0) 2 (40.0) 1 (20.0) 5 (100)
Polypterus senegalus (Cuvier, 1829) 4 (100) 0 0 4 (100)
Puntigrus tetrazona (Bleeker, 1855) 4 (100) 0 0 4 (100)
Puntius conchonius (Hamilton, 1822) 4 (100) 0 0 4 (100)
Betta splendens (Regan, 1910) 2 (66.7) 1 (33.3) 0 3 (100)
Misgurnus anguillicaudatus (Cantor, 1842) 2 (66.7) 0 1 (33.3) 3 (100)
Pangasius hypophthalmus (Sauvage, 1878) 2 (66.7) 1 (33.3) 0 3 (100)
Trichopodus trichopterus (Pallas, 1790) 2 (66.7) 1 (33.3) 0 3 (100)
Thorichthys meeki (Brind, 1918) 0 2 (100) 0 2 (100)
Tropheus moorii (Boulenger, 1898) 0 1 (50.0) 1 (50.0) 2 (100)
Cyphotilapia frontosa (Boulenger, 1906) 1 (100) 0 0 1 (100)
Chindongo demasoni (Konings, 1994) 1 (100) 0 0 1 (100)
Epalzeorhynchos bicolor (Smith, 1931) 0 0 1 (100) 1 (100)
Hemiodus gracilis (Günther, 1864) 0 1 (100) 0 1 (100)
Hyphessobrycon herbertaxelrodi (Géry, 1961) 1 (100) 0 0 1 (100)
Maylandia zebra (Boulenger, 1899) 1 (100) 0 0 1 (100)
Melanotaenia trifasciata (Rendahl, 1922) 0 1 (100) 0 1 (100)
Moenkhausia costae (Steindachner, 1907) 1 (100) 0 0 1 (100)
Parambassis ranga (Hamilton, 1822) 0 1 (100) 0 1 (100)
Puntius tetrazona (Bleeker, 1855) 0 1 (100) 0 1 (100)
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Table 4. Frequency distribution of Aeromonas species according to the fish clinical condition—N (%).

Clinical Condition A. caviae (N = 17) A. hydrophila (N = 125) A. veronii (N = 158) Total (N = 300)

Septicemia 55 (34.6) 31 (25.0) 5 (29.4) 91 (30.3)
Ocular lesion and

septicemia 48 (30.2) 35 (28.2) 7 (41.2) 90 (30.0)

Ocular lesion 15 (9.4) 30 (24.2) 3 (17.6) 48 (16.0)
Skin lesion 22 (13.8) 17 (13.7) 1 (5.9) 40 (13.3)

Skin lesion and
septicemia 19 (11.9) 11 (8.9) 1 (5.9) 31 (10.3)

Regarding the evaluation of hemolytic activity, it was observed that 86.0% of the
studied strains presented beta-hemolysis, while 14.0% showed alpha-hemolysis. The
distribution of Aeromonas species in relation to hemolytic activity resulted in a statistically
significant difference (p < 0.001), which was due to the predominance of A. veronii and A.
hydrophila strains that presented a beta-hemolysis phenotype.

Of the six virulence genes investigated, the following results were observed: the act
gene was detected in 271 (90.3%) strains, aer was detected in 238 (79.3%), fla in 175 (58.3%),
hlyA in 131 (43.7%), alt in 130 (43.3%), and the ast gene was detected in 106 (35.3%). The
species A. hydrophila strains were more than 50% positive for the studied genes, while A.
veronii strains presented a higher proportion of aer, act and fla. Among the 17 A. caviae
strains, there was a predominance of hlyA and fla genes (Figure 1A).

A significant statistical difference was detected for the beta-hemolysis phenotype
and the genes hlyA (p < 0.001), act (p < 0.001), alt (p < 0.001), ast (p < 0.001), and fla
(p = 0.029). Despite a tendency towards predominance of the aer, act and fla genes in relation
to the clinical conditions of the fish (Figure 1B), a significant statistical difference was only
detected for the fla gene (p = 0.08).

A total of 30 virulence profiles were identified considering the combination of PCR
results (Table 5). It is noteworthy that the five main profiles contained 227 strains (75.7%)
(profiles V1 to V5). Only five strains (1.7%) were negative for all genes (V10 profile), with
these being identified as A. caviae and A. veronii; while 31 strains (10.3%) were positive for
all genes (V4 profile) of which 30 were A. hydrophila. No relationship was observed between
virulence profiles and the clinical conditions of the fish.

Table 5. Frequency distribution of identified virulence profiles according to Aeromonas species—N (%).

Profile Virulence Profile A. caviae (N = 17) A. hydrophila (N = 125) A. veronii (N = 158) Total (N = 300)

V1 hlyA−/aer+/act+/alt−/ast−/fla+ 0 11 (8.9) 71 (44.7) 82 (27.3)
V2 hlyA+/aer+/act+/alt+/ast+/fla− 0 49 (39.5) 1 (0.6) 50 (16.7)
V3 hlyA−/aer+/act+/alt−/ast−/fla− 1 (5.9) 5 (4.0) 40 (25.2) 46 (15.3)
V4 hlyA+/aer+/act+/alt+/ast+/fla+ 0 30 (24.2) 1 (0.6) 31 (10.3)
V5 hlyA+/aer−/act+/alt+/ast+/fla+ 0 6 (4.8) 12 (7.5) 18 (6.0)
V6 hlyA+/aer−/act−/alt−/ast−/fla+ 6 (35.3) 2 (1.6) 0 8 (2.7)
V7 hlyA−/aer−/act+/alt−/ast−/fla− 0 1 (0.8) 6 (3.8) 7 (2.3)
V8 hlyA−/aer+/act+/alt+/ast−/fla+ 0 0 6 (3.8) 6 (2.0)
V9 hlyA+/aer+/act+/alt−/ast−/fla+ 2 (11.8) 3 (2.4) 1 (0.6) 6 (2.0)

V10 hlyA−/aer−/act−/alt−/ast−/fla− 1 (5.9) 0 4 (2.5) 5 (1.7)
V11 hlyA−/aer−/act−/alt−/ast−/fla+ 3 (17.6) 1 (0.8) 1 (0.6) 5 (1.7)
V12 hlyA−/aer−/act+/alt−/ast−/fla+ 1 (5.9) 1 (0.8) 3 (1.9) 5 (1.7)
V13 hlyA+/aer−/act+/alt+/ast−/fla+ 0 3 (2.4) 1 (0.6) 4 (1.3)
V14 hlyA+/aer+/act+/alt+/ast−/fla+ 0 2 (1.6) 2 (1.3) 4 (1.3)
V15 hlyA−/aer+/act−/alt−/ast−/fla− 0 1 (0.8) 2 (1.3) 3 (1.0)
V16 hlyA−/aer+/act+/alt+/ast−/fla− 0 0 3 (1.9) 3 (1.0)
V17 hlyA−/aer−/act+/alt+/ast−/fla− 0 0 2 (1.3) 2 (0.7)
V18 hlyA+/aer−/act−/alt−/ast−/fla− 2 (11.8) 0 0 2 (0.7)
V19 hlyA+/aer−/act+/alt+/ast+/fla− 0 1 (0.8) 1 (0.6) 2 (0.7)
V20 hlyA−/aer−/act−/alt+/ast−/fla− 0 1 (0.8) 0 1 (0.3)
V21 hlyA−/aer−/act+/alt+/ast−/fla+ 0 1 (0.8) 0 1 (0.3)
V22 hlyA−/aer−/act+/alt+/ast+/fla− 0 1 (0.8) 0 1 (0.3)
V23 hlyA−/aer+/act+/alt+/ast+/fla− 0 1 (0.8) 0 1 (0.3)
V24 hlyA−/aer+/act+/alt+/ast+/fla+ 0 0 1 (0.6) 1 (0.3)
V25 hlyA+/aer−/act−/alt+/ast−/fla+ 0 0 1 (0.6) 1 (0.3)
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Table 5. Cont.

Profile Virulence Profile A. caviae (N = 17) A. hydrophila (N = 125) A. veronii (N = 158) Total (N = 300)

V26 hlyA+/aer+/act−/alt−/ast−/fla+ 1 (5.9) 0 0 1 (0.3)
V27 hlyA+/aer+/act−/alt+/ast−/fla+ 0 1 (0.8) 0 1 (0.3)
V28 hlyA+/aer+/act−/alt+/ast+/fla− 0 1 (0.8) 0 1 (0.3)
V29 hlyA+/aer+/act−/alt+/ast+/fla+ 0 1 (0.8) 0 1 (0.3)
V30 hlyA+/aer+/act+/alt+/ast−/fla− 0 1 (0.8) 0 1 (0.3)

The SE-AFLP analysis was performed separately for each Aeromonas species (Figures 2–4).
For A. hydrophila (Figure 2), 66 genotypes (H1–H66) were identified among the 124 studied
strains. No direct correlation was observed between the genotypes and the origin of
the strains or virulence profile. However, the following results stand out: (1) clonal
profiles related to different colonies or samples from the same animal (H13, H38, H43, H40,
H43, H51); (2) clonal profiles composed of different animals of the same species from an
aeromonosis outbreak with the same or different clinical signs (H1, H9, H23, H34, H56);
and (3) clonal profiles composed of animals from different species from an aeromonosis
outbreak (sharing an aquarium or water source) with the same or different clinical signs
(H4, H5, H11, H33, H65).
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The A. veronii dendrogram resulted in 118 genetic profiles (V1–V118) among the
159 strains studied (Figure 3), demonstrating great heterogeneity of the species. Similar
to A. hydrophila genotypes, A. veronii genetic profiles composed of different animals of the
same species were observed, as well as clonal profiles composed of animals of different
species; however, A. veronii strains presented a greater difference or distance in the time of
isolation when compared to A. hydrophila.

In relation to A. caviae, 14 SE-AFLP genotypes (C1–C14) were identified for the
17 strains studied (Figure 4), also showing greater variability of the species when compared
to A. hydrophila. In this case, only two clonal profiles were identified: C13, composed of
two colonies of goldfish A261, and C14, composed of three animals from different species
from an outbreak of aeromonosis. Similar to the other studied species, no association was
observed between the genotypes and the identified virulence profiles.

Antimicrobial resistance profiling was carried out for 234 strains (78.0%), as 66 strains
were not recovered in the reactivation process to perform the disk diffusion technique. Of
the recovered strains, 15 (6.4%) were A. caviae, 77 (32.9%) were A. hydrophila, and 142 (60.7%)
were A. veronii.

Among the 16 antimicrobials evaluated, sulfonamide and sulfamethoxazole-tripmethopim
showed, respectively, 92.7% and 50.4% resistance rates (Table 6). Erythromycin, imipenem,
and ciprofloxacin presented 74.8%, 41.9% and 38.0% of the strains with intermediate results.
Susceptibility was observed mainly for cephalosporins (all those evaluated showed more
than 75% sensitivity), aminoglycosides (with gentamicin and amikacin having 86.8% and
79.5% sensitivity, respectively), and chloramphenicol and piperacillin-tazobactam having
sensitivity greater than 88%. For enrofloxacin, florfenicol and gentamicin, the results from
the epidemiological cut-off points (ECOFF) are presented in Table 7; there is a predominance
of non-wild-type strains (NWT) for the three antimicrobials.

Table 6. Frequency distribution of identified resistance profiles—N (%).

Antimicrobial [µg] * Susceptible Intermediate Resistant Total

Cefoxitin 30 228 (97.4) 3 (1.3) 3 (1.3) 234 (100)
Ceftazidime 30 198 (84.6) 28 (12.0) 8 (3.4) 234 (100)
Ceftriaxone 30 214 (91.5) 16 (6.8) 4 (1.7) 234 (100)
Cefepime 30 179 (76.5) 50 (21.4) 5 (2.1) 234 (100)
Imipenem 10 102 (43.6) 98 (41.9) 34 (14.5) 234 (100)

Piperacillin-tazobactam 110 207 (88.5) 18 (7.7) 9 (3.8) 234 (100)
Chloramphenicol 30 208 (88.9) 22 (9.4) 4 (1.7) 234 (100)

Florfenicol 30 107 (45.7) 49 (20.9) 78 (33.4) 234 (100)
Tetracycline 30 172 (73.5) 36 (15.4) 26 (11.1) 234 (100)

Ciprofloxacin 5 110 (47.0) 89 (38.0) 35 (15.0) 234 (100)
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Table 6. Cont.

Antimicrobial [µg] * Susceptible Intermediate Resistant Total

Enrofloxacin 5 34 (14.5) 119 (50.9) 81 (34.6) 234 (100)
Sulfonamide 300 8 (3.4) 9 (3.9) 217 (92.7) 234 (100)

Trimethoprim-
sulfamethoxazole 25 98 (41.9) 18 (7.7) 118 (50.4) 234 (100)

Erythromycin 15 5 (2.1) 175 (74.8) 54 (23.1) 234 (100)
Gentamicin 10 203 (86.8) 21 (9.0) 10 (4.2) 234 (100)
Amikacin 30 186 (79.5) 33 (14.1) 15 (6.4) 234 (100)

* [µg.]—Antimicrobials disc concentration.

Table 7. Frequency distribution of identified resistance profiles for florfenicol, gentamicin and
enrofloxacin considering different cut-offs—N (%), (N = 234).

Classification Florfenicol Gentamicin Enrofloxacin

ECOFF 1 Wild Type 75 (32.1) 108 (46.2) 0
Non-Wild Type 159 (67.9) 126 (53.8) 234 (100)

CLSI VET 01S 2
Susceptible 107 (45.7) 203 (86.7) 34 (14.5)

Intermediate 49 (20.9) 21 (9.0) 119 (50.9)
Resistant 78 (33.4) 10 (4.3) 81 (34.6)

1 CLSI VET04—3rd ed [19]. 2 CLSI VET 01S—5th ed [23].

Multidrug resistance was detected in 82.5% of the strains studied, with A. caviae
strains surprisingly presenting 100% multidrug resistance. A. hydrophila presented 90.9%
multidrug resistance, followed by A. veronii strains, with 76.0%. Figure 5 presents the
antibiogram results according to the Aeromonas species. No differences were observed
between the resistance profiles for the studied Aeromonas species.
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Figure 5. Representative graph of antibiogram results observed according to Aeromonas species.
Absolute number of isolates (Y axis) per susceptibility results (X axis) for each Aeromonas species.

4. Discussion

For over 20 years, the taxonomy of the Aeromonas genus has been updated as a result
of the application of molecular techniques and phylogenetic analyses; these genotypic anal-
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yses significantly differ compared with traditional phenotypic identification [7]. Therefore,
the correct identification of these bacteria at the species level is still a challenge for most
clinical microbiology laboratories [24].

Recently. MALDI-TOF mass spectrometry was considered an alternative technique
for identifying Aeromonas strains [25]. The MALDI-TOF MS presents high precision and
rapid results; however, as it is a technique dependent on prior bacterial isolation, may
present variations in the species identified due to the culture media and growth conditions
used [26]. Furthermore, considering that the technique is mainly based on the detection and
differentiation of ribosomal protein peaks, it is known that MALDI-TOF MS has limitations
when distinguishing very closely related species due to the high similarity of ribosomal
compositions [27].

This situation has already been reported for the Aeromonas and Edwardisella genera,
which present low specificity in species identification by MALDI-TOF mass spectrometry
due to the low heterogeneity of ribosomal composition [26–28]. Despite this, the technique
can still be used in routine diagnoses with reliable results for genera identification.

The results obtained in the present study corroborate the information described above.
Although MALDI-TOF MS presented good agreement with the molecular identification
carried out, it was observed that in more than 90% of the studied strains, the technique
resulted in more than one identification match for two different Aeromonas species, with
scores ≥ 2.0. Thus, despite speeding up the diagnosis, the mass spectrometry results also
raise doubts regarding the adequate assignment of species within the Aeromonas genus.

Aeromonas species will often cause damage to hosts after injury or stress [29]. Janda
and Abbott [6], after decades of studying the Aeromonas genus, reported that the species
commonly isolated from clinical cases involving extra-intestinal and systemic infections in
humans are A. hydrophila, A. veronii and A. caviae. In our study, we found the same species
causing clinical disease in ornamental fish. For a long time, A. hydrophila was the main
agent found in sick fish; however, recent reports involving A. veronii have increased [29].
Corroborating this recent increase in cases related to A. veronii, 53.0% (159/300) of the strains
isolated in the present study were identified as A. veronii, followed by 41.3% (124/300) as
A. hydrophila, with the remaining strains 5.7% (17/300) identified as A. caviae.

Regarding the hemolytic characteristics of Aeromonas strains, they can present two
types of hemolysins without enterotoxic properties: α-hemolysins and β-hemolysins,
responsible for the osmotic lysis of erythrocytes [8]. Although there is no clear relationship
between Aeromonas species and the hemolytic phenotype, Nakano et al. [30] found that,
among the strains isolated from aquatic environments (marine and riverine surface waters),
the majority of A. hydrophila strains were highly hemolytic, while only 11% of A. caviae
strains presented a hemolytic phenotype. More recently. in a Brazilian study with 117
Aeromonas strains isolated from vegetables, water, and feces from patients with diarrhea,
Castilho et al. [31] detected 100% of strains with a beta-hemolysis phenotype. In the present
study, however, a predominance of beta-hemolytic strains was observed for A. veronii and A.
hydrophila, while 52.9% of A. caviae strains (9/17) presented an alpha-hemolysis phenotype.

Năcescu et al. [32] were the first to propose an association between the hemolytic activity
of Aeromonas strains and their pathogenic potential. According to Heuzenroeder et al. [33],
the presence of the hlyA and aer genes in A. hydrophila strains makes them more virulent and
capable of causing diarrhea regardless of their origin of isolation. It is also known that other
cytotoxins, such as cytotoxic enterotoxin (encoded by the act gene), may participate in the
pathogenesis of Aeromonas infection [34]. Our results corroborate these data, with hemolytic
strains presenting higher positivity for act (241/258) and aer (209/258) genes.

Guerra et al. [35], working with Aeromonas strains isolated from patients with gas-
troenteritis in southern Brazil, found that A. hydrophila and A. veronii species presented
more virulence genes when compared to A. caviae strains. A similar result was observed
in the present study, in which more than 50% of A. hydrophila strains were positive for the
evaluated genes. A. veronii strains showed a higher proportion of aer, act and fla, while A.
caviae strains showed positive results for the hlyA and fla genes. Also noteworthy was the
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presence of five strains of A. veronii and A. caviae that were negative for all studied genes,
in contrast. 31 A. hydrophila strains were positive for all these genes. These data reveal
that there is a difference between Aeromonas species in relation to the presence of virulence
genes and that the species may present different mechanisms to infect the host, as proposed
by Khor et al. [15].

Regarding the SE-AFLP analysis, our findings demonstrate that Aeromonas strains
have great genetic variability, especially A. caviae strains, in which 14 genotypes were
identified for the 17 strains studied. For A. veronii strains, we also noted important genetic
heterogeneity, with 118 genetic profiles identified among the 159 strains studied. In the
present study, no direct relation was observed between the genotypes and the origin or vir-
ulence profile of the Aeromonas strains. This differs from results obtained by Lund et al. [36],
in which genetic clusters indicated a relationship between the A. salmonicida isolates and
the fish host species. Pablos et al. [37] were also able to correlate the transmission of A.
caviae through contaminated water and disease in humans through genotyping. However,
both studies applied the amplified fragment length polymorphism using two restriction
endonucleases that may have enhanced the technique’s discriminatory power.

The exchange of genetic information between bacteria of the Aeromonas genus has
already been reported as a public health problem [38] because it allows for the emergence
of multi-resistant strains. Furthermore, the aquatic environment receives daily urban and
industrial effluents containing medicinal residues that will favor the emergence of strains
more resistant to commercial antimicrobials.

According to Zhu et al. [39], enrofloxacin is one of the main antimicrobials used in
aquaculture, and, despite its high potency, Aeromonas strains were recently shown to have
resistance to this fluoroquinolone. Our results are in agreement with this report, with
a notable 34.6% resistance and 50.9% intermediate susceptibility to enrofloxacin. These
data are important because they demonstrate that even though its use is not licensed for
aquatic animals in Brazil, the indiscriminate use of enrofloxacin is promoting an increase in
resistance in Aeromonas strains. Furthermore, the data suggest the need for more studies
involving antimicrobials and aquatic environments.

Similarly, an increase in resistance to florfenicol was also reported by Zhao et al. [40]
due to its rising and improper usage in aquatic environments. In our work, we found a
resistance rate of 33.4% and intermediate susceptibility of 20.9% for this antimicrobial. This
demands attention, considering that florfenicol is one of the few antimicrobials licensed for
use with ornamental fish.

Tetracyclines, on the other hand. are used worldwide in the treatment of animals
from aquatic environments. and their use is permitted in countries such as the United
States of America. the Czech Republic. Republic of Korea and Japan [41]. In Brazil, its
use, together with florfenicol, is licensed for fish farming [42]. Therefore, the detection of
73.5% susceptibility for tetracycline in the present study demonstrates that this continues
to be a good antimicrobial choice for ornamental fish. Sharma et al. [43] also reported
tetracycline susceptibility in Aeromonas strains from Clarias magur (Hamilton, 1822), a fish
species native to Southeast Asia. However. Hossain et al. [44] detected more than 70%
resistance to tetracycline in Danio rerio (Hamilton, 1822) (zebrafish) in Republic of Korea.
Therefore, as it is an important antimicrobial for fish farming, the use of tetracyclines must
be monitored, including for ornamental systems.

Erythromycin and imipenem are antimicrobials used to treat humans. Dhanapala
et al. [45], in a study with ornamental fish in Sri Lanka, found erythromycin resistance in
26.1% of 161 Aeromonas strains and 18% resistance to imipenem. These results corroborate
those of the present study, in which resistance rates of 23.1% to erythromycin and 14.5%
to imipenem were observed. However, we also observed 74.8% and 41.9% intermediate
susceptibility to these antimicrobials, indicating an increase in their resistance in the near
future.

Batra et al. [46] already described Aeromonas susceptibility to aminoglycosides, tetracy-
clines, amphenicols, quinolones, cephalosporins, carbapenems, monobactams and piperacillin.
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Here, we also found an over 76.5% susceptibility for all the aminoglycosides and cephalosporins
tested, corroborating the reported data. The piperacillin–tazobactam combination showed
an 88.5% sensitivity, which is also in agreement with the abovementioned study. Specifi-
cally, for florfenicol, gentamicin and enrofloxacin, the ECOFF cut-offs enables the verification,
between wild type and non-wild type populations, of the presence or absence of acquired
resistance and mutational mechanisms [47]. Our results demonstrate that more than 50% of
the studied Aeromonas strains are classified as non-wild type; therefore, their resistance to
these antimicrobials is related to acquired mechanisms.

Multiresistance was detected in 82.5% of the studied strains, with the A. caviae strains
standing out with 100% multidrug resistance, followed by A. hydrophila with 90.9%, and
A. veronii with 76.0%. Hossain and Heo [41] also reported similar results, in which multi-
resistance was detected in more than 70% of the studied strains. Our results underline the
warning made by the authors about increasing antimicrobial resistance and its association
with improper and indiscriminate use in aquatic animals, especially in ornamental fish.

Finally, the results found in the present study demonstrate the importance of Aeromonas,
mainly because this bacterium can cause diseases in animals and humans and because it
presents high levels of antimicrobial resistance. Improvements in the management and
breeding of ornamental fish must be implemented to reduce the need for drug treatment,
and, in necessary cases, the conscious use of antimicrobials approved by veterinarians is
essential to avoid further resistance dissemination and compromise of the antimicrobials
used in human treatments.

5. Conclusions

Although the MALDI-TOF MS technique presented good results for the bacterial iden-
tification of several animal species, it still raises doubts regarding the appropriate species
assignment within the Aeromonas genus that require molecular confirmation. Among
the Aeromonas species detected, the A. hydrophila strains presented greater positivity for
virulence genes, suggesting greater virulence potential. However, no relationship was
observed between the virulence profiles and the clinical conditions or origins of the animals.
Although genotyping by SE-AFLP showed greater heterogeneity for the A. veronii and A.
caviae species, no direct relationship was observed between the genotypes and the origin of
the strains or the virulence profile. Regarding antimicrobial resistance, sulfonamide and
sulfamethoxazole-trimethoprim showed high resistance rates despite not being antimicro-
bials authorized for usage in fish. The high rate of multidrug resistance detected, especially
for the species A. caviae and A. hydrophila, demands attention due to the risk of resistance
dissemination in the aquatic environment and to the potential for compromising treatment
in humans.
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