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Abstract: Recently, probiotics have been widely applied for the in situ remediation of aquatic
water. Numerous studies have proved that probiotics can regulate water quality by improving
the microbial community. Nitrogen cycling, induced by microorganisms, is a crucial process for
maintaining the balance of the aquatic ecosystem. Nevertheless, the underlying mechanisms by which
probiotics enhance water quality in aquatic systems remain poorly understood. To explore the water
quality indicators and their correlation with nitrogen cycling-related functional genes, metagenomic
analysis of element cycling was performed to identify nitrogen cycling-related functional genes
in Coilia nasus aquatic water between the control group (C) and the groups supplemented with
probiotics in feed (PF) or water (PW). The results showed that adding probiotics to the aquatic
water could reduce the concentrations of ammonia nitrogen (NH4

+-N), nitrite (NO2
−-N), and total

nitrogen (TN) in the water. Community structure analysis revealed that the relative abundance
of Verrucomicrobiota was increased from 30 d to 120 d (2.61% to 6.35%) in the PW group, while
the relative abundance of Cyanobacteria was decreased from 30 d to 120 d (5.66% to 1.77%). We
constructed a nitrogen cycling pathway diagram for C. nasus aquaculture ponds. The nitrogen cycle
functional analysis showed that adding probiotics to the water could increase the relative abundance
of the amoC_B and hao (Nitrification pathways) and the nirS and nosZ (Denitrification pathways).
Correlation analysis revealed that NH4

+-N was significantly negatively correlated with Limnohabitans,
Sediminibacterium, and Algoriphagus, while NO2

−-N was significantly negatively correlated with
Roseomonas and Rubrivivax. Our study demonstrated that adding probiotics to the water can promote
nitrogen element conversion and migration, facilitate nitrogen cycling, benefit ecological environment
protection, and remove nitrogen-containing compounds in aquaculture systems by altering the
relative abundance of nitrogen cycling-related functional genes and microorganisms.

Keywords: probiotics; ammonia; nitrite; nitrogen cycling; nitrification; denitrification

1. Introduction

Aquatic animals are an important food source for humans. Pond aquaculture is a
primary method of freshwater aquaculture [1]. However, with the continuous expansion of
aquaculture, the environmental issues have worsened gradually [2]. The decomposition
of a large amount of feces and uneaten feed leads to an increase in the concentration
of various forms of nitrogen in the water, especially ammonia nitrogen (NH4

+-N) and
nitrite (NO2

−-N) [3]. NH4
+-N and NO2

−-N present substantial hazards to aquatic animals,
directly impacting their health and growth [4–6]. Additionally, the elevation of total
nitrogen content in the aquaculture water can disturb the nitrogen-phosphorus ratio,
consequently leading to pond eutrophication [7].

Microbial communities play a crucial role in the elemental cycling and energy flow
processes within aquatic ecosystems [8,9]. Nitrifying bacteria and denitrifying bacteria,
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among other microorganisms, are essential for removing nitrogen from the water. Nitrogen
cycling is one of the most important biogeochemical cycles in the Earth’s ecosystem and
has received widespread attention in ecological and environmental research [10,11]. Over
the past few decades, nitrogen cycling pathways have been extensively studied in different
ecosystems. In recent years, metagenomic sequencing has been applied to explore nitrogen
cycle-related gene families and link them to environmental factors [12–15]. However, most
current research on microbial communities in aquaculture water focuses solely on simple
correlation analysis between microorganisms and water quality indicators, neglecting the
role of microorganisms in element cycling processes, particularly nitrogen cycling.

Probiotics are widely used in agriculture, animal husbandry, aquaculture, environmen-
tal management, and other fields [16–18]. They can help maintain microbial balance, pro-
mote the proliferation of beneficial microorganisms, and suppress the growth of pathogenic
microorganisms, thereby improving water quality and promoting the healthy growth of
aquatic animals [19]. Additionally, probiotics contribute to the decomposition of organic
waste and facilitate the conversion of elements, especially nitrogen, during the cycling
process, thereby supporting the preservation of ecological equilibrium in aquatic environ-
ments [20,21]. In the field of aquaculture, probiotics are frequently administered through
two methods: incorporation into feed or addition to the water system. Both approaches
have been shown to yield positive outcomes in terms of improving the water quality and
overall performance of the aquaculture system. It has been reported that adding probiotics
can mitigate nitrogenous compounds (NH4

+-N, NO2
−-N, and NO3

−-N) and phosphorus
compounds, as well as modulate the microbial community structure [22,23].

Coilia nasus, a highly prized and delectable species, is extensively cultivated in East
Asia. Nevertheless, intensive feeding during C. nasus production has led to the accumula-
tion of excessive ammonia nitrogen, posing a significant risk to survival and growth [24].
The utilization of probiotic supplementation in aquaculture is progressively gaining preva-
lence. Nevertheless, most of the current research on microbial communities in aquaculture
water systems focuses solely on simple correlation analyses between microorganisms and
water quality indicators, overlooking the important role of microorganisms in element
cycling processes, particularly nitrogen cycling.

To investigate the impact of probiotics on microbial diversity and community composi-
tion associated with nitrogen cycling in C. nasus aquaculture ponds, we seek to unravel the
potential mechanisms underlying the nitrogen removal efficacy of probiotics via metage-
nomic analysis of element cycling. This investigation will contribute novel perspectives into
the nitrogen removal capabilities of probiotics and provide essential insights for mitigating
nutrient loading in fish farming ponds.

2. Materials and Methods
2.1. Experimental Design, Sampling, and Water Quality Determination

Healthy C. nasus individuals (11.34 ± 1.16 cm, 5.82 ± 0.84 g) were sourced from
Yangzhong, China. A total of nine ponds (160 m3) were divided into three groups (300 indi-
viduals per pond): the control group (C), adding probiotics in feed group (PF), and adding
probiotics in water group (PW). The fish underwent a 7-day acclimation period before the
commencement of the experiment. The C group received no probiotics in a basal diet or
aquatic water. The PF group was given 1.0 × 108 CFU/g of effective microorganisms (EM)
in a basal diet, based on other references and our previous study [25,26]. The PW group
was also provided with 1.0 × 108 CFU/g of EM (every 4 days), following other references
and our previous study [27]. The experimental period lasted for 120 days (from April to
August), and continuous microbubble aeration was employed throughout the aquaculture
period. Sampling was conducted once every 30 days. Water samples were collected via a
five-point sampling method from 50 cm below the surface of the water. Each water sample
was mixed thoroughly, and 1.0 L was used to measure water quality indicators, whereas
3.0 L was promptly filtered through 0.22 µm polycarbonate membranes for metagenomic
analysis. The detailed contents of effective microorganisms (Hengtai Biotechnology Co.,
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Ltd., Wuxi, China) and dairy diets (Tianen Aquatic Feed Co., Ltd., Jiaxing, China) used
are shown in Tables S1 and S2. The water quality indicators were analyzed following the
methods described by [28]. The concentration of NH4

+-N in the water was determined
via the Nessler’s reagent spectrophotometric method. NO2

−-N was quantified using the
spectrophotometric method, while nitrate nitrogen (NO3

−-N) was analyzed via the zinc-
cadmium reduction method. Total nitrogen (TN) levels were measured using the alkaline
potassium persulfate digestion method in combination with ultraviolet spectrophotometry.

2.2. DNA Extraction and Metagenomic Sequencing

Microbial DNA was isolated from water samples using the E.Z.N.A.® stool DNA
Kit (Omega Bio-tek, Norcross, GA, USA) following the manufacturer’s instructions. Sub-
sequently, metagenomic shotgun sequencing libraries were prepared and sequenced at
Shanghai Biozeron Biological Technology Co., Ltd., Shanghai, China. Briefly, genomic DNA
(1 µg) was fragmented using a Covaris S220 Focused-ultrasonicator (Woburn, MA, USA),
and sequencing libraries with an average fragment length of approximately 450 bp were
generated. All samples were sequenced on the Illumina NovaSeq 6000 platform in paired-
end 150 bp (PE150) mode. Raw sequence reads underwent quality trimming using Trim-
momatic v0.36 (http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic,
accessed on 16 June 2023) to remove adapter contaminants and low-quality reads.

2.3. Reads-Based Phylogenetic Annotation

The taxonomy of clean reads for each sample was determined using Kraken2 with a
customized kraken database. This customized database consisted of genome sequences
from bacteria, archaea, fungi, viruses, protozoa, and algae obtained from the NCBI RefSeq
database (release number: 20221209). The classification of reads was performed at seven
phylogenetic levels, including domain, phylum, class, order, family, genus, and species, as
well as an “unclassified” category. To estimate the abundances of different taxa, Bracken
v2.7.0 (https://ccb.jhu.edu/software/bracken/, accessed on 16 June 2023) was employed.
Bracken is capable of providing accurate estimations of species- and genus-level abundance,
even in cases where there are multiple closely related species. The relative abundance
of a certain taxonomic level in the study represents the cumulative abundance of species
belonging to that specific level.

2.4. Metagenomic De Novo Assembly, Gene Prediction, Gene Abundance

The clean sequence reads were used to generate a set of contigs for each sample
by employing MegaHit (v1.1.1-2-g02102e1) with the parameter “--min-contig-len 500”.
Subsequently, the open reading frames (ORFs) within the assembled contigs were predicted
using METAProdigal (v2.6.3). All ORFs were then clustered using CD-HIT to generate a set
of unique genes. The longest sequence within each cluster was chosen as the representative
sequence for each gene in the unique-gene set. To determine the abundance profiles of these
genes, the high-quality reads from each sample were aligned against the unique-gene set
using BWA-MEM (v.0.7.17). Abundance values for the genes were calculated in transcripts
per million (TPM), taking into account variations in gene length and the number of mapped
reads per sample. Specifically, genes with an alignment length of at least 50 bp and a
sequence identity higher than 95% were included in the abundance calculations.

2.5. Gene Function Annotation Based on Unique Gene

The unique-gene set was searched against various databases to identify proteins and
retrieve their functional annotations. The KEGG database was used with kofam v1.2.0,
while the Carbohydrate-Active Enzymes (CAZy v8) database and eggNOG v5.0 database
were compared using BLASTP searches against the NCBI NR database with DIAMOND
(v0.9.22.123). To identify antibiotic resistance genes (ARGs), the SARG v2.3 database was
used with diamond (v0.9.22.123) BLASP (http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed
on 17 June 2023), requiring an identity ≥ 80% and coverage ≥ 70% for identifying ARG-
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like ORFs. Pathogens and virulence factor (VF) gene annotations were conducted by
aligning amino acid sequences with the PHI database (http://www.phi-base.org/index.jsp,
accessed on 17 June 2023) and VFDB database (http://www.mgc.ac.cn/VFs/, accessed
on 17 June 2023) using BLASTP with an e-value cutoff of 10−5 and identity ≥ 70%. For
the BactMet gene annotations, amino acid sequences were aligned with the BacMet V2
database (http://bacmet.biomedicine.gu.se/, accessed on 17 June 2023) using BLASTP with
an e-value cutoff of 10−5 and identity ≥ 70%. We utilized a high-quality reference database,
the NCyc database (https://github.com/qichao1984/NCyc/tree/master/data, accessed
on 17 June 2023), for the metagenomic analysis of nitrogen cycling gene families [29].

2.6. Statistical Analysis

To assess the normal distribution of the data, the Kolmogorov-Smirnov and Shapiro-
Wilk methods were employed. In cases where the data deviated from normal distribution,
a conversely non-normally distributed data approach was utilized to test for interactive
effects. If p < 0.05, a two-way ANOVA was conducted using SPSS 20.0 software. The mean
values, accompanied by the standard error of the mean (SEM), were presented for all data.
A p < 0.05 was considered statistically significant. Line charts were drawn via GraphPad
10.0. The heatmaps were drawn via TBtools [30]. The PCoA, correlation heatmaps, and
RDA analysis were performed on Omicshare Tools (https://www.omicshare.com/tools/,
accessed on 10 December 2023) [31,32].

3. Results
3.1. Characteristics of Nitrogen Element Transformation in Different Forms

The concentration of NH4
+-N in both the C group and PF group showed an increasing

trend. However, there was no significant difference between these two groups at 120 days
(p > 0.05). On the other hand, the concentration of NH4

+-N in the PW group was signif-
icantly lower than that in the C group and PF group at both 60 and 120 days (p < 0.05)
(Figure 1A). At 120 days, the PF group demonstrated significantly lower NO2

−-N levels
than the C group (p < 0.05). Furthermore, both the C and PF groups had significantly higher
NO2

−-N levels compared to the PW group at 30, 90, and 120 days (p < 0.05) (Figure 1B). The
NO3

−-N levels in the C, PF, and PW groups displayed similar trends, initially increasing
and then decreasing. At 60, 90, and 120 days, the PW group exhibited the highest NO3

−-N
content, surpassing the other two groups with statistical significance (p < 0.05). Conversely,
the PF group consistently had the lowest NO3

−-N content at each time point, significantly
lower than the other two groups (p < 0.05) (Figure 1C). Regarding TN content, the PW
group consistently had significantly lower levels compared to the C group at all time points
(p < 0.05). Additionally, the PF group had significantly lower TN content than the C group
at 30 and 60 days (p < 0.05) (Figure 1D).

3.2. Characteristics of Microbial Diversity and Community Structure Differences

After filtering adaptor sequences, ambiguous ‘N’ nucleotides, and low-quality se-
quences, a total of 786,632,238, 788,392,474, and 713,383,154 clean reads were generated
in the C, PF, and PW groups, respectively (Table S3). After metagenome assembly, a total
of 4,830,075, 5,572,128, and 5,102,814 contigs sequences were obtained in the C, PF, and
PW groups, respectively (Table S4). The principal coordinate analysis (PCoA) demon-
strated significant differences in microbial community structure across various time points
(Figure 2A).

In comparison to the C group, both the PF group and PW group exhibited a signifi-
cantly upward trend in microbial α-diversity (Shannon index and Simpson index) (p < 0.05)
(Figure 2B,C). Proteobacteria (29.76% to 40.39%), Actinobacteria (21.24% to 28.64%), and
Bacteroidetes (13.52% to 20.21%) were the predominant bacterial phyla observed in the
aquaculture water of C. nasus at the phylum level, accounting for more than 60% of the rela-
tive abundance and displaying absolute predominance (Figure 2D). The relative abundance
of Cyanobacteria increased over time in the C and PF groups, but decreased in the PW

http://www.phi-base.org/index.jsp
http://www.mgc.ac.cn/VFs/
http://bacmet.biomedicine.gu.se/
https://github.com/qichao1984/NCyc/tree/master/data
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group from 30 d to 120 d (5.66% to 1.77%). On the other hand, the relative abundance of
Verrucomicrobiota increased from 30 d to 120 d (2.61% to 6.35%) (Figure 2D). Moreover, the
relative abundance of the metabolism pathway was dominant based on KEGG (Figure 2E).
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3.3. Nitrogen Cycling Pathways and Their Key Functional Genes

The PCoA analysis indicated no significant differences in nitrogen cycling-related
genes among different time points (Figure 3A). As shown in Figure 3B, a total of 54 genes
involved in nitrogen cycling were identified based on the Ncycle database. These genes
participate in the following nitrogen cycling pathways: Assimilatory Nitrate Reduction
(ANR), Denitrification, Denitrification-Dissimilatory Nitrate Reduction (DDNR), Nitrogen
fixation (NF), Dissimilatory Nitrate Reduction (DNR), Nitrification, and Organic Degrada-
tion Synthesis (ODS). The contribution of genes and microbial taxa (genus level) involved in
each nitrogen cycling pathway is depicted in Figure 3C (Table S5) and Figure 3D (Table S6).
nirA, nasA, narB, and Vulcanococcus exhibited the highest contribution in the ANR. nosZ,
nirK, nirS, and Limnocylindrus demonstrated the highest contribution to Denitrification.
napA, narG, narZ, and Roseomonas, Rhodofera showed the highest contribution in DDNR.
nifH and Rhodoferax, Limnohabitans exhibited the highest contribution in NF. nirB, nrfC,
and Rubrivivax, Limnohabitans demonstrated the highest contribution in DNR. amoC_B, hao,
and Methylocystis showed the highest contribution to Nitrification. nmo, glnA, gs_K00265,
gs_K00266, and UBA5976, Limnohabitans, Planktophila exhibited the highest contribution in
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ODS. However, in this study, functional genes responsible for the oxidation of nitrite to
nitrate were not identified in the nitrogen cycling pathway of the C. nasus aquaculture water.
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Based on the function of nitrogen cycling genes, we constructed a nitrogen cycling
pathway (Figure 4). Compared to the C group, the PF group and the PW group had a
significant impact on the relative abundance of nitrogen cycling genes. After 30 days, the
relative abundance of DDNR (napA, narG, narZ) and ANR (nirA, narB) in the PW group was
significantly increased (p < 0.05). After 60 days, the relative abundance of DNR (nirB, nrfC)
and ODS (nmo, glnA, gs_K00265, gs_K00266) in the PW group was significantly decreased
(p < 0.05), while the relative abundance of DDNR (napA, narZ), ANR (nirA, narB, nasA), and
Nitrification (amoC_B, hao) in the PW group was significantly up-regulated (p < 0.05). After
90 days, the relative abundance of ANR (nirA, nasA), and ODS (nmo, glnA, gs_K00265)-
related genes in the PW group was significantly down-regulated (p < 0.05). However,
the relative abundance of Nitrification (amoC_B, hao) in the PW group was significantly
enhanced (p < 0.05). After 120 days, the relative abundance of Denitrification (nosZ, nirK,
nirS), and ODS (nmo, glnA)-related genes in the PW group was significantly promoted
(p < 0.05).

3.4. Correlation Analysis of Key Functional Genes, Microorganisms, and Water Quality in
Nitrogen Cycling Pathways

The correlation heatmap analysis showed a correlation between “microbiome-functional
genes-water quality indicators”. Figure 5A presents the relationship between functional
genes and the microbiota. The results indicated a consistent correlation between the
functional genes involved in nitrogen cycling and the microbiota. Specifically, the func-
tional genes related to ANR (nirA, nasA, narB), Denitrification (nosZ, nirK, nirS), and ODS
(gs_K00265, gs_K00266) showed similar associations.
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In Figure 5B, the relationship between functional genes and water quality indicators
was examined. The findings revealed a significant negative correlation between ammo-
nia nitrogen and Denitrification (nirS, nosZ), DDNR (narG), and ODS (glnA, gs_K00265,
gs_K00266). Additionally, there was a significant negative correlation observed between ni-
trite and the DDNR (napA, narZ). Moreover, a significant positive correlation was identified
between nitrate and Denitrification (nirK), DDNR (napA), and DNR (nrfC).
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Figure 4. Construction of nitrogen cycling pathways and relative abundance of genes involved in
nitrogen cycling pathways. Different capital letters indicate significant differences among different
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In Figure 5C, the relationship between microbiota and water quality indicators was
examined. The findings revealed a significant negative correlation between ammonia
nitrogen and the relative abundance of Rhodoferax, Limnohabitans, Sediminibacterium, and
Algoriphagus. Additionally, there was a significant negative correlation observed between
nitrite and the relative abundance of Roseomonas and Rubrivivax. Moreover, a significant neg-
ative correlation was identified between nitrate and the relative abundance of Planktophila
and Rhodoferax.

Moreover, RDA analysis was employed to examine the environmental factors that
impact the regulation of nitrogen cycling-related functional genes and microbiota by pro-
biotics. The length of the arrows in Figure 5D represents the significance of TN, NH4

+-N,
and NO3

−-N as influential environmental factors in explaining the regulation of nitro-
gen cycling-related functional genes by probiotics. Similarly, the length of the arrows in
Figure 5E indicates the importance of NH4

+-N, NO2
−-N, and NO3

−-N in elucidating the
regulation of nitrogen cycling-related microbiota by probiotics.
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4. Discussion

The rapid expansion and intensification of aquaculture have resulted in excrement
and residual feed becoming significant contributors to excessive organic and inorganic
nutrients in aquaculture water. This disturbance in the equilibrium of aquatic ecosystems
has led to eutrophication, posing a threat to the health of aquatic animals [33,34]. Elevated
concentrations of NH4

+-N, NO2
−-N, and NO3

−-N can have detrimental effects on the
respiratory, nervous, immune, and growth functions of aquatic organisms [35–38]. In
addition, excessive TN content in water can trigger eutrophication. Therefore, maintaining
a nitrogen balance in aquaculture water is an important way to achieve green aquaculture
and ensure the welfare of aquatic animals. Increasing research has shown that probiotics
applied for regulation can effectively remove nutrients from water, especially nitrogen, and
inhibit eutrophication [39–41]. In crucian carp (Carassius auratus gibelio), exposure to high
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concentrations of complex probiotics resulted in the attainment of a dynamic equilibrium
state for total ammonia nitrogen, and nitrite levels [42]. The mixed probiotics have shown
positive effects on reducing nitrogen and phosphorus compounds [22]. Microencapsu-
lated Bacillus probiotic significantly reduced the levels of NH4

+-N and NO2
−-N in white

shrimp (Litopenaeus vannamei) [43]. Consistent with previous studies, the present study
demonstrated that adding probiotics to water significantly reduced the levels of NH4

+-N,
NO2

−-N, and TN content. Adding Bacillus subtilis SC02 to Ctenopharyngodon idellus culture
improved water quality, possibly due to changes in microbial community diversity [44].
Furthermore, this study demonstrated that adding probiotics to water altered the structure
of microbial communities, reducing the relative abundance of Cyanobacteria and increas-
ing the relative abundance of Verrucomicrobiota. Cyanobacteria exhibit a preference for
inorganic forms of nitrogen, particularly NH4

+-N and NO2
−-N [45]. It has been found that

Verrucomicrobiota can inhibit the growth of cyanobacteria by competing for nutrients and
producing inhibitory metabolites [46,47]. These results suggest that adding probiotics to
water may inhibit Cyanobacteria by increasing the relative abundance of Verrucomicrobiota
and reducing the concentrations of NH4

+-N and NO2
−-N in the water.

The nitrogen cycle is critical to preserving nitrogen balance and maintaining ecosystem
stability in water by regulating nitrogen levels and preventing eutrophication [48]. Microor-
ganisms serve as important drivers of nitrogen cycling processes in aquatic environments.
The present study constructed the nitrogen cycling pathways in C. nasus aquaculture water
based on metagenomic analysis, including Assimilatory Nitrate Reduction, Denitrification,
Denitrification-Dissimilatory Nitrate Reduction, Nitrogen fixation, Dissimilatory Nitrate
Reduction, Nitrification, and Organic Degradation Synthesis, which was consistent with
previous studies [49]. Our previous studies have indicated that elevated levels of NH4

+-N
can be detrimental to the health of C. nasus, leading to inflammatory responses, immune
suppression, and neurological damage [24]. In the present study, adding probiotics in
water significantly reduced the concentration of NH4

+-N in C. nasus aquaculture water.
Nitrification is a vital mechanism for the elimination of NH4

+-N, with ammonia oxidation
serving as a crucial rate-limiting step in this process. AmoC_B is an important subunit of
ammonia monooxygenase, which participates in the oxidation of ammonia nitrogen to
NH2OH [50,51]. The nitrite oxidoreductase encoded by the hao gene is involved in the
oxidation of NH2OH to nitrite in the nitrogen cycle and serves as a key regulatory factor in
the process [52]. In the present study, the relative abundance of amoC_B and hao genes was
higher in the group with adding probiotics compared to other groups. This indicates that
adding probiotics to water enhances the potential for Nitrification. In addition, this study
found a significant negative correlation between the concentration of NH4

+-N and the rela-
tive abundance of Limnohabitans, Sediminibacterium, and Algoriphagus in the water bodies.
Some species within the Limnohabitans possess ammonia monooxygenase genes and have
been shown to have the ability to utilize ammonia nitrogen and convert it to nitrite through
the process of ammonification [53]. Sediminibacterium is responsible for denitrification
in sludge [54]. An increased nutrient concentration significantly affected bacterial abun-
dance. Sediminibacterium showed an evident response to high nutrient concentrations [55].
These results suggest that adding probiotics to water may regulate the concentration of
ammonia nitrogen by altering the relative abundance of water body microorganisms and
Nitrification-related genes.

ANR, Denitrification, DDNR, and DNR are important pathways for removing NO2
−-N,

and NO3
−-N from water. They also play a crucial role in biological denitrification in

wastewater treatment processes [56]. In the present study, the relative abundance of nirS
and nosZ genes involved in Denitrification was higher in the group with probiotics com-
pared to other groups. However, the relative abundance of nirB, nrfC (DNR), and nirA
(ANR) was lower in the group with probiotic addition compared to other groups. The nirS
and nosZ genes encode nitrite reductase enzymes that catalyze the reduction in nitrite to
nitrogen gas using an electron donor. This process is an important step in the nitrogen cycle
and helps maintain the balance of nitrogen elements in ecosystems [57,58]. In addition, in
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this study, functional genes responsible for the oxidation of nitrite to nitrate were not iden-
tified in C. nasus aquaculture water. These results suggest that adding probiotics to water
primarily removes NO2

−-N from water through the Denitrification pathway. In this study,
correlation analysis indicated a significant negative correlation between nitrite and the
genera Roseomonas and Rubrivivax. Adding Bacillus subtilis SC02 to Ctenopharyngodon idellus
culture can improve water quality and increase the relative abundance of Roseomonas [44].
In a study on treating coking wastewater, Rubrivivax was proven to be responsible for
denitrification [59]. These reports are similar to the results of this study. These findings
suggest that adding probiotics to water may regulate nitrite levels in water by altering
the relative abundance of water microbial communities and denitrification-related genes.
Additionally, in this study, the relative abundance of napA, narZ, and narG genes associated
with Dissimilatory Nitrate Reduction to Ammonium (DDNR) was higher in the group with
probiotics compared to other groups. This increase in gene abundance is correlated with the
nitrate concentration in the water. The key genes napA, narZ, and narG are subunits of ni-
trate assimilation reductases involved in the process of DDNR. They play an important role
in the nitrogen cycle [60,61]. The results indicate that an increase in nitrate concentration in
water can promote the abundance of nitrate-related nitrogen cycling genes. This is likely
due to the fact that the rise in nitrate levels may stimulate the growth and reproduction of
nitrifying bacteria, resulting in an increase in the abundance of nitrification-related genes.
Moreover, the increase in nitrate concentration may also trigger the metabolic activity of
denitrifying bacteria, leading to an increase in the abundance of denitrification-related
genes, which is consistent with the findings of this study. In aquaculture practices, a
large amount of nutrients is typically stored in sediments [62]. In the study of zero-water
exchange ponds, nitrate concentrations in both water and sediments significantly increased
over time [63]. The nitrate in sedimentary deposits is not permanently fixed within them;
under certain conditions, it can be released back into the water. Therefore, we speculate
that the reason for the higher nitrate levels in the water after adding probiotics in this study
may be related to sediment release. However, the specific mechanisms still need to be
verified and further investigated.

5. Conclusions

The results of this study indicate that, compared to adding probiotics in feed, adding
probiotics in water significantly reduced the concentrations of ammonia nitrogen, nitrite,
and total nitrogen in the water. Through metagenomic sequencing of microorganisms in
the water and nitrogen cycle analysis, we constructed a nitrogen cycle pathway diagram
for C. nasus aquaculture water. Adding probiotics to water increases the relative abundance
of the amoC_B and hao (Nitrification pathways) at 60 d and 120 d, as well as nirS and nosZ
(Denitrification pathways) at 120 d. Nitrification and Denitrification pathways are key
nitrogen cycling pathways that reduce the levels of ammonia nitrogen, and nitrite in the
water. Correlation analysis in this study revealed a significant negative correlation between
ammonia nitrogen changes and Limnohabitans, Sediminibacterium, and Algoriphagus, as well
as a significant negative correlation between nitrite and Roseomonas and Rubrivivax. These
microorganisms may be potential beneficial microorganisms for water quality improvement.
However, the specific functions of these microorganisms in C. nasus aquaculture water,
particularly in nitrogen cycling, still require further research. Our findings provide new
insights into the role of probiotics in nitrogen removal and offer crucial insights into
reducing nutrient loads in fish farming ponds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12030627/s1, Table S1: Contents of EM used in the present
study; Table S2: Ingredient composition and analysis of the experimental diets (%); Table S3: Statistical
analysis of clean reads based on metagenome; Table S4: Statistical analysis of assembly results;
Table S5: Contribution of genes related to nitrogen cycling pathways; Table S6: Contribution of genera
related to nitrogen cycling pathways.
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