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Abstract: The interactions between human and viral proteins are pivotal in viral infection and host
immune responses. These interactions traverse different stages of the viral life cycle, encompassing
initial entry into host cells, replication, and the eventual deployment of immune evasion strategies. As
viruses exploit host cellular machinery for their replication and survival, targeting key protein–protein
interactions offer a strategic approach for developing antiviral drugs. This review discusses how
viruses interact with host proteins to develop viral–host interactions. In addition, we also highlight
valuable resources that aid in identifying new interactions, incorporating high-throughput methods,
and computational approaches, ultimately helping to understand how these tools can be effectively
utilized to study viral–host interactions.
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1. Introduction

Protein–protein interactions (PPIs) play a crucial role in mediating various functions,
including catalysing metabolic reactions, facilitating the transport of molecules, modifying
the kinetic properties of enzymes, and altering the specificity of proteins [1,2]. In signalling
events, proteins interact to regulate pathways and maintain essential cellular processes,
contributing to cell growth and overall cellular function [3,4]. Over the years, numerous
studies have been conducted to explore and predict comprehensive maps of PPIs in differ-
ent organisms [5–8]. These interactions are fundamental to understanding the complexities
of living organisms. The human body, for instance, relies on a vast network of proteins
working in concert to maintain homeostasis, respond to stimuli, and carry out essential
physiological functions. Disruptions in PPIs are often associated with diseases such as can-
cer, neurodegenerative disorders, viral infections, and immune system dysfunction [9,10].
PPIs are pivotal in determining the spatial and temporal organization of cellular processes.
For example, the binding of signalling proteins can initiate cascades that regulate cellular
responses to environmental cues. Enzymatic activities often involve the collaboration of
multiple proteins, leading to metabolic pathways. Additionally, protein complexes play
critical roles in cellular structures, such as the ribosome, which is essential for protein
synthesis [11–13]. The majority of known PPIs involve domain–domain interactions (DDIs)
mediated by globular domains in different proteins [14]. However, PPI detection experi-
ments generate interaction data with the potential for false positives and false negatives.
Exploring DDIs, where a domain in one protein interacts with a domain in another protein,
can address these limitations and offer valuable insights into the complexities of biologi-
cal systems [15]. The identification of DDIs relies on the three-dimensional structures of
protein complexes available in the Protein Data Bank [16,17]. Databases like iPfam [18]
and 3DID [19] contain extracted DDIs from known 3D structures. However, a limitation
arises from the insufficient number of known 3D structures of proteins, prompting the
development of computational methods for predicting DDIs. Despite the availability of
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various prediction methods, there is no unified platform for integrating predicted DDIs.
In recent years, databases such as DOMINE [20] and UniDomInt [21] have emerged to
specifically store DDIs from diverse resources. These databases provide a confidence score,
enhancing the reliability of predicted DDIs. However, despite offering significant DDIs,
these databases are outdated and lack recently published datasets. Another mode of in-
teraction involves domain–motif interactions (DMIs), mediated by Short Linear Motifs
(SLiMs) [22–25]. DMIs represent a subset of PPIs, where a domain of one protein interacts
with a SLiM in another protein [26–29]. DMIs are often transient and play roles in various
signalling processes, including protein targeting and signal transduction [30]. Specific
SLiMs interact with specific domains to establish a DMI; for instance, proline-rich motifs
tend to interact with SH3 domains [31]. SLiMs typically have 2–5 conserved positions
essential for interaction with partner domains, offering flexibility in sequence patterns
and enabling the establishment of different DMIs. This flexibility allows a single motif
to bind to several domains from the same family, or variants of the same motif to bind
with the same domain. For instance, PDZ domains interact with variants of the same
motif (class I, class II, and class III), showcasing the promiscuity of DMIs, coupled with
specificity that is often dependent on the sequence context of the motif, serving as a scaffold
for establishing DMIs, while contextual residues define interaction specificity [32]. The
promiscuous nature of DMIs is accompanied by a distinctive binding specificity. This
specificity typically relies on the sequence context of the motif, acting as a scaffold for the
establishment of DMIs, with contextual residues playing a crucial role in defining the speci-
ficity of interactions [33–37]. Pathogens, encompassing bacteria, viruses, protozoa, fungi,
and helminths, interact with hosts, causing infections and resulting in disease development.
Once inside the host cell, pathogens confront a robust immune defence system that works
to confine and eliminate them [38]. At the viral–host interface, specific interactions between
viral ligands and host cell receptors activate signalling cascades, leading to the recruitment
of molecules crucial for immune responses. While these signalling pathways are essential
for pathogen removal and minimal host damage, certain pathogens exploit them to ma-
nipulate the host immune response for their survival [39]. Targeting protein interactions
has emerged as a critical strategy in the development of antiviral drugs. Disrupting key
PPIs can impede viral replication, entry, and assembly, offering a promising avenue for
designing effective therapeutics [38,40]. This review provides an overview of how viruses
interact with host cell receptors, exploring how these interactions influence subsequent
events that either support or eliminate the virus. Moreover, this review also discusses the
current state of computational approaches and high-throughput methods that can help in
identifying viral–host interactions. Furthermore, we discuss the importance of targeting
specific protein interactions as a promising avenue for the development of antiviral drugs.

2. Fundamentals of Viral Protein Interactions

A comprehensive overview of viral proteins participating in key stages of the viral
life cycle can help understand the molecular events critical for successful viral replica-
tion and propagation. During every stage, specialized viral proteins coordinate crucial
functions, such as viral entry facilitated by attachment proteins and genome replication
guided by polymerase enzymes and helicases. The assembly and packaging of viral par-
ticles involve structural proteins, while proteases play a pivotal role in the maturation
of viral components. During egress, proteins mediate the release of newly formed viri-
ons from the host cell [41–43]. PPIs play a pivotal role in viral replication and assembly,
guiding the proper packaging of genetic material and structural components [43–45]. A
complete understanding of these interactions can not only shed light on the molecular
mechanisms governing viral replication, but also provide potential targets for antiviral
interventions aimed through disrupting essential PPIs [43]. While a considerable number
of protein interactions involve globular domains and short linear peptide motifs (DMIs),
targeting these interactions with small molecules has historically been challenging, leading
to limited success. However, recent studies have identified potent inhibitors, including
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Obatoclax, ABT-199, AEG-40826, and SAH-p53-8, some of which are likely to receive ap-
proval as drugs. These inhibitors belong to diverse molecule classes, ranging from small
molecules to peptidomimetics and biologicals [46]. In under two decades, three lethal
coronaviruses—SARS-CoV, MERS-CoV, and SARS-CoV-2—have surfaced, resulting in a
significant toll of hundreds of thousands of deaths. Additionally, other coronaviruses pose
a threat to both domestic and wild animals through epizootics. With the longest genome
among RNA viruses, members of this viral family express up to 29 proteins, engaging in
intricate interactions with the host proteome. Understanding these interactions is crucial for
identifying the cellular pathways exploited by these viruses to replicate and evade innate
immunity [47–50]. A recent study focused on the relationship between host–virus PPIs,
particularly on the involvement of disordered protein regions binding to folded protein
domains in the virus life cycle. By employing proteomic peptide phage display, researchers
have identified 281 peptides from intrinsically disordered regions of the human proteome
that bind to eleven folded domains of SARS-CoV-2 proteins. Affinities for 31 interactions
involving eight SARS-CoV-2 protein domains have been determined, with established key
specificity residues for six interactions. Notably, two peptides inhibiting viral replication
have been discovered, targeting Nsp9 and Nsp16. These findings highlight the potential
of high-throughput peptide binding screens in simultaneously revealing host–virus inter-
actions and identifying peptides with antiviral properties. Additionally, the prevalence
of low-affinity interactions suggests that overexpressing viral proteins during infection
may disrupt multiple cellular pathways [51]. Similarly, in one study, researchers identified
six host targets, including CARD9 and CYP51A1, associated with both fungal infections
and SARS-CoV-2 interactions, suggesting them as potential antiviral therapeutics [52]. In
another study, researchers focused on the interaction between the Zika virus (ZIKV) and
host cell machinery, particularly the ZIKV E protein domain III responsible for receptor
binding. Through a yeast-2-hybrid screen, 21 proteins interacting with this domain have
been identified, including the endoplasmic reticulum (ER) resident chaperone protein
GRP78. The interaction was confirmed through co-immunoprecipitation and reciprocal co-
immunoprecipitation, with immunofluorescence staining revealing co-localization between
GRP78 and ZIKV E. Antibodies against GRP78’s N-terminus inhibited ZIKV entry, leading
to reduced infection and viral production. A down-regulation of GRP78 by siRNA yielded
similar results. This study suggested that GRP78 mediates ZIKV binding, internalization,
and replication, and its up-regulation activates the unfolded protein response. Additionally,
increased CHOP expressions and activations of caspases 7 and 9 were observed in response
to ZIKV infection. These findings proposed the interaction between GRP78 and ZIKV E
as a crucial factor in ZIKV infection and replication, potentially serving as a therapeutic
target [53].

3. Characterizing Viral Host Interactions Using High-Throughput and
Computational Approaches

Viral–host interactions can be characterized using three major experimental methods:
yeast two-hybrid assays, co-immunoprecipitation, and mass spectrometry [54–57]. Yeast
two-hybrid assays facilitate high-throughput screening and mimic in vivo conditions, mak-
ing them valuable for detecting weak or transient interactions. However, they come with
drawbacks like potential false positives and limitations in studying membrane–protein in-
teractions [58]. Co-immunoprecipitation validates in vivo interactions under physiological
conditions and is suitable for studying protein complexes, yet it may yield non-specific
results and struggle with weak interactions [2]. Mass spectrometry, offering high sensitivity
and quantitative data, excels in detecting protein complexes but requires sophisticated
instrumentation [59,60]. Computational methods such as molecular dynamics simulations
and network analysis complement experimental findings, providing a holistic view of
interactions and aiding in the construction of refined models [61]. This integrated strategy
is vital for advancing our understanding of viral pathogenesis and may guide the develop-
ment of targeted antiviral interventions. The classical approach to drug discovery, focusing
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on small ligands interacting with well-defined binding sites in proteins like enzymes, ion
channels, and receptors, has historically overlooked PPIs due to the inherent challenges in
modulating them with small molecules [62,63]. Despite these challenges, targeting PPIs is
increasingly considered a promising strategy for drug development. Some PPI modulators
have entered clinical studies, with a few receiving marketing approvals, indicating the
growing potential of targeting PPIs in drug discovery [64,65].

The accurate prediction of PPIs relies heavily on the integration of various data sources,
each providing unique insights into the complex network of molecular associations within
cells [40]. Structural data involve the three-dimensional arrangement of proteins, providing
critical information about their physical interactions. Techniques such as X-ray crystallog-
raphy and nuclear magnetic resonance (NMR) spectroscopy enable the determination of
protein structures at an atomic resolution [66]. Structural data contribute valuable infor-
mation about binding sites, interface residues, and the overall conformation of interacting
proteins, offering a foundational understanding of the molecular basis of PPIs. Sequence
data, encompassing amino acid sequences of proteins, are fundamental for predicting
potential interactions. Sequence similarity and motif analysis aid in identifying conserved
domains and regions crucial for binding interactions. Bioinformatic tools leverage se-
quence databases and algorithms to compare and align protein sequences, offering insights
into the evolutionary relationships and conserved features that may dictate interactions
(Table 1) [67]. Functional annotations provide context to protein interactions by associating
biological functions and pathways. Gene ontology annotations, for example, categorize
proteins based on their molecular functions, biological processes, and cellular compo-
nents. Incorporating functional annotations can enhance the interpretation of predicted
interactions, linking them to specific cellular processes and pathways [68]. Incorporat-
ing machine learning can also address these limitations, as machine learning algorithms
can analyse large-scale datasets, identify patterns, and predict interactions with computa-
tional efficiency. These algorithms consider multiple features simultaneously, including
sequence information, structural data, and functional annotations, aiming to enhance our
understanding of the interactome and accelerate the identification of potential drug tar-
gets [69]. High-throughput experimental techniques generate large-scale datasets using
systematically screening interactions. Methods such as yeast two-hybrid assays and mass
spectrometry enable the identification of protein pairs engaging in physical interactions
within a cellular context [70,71]. These experimental datasets serve as valuable training and
validation sets for machine learning models, contributing to the refinement of PPI predic-
tion algorithms. A holistic approach to PPI prediction involves the integration of diverse
data types. Combining structural, sequence, and functional data with high-throughput
experimental results can enhance the accuracy and reliability of predictions [72]. Therefore,
to attain a complete understanding, the integration of experimental and computational
approaches is crucial.

Table 1. Resources/repositories used to study viral–host interactions.

Resource/Repository Description URL

VirusMentha [73] Integrated resource for viral–host and
protein–protein interactions.

https://virusmentha.uniroma2.it/
[Accessed on 10 January 2024]

VirHostNet3.0 [74]
Network-based tool for exploring virus–host
interactions. Integrates interaction, annotation, and
pathway data.

https://virhostnet.prabi.fr/
[Accessed on 10 January 2024]

HPIDB3.0 [75] Human Protein Interaction Database with
information on virus–host interactions.

https://hpidb.igbb.msstate.edu/
[Accessed on 10 January 2024]

VirBase v3.0 [76] Database focusing on interactions between viral and
host miRNAs, proteins, and genes.

https://www.rna-society.org/virbase/
[Accessed on 10 January 2024]

https://virusmentha.uniroma2.it/
https://virhostnet.prabi.fr/
https://hpidb.igbb.msstate.edu/
https://www.rna-society.org/virbase/
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Table 1. Cont.

Resource/Repository Description URL

Virus-Host DB [77]

The Virus-Host DB systematically structures
information pertaining to the associations between
viruses and their hosts, presenting it in the format of
paired NCBI taxonomy IDs for both viruses and
their respective hosts.

https://www.genome.jp/virushostdb
[Accessed on 10 January 2024]

VHRdb [78] The Viral Host Range database (VHRdb) provides
experimentally validated interactions.

https://viralhostrangedb.pasteur.cloud/
[Accessed on 10 January 2024]

AIMaP [79]
AIMaP is a database and web server for users to
easily explore an atlas of interactions between
SARS-CoV-2 macromolecules and hosts.

https:
//mvip.whu.edu.cn/aimap/home/
[Accessed on 10 January 2024]

VirusMint [80] A repository containing information on interactions
between proteins of viruses and humans.

https://maayanlab.cloud/
Harmonizome/resource/Virus+MINT
[Accessed on 10 January 2024]

PHISTO [81] Platform for studying infection mechanisms through
Pathogen–Host Interactions (PHIs)

https://phisto.org/
[Accessed on 10 January 2024]

HVIDB [82]
HVIDB is a computational platform predicting
human-virus protein interactions based on multiple
data sources.

http://zzdlab.com/hvidb/
[Accessed on 10 January 2024]

HVPPI [72]
HVPPI offers a thorough annotation of human-virus
protein interactions along with online tools for
functional PPI analysis.

http:
//bio-bigdata.hrbmu.edu.cn/HVPPI/
[Accessed on 10 January 2024]

Viruses.STRING [83]

Viruses.STRING is a database for virus–virus and
virus–host protein interactions, combining
experimental and text-mining data for probability
assessments.

viruses.string-db.org
[Accessed on 10 January 2024]

4. Targeting Viral–Host Protein Interactions for Therapeutics

Viruses strategically exploit cellular machinery through establishing virus–host pro-
tein interactions, essential for key stages such as entry (involving surface receptors and
trafficking factors), genome replication and translation (facilitated by polymerases and
translation factors), and egress (involving assembly and trafficking factors) [38]. Targeting
and disrupting these interactions have emerged as promising avenues for therapeutic
development against viral infections, as illustrated in Figure 1. This review encompasses
various antiviral strategies, as outlined in Table 2. Remarkably, a significant proportion of
approved antiviral drugs falls into the category of small molecule inhibitors. Their rela-
tively compact size facilitates efficient cell penetration and precise interaction with specific
binding sites. The practicality of oral administration further highlights their therapeutic
viability. The journey toward developing small molecule inhibitors commences with the
identification of viral proteins crucial to the virus life cycle. Central to this process is the
acquisition of structural information essential for designing drugs specifically tailored
to target viral proteins. Approaches for identifying protein structure in antiviral drug
design include computer-aided virtual screening and experiment-based high-throughput
screening. Computational drug discovery methods, such as virtual screening techniques
involving cryo-electron microscopy, X-ray crystallography, and homology modelling, yield
diverse protein structures. This aids molecular docking for the rapid identification of
hit or lead compounds through screening databases like ZINC [84] and DrugBank [85].
However, it is essential to note the increasing prevalence of reported in silico docking
studies and other computer-based predictions of antiviral activity without corresponding
biological assays [86]. Nevertheless, it is strongly recommended to conduct biological
validation to corroborate theoretical findings obtained through computational approaches.
High-throughput screening involves the experiment-based identification of active small

https://www.genome.jp/virushostdb
https://viralhostrangedb.pasteur.cloud/
https://mvip.whu.edu.cn/aimap/home/
https://mvip.whu.edu.cn/aimap/home/
https://maayanlab.cloud/Harmonizome/resource/Virus+MINT
https://maayanlab.cloud/Harmonizome/resource/Virus+MINT
https://phisto.org/
http://zzdlab.com/hvidb/
http://bio-bigdata.hrbmu.edu.cn/HVPPI/
http://bio-bigdata.hrbmu.edu.cn/HVPPI/
viruses.string-db.org
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molecules within compound libraries, encompassing approved drugs, clinical trial candi-
dates, and in-house databases. Despite being time-consuming and costly, this approach
allows for the screening of a substantial number of compounds against a specific target
viral protein, although success is not guaranteed. Following the identification of the target
protein’s structure, initial hits or potential inhibitors undergo optimization to enhance
their potency, selectivity, and pharmacokinetic properties. This optimization process in-
volves modifying the chemical structure of hits to improve drug-like properties, such as
adjusting functional groups, the molecular weight, and solubility. After medicinal chem-
istry optimization, lead compounds undergo an evaluation for absorption, distribution,
metabolism, excretion, and toxicity (ADME/T) properties to ensure suitability for further
development. Subsequently, in vivo/in vitro testing follows, culminating in the potential
entry of promising candidates into clinical trials.
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fection [93] 
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Extracting neutralizing antibodies against 
the virus from plasma from recovered indi-
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Convalescent plasma for 
Ebola virus infection [94] 

Figure 1. Schematic representation illustrating the potential points of action for antiviral interventions
targeting protein–protein interactions (PPIs). Antivirals can exert their effects during two distinct
phases of the viral life cycle: (1) at the initial interaction between viruses and surface markers, when
viruses are attempting to enter host cells, and (2) post entry, when viruses have successfully entered
host cells.

The development of antiviral drugs encounters numerous challenges, with only
106 drugs currently licensed for the therapy of viral diseases, despite the existence of
over 200 human viruses. Approval for antivirals is limited to a handful of viruses, in-
cluding HIV, HCV, influenza virus, RSV, HBV, HPV, herpesviruses, and SARS-CoV-2 [87].
Preclinical evaluations on animal models are crucial but often fraught with challenges, as
many drugs that show promise initially fail to demonstrate efficacy in vivo or prove to be
toxic to animals. Additionally, a considerable number of candidates do not pass the clinical
trial phase. The use of in vitro systems that do not accurately represent the in vivo environ-
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ment may contribute to such failures. Established cell lines and cell culture-adapted viral
strains often differ significantly from normal primary cells and natural host cells. Novel
in vitro tests that better mimic the in vivo environment, such as three-dimensional cultures,
and the development of more accurate animal models are imperative for addressing these
challenges in preclinical drug testing.

The one-drug-to-one-target paradigm has long been the cornerstone of drug devel-
opment, focusing on finding drugs that inhibit specific targets. However, the numerous
failures in this model, coupled with the extensive time (at least 12 years) and financial
resources (around USD 3 billion per new drug approved) invested, highlight the need for a
paradigm shift. The recent disappointment in clinical trials attempting to repurpose the
drug combination lopinavir/ritonavir for SARS-CoV-2 treatment exemplifies the challenges
associated with designing highly specific monotargeted drugs [88,89]. The pan-antiviral
strategy refers to a novel therapeutic approach that targets multiple viruses, acting as a
broad-spectrum inhibitor rather than focusing on a specific viral species. This strategy
diverges from the traditional one-drug-to-one-target paradigm, which often faces high
failure rates and substantial financial costs. Pan-antivirals, by design, aim to disrupt various
pathways essential for the survival and infectivity of different viruses [88]. Identifying
pan-antivirals is possible through efficient computational models, specifically 2D ligand-
based approaches. Perturbation theory and machine learning (PTML) models, recognized
for anti-HIV predictions, stand out for drug repurposing. Additionally, alignment-free
multitarget (AFMT) models efficiently screen large chemical libraries for potential pan-
antivirals [88]. Thus, the pan-antiviral strategy holds the potential to revolutionize antiviral
therapy, providing a more effective and efficient strategy against a broad spectrum of
viral infections.

Table 2. Overview of therapeutic strategies for disrupting viral–host protein interactions.

Strategy Sub-Strategy Mechanism Example

Small molecule inhibitor

Protease inhibitor
Preventing the maturation of viral proteins
by targeting viral proteases involved in the
cleavage of viral polyproteins

Ritonavir and lopinavir
for HIV infection [90]

Entry inhibitor
Preventing viral entry by blocking the
interaction between viral envelope proteins
and host cell receptors

Maraviroc for HIV
infection [91]

Helicase/unwinding
inhibitor

Inhibiting viral replication by targeting viral
helicases involved in unwinding viral RNA

Remdesivir for
SARS-CoV-2 infection [92]

Antibody and
immunotherapy

Monoclonal antibody Blocking interaction with host cells by
specifically binding to viral proteins

Palivizumab for RSV
infection [93]

Convalescent plasma
therapy

Extracting neutralizing antibodies against
the virus from plasma from recovered
individuals

Convalescent plasma for
Ebola virus infection [94]

Peptide-based inhibitor Peptide mimetic
Inhibiting competitively with the host cell
proteins using peptides that mimic key
regions of viral proteins Enfuvirtide for HIV

infection [95]
Fusion inhibitor

Preventing the fusion of viral and host
cellular membranes by targeting viral fusion
proteins

RNA-based therapy

RNA interference
Degrading viral RNA or interfering with
viral RNA translation by introducing small
interfering RNA or short hairpin RNA

TKM-130803 for Ebola
infection [96]

Antisense
oligonucleotide

Preventing protein synthesis using a
synthetic oligonucleotide that binds to viral
RNA

Fomivirsen for
cytomegalovirus
retinitis [97]
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Table 2. Cont.

Strategy Sub-Strategy Mechanism Example

Host cell factor targeting

Kinase inhibitor Targeting host cell kinases involved in viral
replication

Baricitinib for
SARS-CoV-2 infection [98]

Host cell receptor
modulation

Modifying host cell receptors to decrease
viral binding and entry

Maraviroc for HIV
infection [91]

Viral protein degradation Proteolysis targeting
chimera

Designing molecules that induce the
degradation of specific viral proteins by
recruiting cellular degradation machinery

Telaprevir for
hepatitis C [99]

Vaccine

Subunit vaccine
Developing vaccines based on specific viral
proteins to induce an immune response
against those proteins

HPV prophylactic
vaccines [100]

mRNA vaccine
Using mRNA to instruct host cells to
produce viral antigens, hence stimulating an
immune response

mRNA vaccines for
SARS-CoV-2
infection [101]

CRISPR/Cas9-based therapy
Editing viral genomes to disrupt essential
viral protein interactions through
CRISPR/Cas9 approach

In early development
stage

Repurposed drug
Identifying existing drugs with antiviral
properties that can disrupt viral protein
interactions

Remdesivir initially
developed for Ebola, later
repurposed for
SARS-CoV-2
infection [102]

5. Challenges and Considerations in Targeting Viral Protein Interactions

Protein interactions play a central role in various cellular processes and are crucial for
the functioning of biological systems. Targeting these interactions holds great promise for
the development of therapeutic interventions. However, several challenges and considera-
tions must be addressed to translate research findings into clinically effective treatments [38].
PPIs are considered potential drug targets, although converting small molecules into thera-
peutics poses challenges, requiring a delicate balance to induce therapeutic effects without
adverse consequences. The degradation of TP53 by MDM2, prevented by Nutlin-3, ex-
emplifies this delicate balance in PPIs. A multidisciplinary approach, combining genetics,
proteomics, biochemical, and biophysical methods to understand the role of PPIs in viral
diseases can accelerate drug discovery [103]. Numerous computational techniques have
emerged to predict PPIs; however, most of these approaches were designed for predict-
ing interactions within the same species rather than across different species. Methods
tailored for intra-species PPI prediction lack the ability to differentiate between interactions
among proteins within the same species and those involving proteins from different species.
Consequently, they are not suitable for anticipating inter-species PPIs [104]. One of the
significant challenges lies in bridging the gap between laboratory discoveries and clinical
applications. Many potential drug candidates identified through research may face obsta-
cles in transitioning to effective treatments due to complexities in replicating experimental
conditions in clinical settings. The conventional approach to small-molecule drug discovery
primarily centres on targeting protein–ligand interactions involving enzymes, ion channels,
or receptors due to their well-defined ligand-binding sites. However, modulating PPIs
through small molecules has historically been challenging, often labelling PPIs as “undrug-
gable” targets. The human interactome is estimated to encompass 130,000–650,000 types of
PPIs, outnumbering enzymes, and receptors. Designing small molecules for PPI interfaces
presents challenges such as through the larger hydrophobic interface area (1500–3000 Å2),
flat and groove-poor topology, continuous or discontinuous amino acid residues, and the
absence of endogenous ligands for reference. Additionally, drugs targeting PPIs have
a higher molecular weight (>400 Da), posing difficulties in meeting established criteria
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like Lipinski’s “rule of 5” compared to traditional small-molecule drugs (200–500 Da).
These factors collectively contribute to the complexity of developing small molecules that
effectively modulate PPIs [9,65]. The complex nature of protein interactions within living
organisms adds complexity to therapeutic development. The in vivo environment may
introduce unforeseen variables, making it challenging to predict how interventions tar-
geting specific interactions will behave within the human body [3]. Efforts to manipulate
protein interactions can inadvertently affect other biological processes, leading to off-target
effects. This concern emphasizes the importance of specificity in drug design to minimize
unintended consequences [4]. Ensuring the safety of targeted protein interactions is a
critical consideration. Comprehensive safety assessments are essential for identifying and
mitigating potential adverse effects on normal cellular functions, organ systems, or overall
physiological homeostasis [5]. Advancements in computational biology play a vital role
in predicting potential off-target effects and optimizing drug design. Virtual screening
and molecular dynamics simulations aid in assessing the selectivity and safety profiles
of candidate compounds [6]. Utilizing relevant biological assays and model systems that
closely mimic human physiology can enhance the predictive value of preclinical studies.
This approach facilitates a more accurate assessment of the potential clinical impact of
interventions targeting specific protein interactions [7]. Considering the multifaceted na-
ture of viral infections, combination therapies targeting multiple protein interactions or
pathways may provide enhanced efficacy while minimizing the risk of resistance develop-
ment [8]. Addressing these challenges and considerations is imperative for the successful
development of antiviral therapeutics targeting protein interactions [9].

6. Conclusions

The exploration of viral-host interactions as a foundation for antiviral therapies can
serve as a rich landscape of opportunities for targeted intervention. This review pro-
vides an overview of viral–host protein interactions and highlights the importance of
a comprehensive approach to drug development. It also suggests that a combination
of high-throughput methods and computational approaches can facilitate the identifica-
tion of novel interactions, which can in turn provide a deeper understanding of the viral
protein network.
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