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Abstract: The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat.
The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella
pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to
persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms.
Mortality related to this microorganism is high among immunosuppressed oncological patients and
those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat
posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies
have been studied and developed to prevent and combat serious health problems caused by biofilm
infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating
biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated
with nosocomial infections in intensive care units, including in our department, and to highlight
studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice.
We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices,
and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial
efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their
applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and
dental implants. The International Agency for Research on Cancer has recently classified titanium
dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the
ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic
nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies
have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review
was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and
antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial
and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles
demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate
cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles
obtained via green, ecological technology have less applicability but are actively investigated.
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1. Introduction

Klebsiella pneumoniae is a pathogenic, non-motile bacterium that has been associated
with ventilator-associated pneumonia (VAP), postoperative infections, and sepsis, pos-
sibly even leading to septic shock and death. The overall spread of multidrug-resistant
Gram-negative bacteria is a worldwide threat. The development and global spread of
multidrug-resistant (MDR) Klebsiella pneumoniae are of particular concern. MDR K. pneumo-
niae strains usually lead to hard-to-treat or untreatable nosocomial infections. The primary
multidrug-resistant mechanism is enzyme production. Three major classes of enzymes are
involved: Ambler class A (Klebsiella pneumoniae carbapenemase) (KPC), B (Metallo-beta-
lactamase) (MBLs), and D (oxacillinases) (OXA-48-like). All of these enzymes are mediated
via plasmids, mobile genetic elements carrying antibiotic-resistant genes, facilitating the
dissemination of carbapenem resistance worldwide [1,2].

Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumonia (KPC-Kp) are mostly
encountered in Greece, Italy, Israel, the United States, Colombia, and Argentina [1,3,4]. In
2016, the Annual Report of the European Antibiotic Surveillance Network published an
average percentage of carbapenem resistance of 6.1%, with a prevalence distribution in Greece,
Italy, and Romania [4]. A study by the European Centre for Disease Prevention and Control
and the National Public Health Organization in Greece (2022) reported a quick spread of
carbapenemase-producing, highly drug-resistant Klebsiella pneumoniae (sequence type 39) [5].

This pathogen has increased resistance and the ability to persist in human reservoirs
and in hospital environments, and to generate biofilms. Nosocomial spread of KPC-
producing K. pneumoniae may be the result of failure of adequate intrahospital disinfection
of medical surfaces and equipment. Wet environments (drains, faucets, sinks) are where
these bacteria can survive and spread. Medical devices can be contaminated and, if not
used properly, become vectors for spreading infections with these germs in hospitals.
Initially, the bacteria can be transferred to the device via contaminated medical equipment,
contaminated water, or other external environmental factors [6–8]. Furthermore, medical
equipment and devices (e.g., endoscopes) can be contaminated and colonized with KPC-
producing Klebsiella pneumoniae and, thus, become vectors of transmission of the infection
from one patient to another [6]. Gastrointestinal endoscopes, despite the use of advanced
disinfection techniques, can still harbor persistent contamination that increases the risk of
bacterial transmission. Several factors contribute to this, including exposure to endogenous
flora during procedures, the ability of bacteria such as Klebsiella pneumoniae to form biofilm
on the endoscope surfaces, the design and surface characteristics of endoscopes that make
thorough cleaning a challenge, and disinfection techniques that may not eliminate bacteria.
The most identified bacteria associated with contamination, transmission, and infections
associated with gastrointestinal endoscopes are Klebsiella pneumoniae, Escherichia coli, and
Pseudomonas aeruginosa [6,9–12].

The increase in carbapenemase-producing Klebsiella species has led to high hospital
mortality and limited treatment options. Hospitals worldwide implement strict measures
to limit infection and prevent the spread of the bacterium but, currently, the effectiveness of
these measures is still unknown [13–16]. Recently, more guidelines and recommendations
have focused on controlling and preventing carbapenemase-producing Enterobacteriaceae
infections. However, there is no agreement regarding the success of individual infection
control measures regarding the spread of KPC-producing Klebsiella pneumoniae [13,17–19].
Several key issues must be addressed when treating KPC-producing K. pneumoniae in
critically ill patients: prevention of colonization of the patient, prevention of infection in the
colonized patient, prevention of colonization of the contacts of these patients, and reduction
of mortality in infected patients [20].

Prolonged stay in the intensive care unit (ICU), dependence on invasive medical equip-
ment, inappropriate antibiotic therapy, and chronic illness (diabetes, chronic obstructive
pulmonary disease, cancer) are the most critical risk factors for the emergence of infections
with KPC-producing bacteria. KPC-producing Klebsiella pneumoniae infections have also
been associated with travel, immigration, and recent healthcare in areas where such infec-
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tions are constantly present [3,21–24]. Intensive care units are mainly affected due to the
multitude of maneuvers and invasive devices, but also due to the severity of the diagnoses
of hospitalized patients and the large number of days of hospitalization [4,5,25]. Patients
with bacteremia or respiratory infections due to carbapenemase-producing Klebsiella pneu-
moniae present a high death rate (30–70%) [4,5,25,26]. In our intensive care unit, we also face
this major problem. KPC-producing K. pneumoniae is one of the most frequently isolated
bacteria from samples collected from critical patients with extended stays; most of the
samples were from tracheal aspirates (intubated and mechanically ventilated patients). We
have found MDR (multidrug-resistant), XDR (extensively drug-resistant), and even PDR
(pandrug-resistant) Klebsiella pneumoniae in our ICU.

Bacteria are single-celled organisms and attach to inert or living surfaces to form
communities of microorganisms and biofilms. Bacterial biofilm is an aggregate of bacteria
(belonging to one or more species of microorganisms) surrounded by a matrix they pro-
duce, adherent to each other and to surfaces and/or tissues. Microbes practically live on
surfaces, including medical devices, leading to colonization and mature biofilm formation
by secreting extracellular polymeric substances (EPS) that provide protection and resistance
to aggressive factors, such as antibacterial agents (impossible for antibiotics to penetrate
the biofilm), the host immune responses, and extreme environmental factors (UV radiation,
extreme temperature, extreme pH, high pressure, high salinity, etc.) [27–34]. The biofilm
formation steps are as follows: initially reversible attachment (adherence of bacteria to
a surface), irreversible attachment (inhibition of motility factor and production of EPS),
maturation, and dispersion (bacteria revert to their original form). Thus, the biofilm ex-
pands and establishes itself in new places, resulting in disease progression and the spread
of infection (Figure 1) [28].
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Figure 1. Stages of biofilm formation: adherence of bacteria to the surface (a); inhibition of motility
factor (b); generation of EPS and quorum sensing leading to mature biofilm formation (c); dispersal
of mature cells (d) [28].

Klebsiella pneumoniae possesses the capacity to form biofilms. Gram-negative bacteria
(including Klebsiella pneumoniae) produce acyl homoserine lactose inducer (AHL), which
spreads out from the cell and enters another bacterial cell, attaches to, and activates the acti-
vator protein, binds to the DNA, and releases AHL synthetase, which catalyzes the creation
of new AHL and process repeats, producing quorum sensing (cell–cell communication
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system) among the colony of microorganisms facilitating biofilm formation [28,35,36]. The
phenotypic and genotypic characteristics of biofilm microorganisms differ from those of
planktonic organisms, which confer strong resistance [27–32,37,38].

Multiple species of microorganism form biofilms. These biofilms are responsible for
producing 80% of acute and chronic infections. While Staphylococcus epidermidis and Staphy-
lococcus aureus are frequently associated with biofilm formation on medical devices, among
Staphylococcal species, multidrug-resistant Gram-negative bacteria, especially Pseudomonas
aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii, and Escherichia coli, are the most
commonly involved in biofilm-based infections. K. pneumoniae is frequently associated
with biofilms formed on central venous catheters (CVCs) and urinary catheters. Staphy-
lococcus aureus biofilms are associated with post-implant orthopedic infections, chronic
osteomyelitis, and endocarditis. Pseudomonas aeruginosa biofilms are usually responsible
for catheter-associated urinary tract infections and contact-lens-related keratitis. S. aureus,
S. epidermidis, K. pneumonia, P. aeruginosa, Acinetobacter spp., E. coli, and Enterococcus form
biofilms on cardiovascular implants (prosthetic valves, pacemakers, and coronary artery
bypass grafts). Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae,
Pseudomonas aeruginosa, and Acinetobacter baumanii have been reported to colonize and form
biofilms in endotracheal tubes and cause ventilator-associated pneumonia (VAP) [28–30].

Source control is the basis of treating infectious diseases and includes all the actions
a multidisciplinary team takes in prevention and care [3]. Photocatalytic coatings are
considered one of the best solutions for surface and medical device decontamination and
self-disinfection, reducing the risk of infection transmission [39–41]. Titanium dioxide or
Titania (TiO2) is one of the best photocatalytic materials for antimicrobial coatings. It has
self-sterilizing effects and is considered a non-toxic material as a result of its inert nature
compared to other metal oxides. In the presence of moisture and upon UV illumination,
non-toxic metal oxides used for photocatalytic coating generate reactive oxygen species
(ROS) (hydroxyl radicals, hydroperoxyl radicals, hydrogen peroxide, singlet oxygen, and
superoxide radicals), kill microbes, and prevent their reactivation [39]. TiO2-coated surfaces
could minimize bacterial adhesive interaction by changing the surface free energy and
reducing bacterial adhesion by increasing the surface energy of the electron donor of the
coating. Airborne ROS mobility could also destroy airborne microbes [39,42–48]. Most
photocatalysts (including TiO2) are UV light absorbers. There is concern about using the
entire solar spectrum, from UV to infrared wavelengths [49]. In several recent studies,
TiO2 was combined with metals, non-metals, or other chemicals to enhance visible light
absorption, its electron migration rate, and photocatalytic performance. Nanoparticles
(NPs) of antimicrobial metals (titanium, gold, silver, zinc, copper) have antimicrobial and
antibiofilm properties that are much better than their micro-sized counterparts [31,50–55].
Thus, TiO2 nanocomposite coatings find their applicability in hospital practice due to their
essential antimicrobial role not only for surfaces but also for orthopedic and dental implants.

There is a severe threat posed by the ability of biofilms to grow and resist antibiotics.
Various nanotechnology-based strategies have been studied and developed to prevent and
combat serious health problems caused by biofilm infections. Factors such as mechanical
stress, enzymatic digestion, oxygen availability, temperature, pH, and limited nutrition
bring about the dispersal of bacteria from the biofilm, with bacteria becoming susceptible
to antibiotics [56,57]. Nanoparticles (NPs) can play a vital antibiofilm role by EPS matrix
disruption, dispersal of bacteria, and increasing susceptibility to antibiotics [57,58]. The NPs
adopt various mechanisms to destroy biofilm. TiO2 NPs produce ROS in the bacterial cells,
lipid peroxidation of EPS, cell membrane disruption, and the formation of extracellular
polysaccharides (Figure 2) [28,48].
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Figure 2. Mechanisms of NPs to combat biofilm: Ag-NPs damage bacterial DNA; Au-NPs produce
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positive charge; some NPs inhibit quorum sensing [28].

Only a few studies reported the use of NP-coated surfaces as antibiofilm agents. At the
nanoscale, materials display distinct biological and physicochemical properties that their
bulk counterparts do not. These unique properties are size-dependent, their dimensions
being of the same order as biomolecules, and these materials can easily penetrate microbial
cell walls and even biofilm EPS layers, causing irreversible DNA and cell membrane
damage and, eventually, cell death. The large surface/volume ratios and long plasma
half-lives improve their physicochemical reactivities and antibacterial and antibiofilm
bioactivities. Other properties of nanoparticles identified as responsible for antibiofilm
roles are given by shape, surface charge, and composition. The adherence of bacteria is
inhibited by using surfaces with nano-roughness [28,29,59].

TiO2 nanoparticles demonstrated an excellent antibiofilm activity against bacteria
(including Klebsiella pneumoniae) and fungi (Candida albicans) [26,28]. TiO2 NPs have been
considered non-toxic materials compared with other metal oxides due to their inert nature.
Silver (Ag) nanoparticles showed marked antibiofilm activity against Pseudomonas aerugi-
nosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus (including methicillin-
resistant Staphylococcus aureus). Prolonged exposure to Ag NPs may result in diminished
efficacy, and excessive dosages may have toxic effects on skin cells. Zinc oxide (ZnO)
nanoparticles exhibit good antibiofilm activity against Staphylococcus aureus, Staphylococcus
epidermidis, Escherichia coli, and Bacillus subtilis. Copper oxide (CuO) NPs demonstrated
antibacterial properties but to a lesser extent than Ag NPs or Zn NPs. Gold NPs showed
little or no antimicrobial properties alone [28,29].

The International Agency for Research on Cancer (IARC) has recently classified tita-
nium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Upon entering the body
via inhalation, injection, dermal penetration, or gastrointestinal absorption, these particles
could accumulate in various organs and induce harmful effects on cells and genes. The
cytotoxic and genotoxic effects of TiO2 NPs are of particular concern, necessitating further
research to ascertain the benefit–risk ratio associated with their use. As such, additional
studies are required to assess the safety of TiO2 NPs and determine the optimal conditions
for their use in various applications [60].
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Conventionally, TiO2 nanoparticles are obtained by physical or chemical methods, us-
ing harmful reagents or energy-consuming manufacturing processes. Currently, there is an
interest in the ecological synthesis of TiO2 NPs via biological methods using bacteria (Acine-
tobacter baumannii S1, Acinetobacter seohaensis N3, Aeromonas hydrophila, Bacillus cereus A1,
Bacillus mycoides, Rummeliibacillus pycnus M1, and Streptomyces sp.), fungi (Aspergillus flavus,
Fomes fomentarius, Fomitopsis pinicola, and Trichoderma citrinoviride), or plant-based extracts
(Azadirachta indica, Ledebouria revoluta, Luffa acutangula, Mentha arvensis, Ocimum americanum,
Piper betel, Prunus yedoensis, and Trigonella foenum-graecum). Nanoparticles obtained through
green, ecological technology have remarkable properties and dimensions and improved
stability. Nanoparticles synthesized by biological methods mediated by bacteria are used
in medicine as antimicrobial and anticancer agents due to their biocompatibility. Biogenic
TiO2 nanoparticles have less applicability but are actively investigated [61–63].

The main aim was the evaluation of the implications of nanotechnology in eradicating
biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associ-
ated with nosocomial infections in intensive care units, including in our department. We also
described the frequency of the presence of bacterial biofilms (including multidrug-resistant
K. pneumoniae) on medical surfaces, devices, and equipment; the nosocomial dissemination
of KPC-producing K. pneumoniae; and the importance of eradicating these biofilms, the main
goal of the health system being to reduce patient morbidity and mortality and the costs
associated with medical care. The secondary aim was to highlight studies presenting the
potential applicability of TiO2 nanocomposite materials in hospital practice.

2. Materials and Methods

This review was conducted using the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis Guidelines 2020 (PRISMA). We used PubMed, Web of Science, Up to
Date, and Cochrane Library as search engines. Between 2013 and 2024, over 300 special-
ized studies were published concerning the implications of antibacterial and antibiofilm
nanocomposite coatings in relation to the role of TiO2 nanocomposite coatings in inactivation
of carbapenemase-producing Klebsiella pneumoniae. We took into consideration meta-analysis,
systematic reviews, and original studies. The keyword combinations used for searching the
databases were: carbapenemase-producing Klebsiella pneumoniae, KPC-producing Klebsiella
pneumoniae, TiO2 nanocomposite coatings, TiO2 nanoparticles, and biofilms.

The inclusion criteria for studies were reviews, meta-analyses, original studies, and
peer-reviewed journals regarding MDR Klebsiella pneumoniae biofilm and the antimicrobial
and antibiofilm effects of TiO2 nanocomposite coatings. Exclusion criteria were as follows:
studies that are not on the subject of the theme addressed and single case reports.

3. Results and Discussions

When a search was conducted using the keyword combination “carbapenem-resistant
Klebsiella pneumoniae biofilm”, 188 articles were identified. Using “carbapenemase-producing
Klebsiella pneumoniae biofilm”, 76 articles were identified. When a search was conducted
using the keyword combination “antimicrobial TiO2 nanocomposite coatings”, 76 articles
were identified. The database search identified 19 articles when we used the keyword
combination “TiO2 nanocomposite in photocatalytic inactivation of bacteria” and 39 articles
when we searched for “antibiofilm nanocomposite coatings”.

The database search identified 398 records, including 27 duplicates. A total of 236 arti-
cles were selected for screening; 129 were excluded. Altogether, 77 articles were evaluated
regarding eligibility, of which 71 were included in the final analysis; 61 were original reports,
and 10 were reviews (Figure 3, Table 1).

Table 1 presents the characteristics of the 71 included studies. The studies included
were divided into and discussed in two main categories: those focused on multidrug-
resistant Klebsiella pneumoniae biofilm, and those investigating the antimicrobial and an-
tibiofilm effects of TiO2 nanocomposite coatings.
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3.1. Studies on MDR Klebsiella Pneumoniae Biofilm

Studies describe a vital virulence trait used by Klebsiella pneumoniae: the ability to
form biofilms on biotic and abiotic surfaces [64–72]. There are two types of biofilms:
hydrated biofilms (in drains and catheters) and dry surface biofilms (DSB) (on surfaces
and some medical devices). The biofilms lead to increased resistance to external stressors,
antibiotics, and antimicrobial factors, and constitute an essential reservoir of pathogens,
including MDR bacteria [73–79]. In their review, Banerjee and colleagues (2019) describe
three hypotheses about the failure of the antibiotic susceptibility on the biofilm bacteria:
failure of penetration of biofilm by bactericidal substance, altered chemical environment of
biofilm, and altered gene expression of biofilm [28].

Folliero and colleagues (2021) reported that 72.7% of Klebsiella pneumoniae strains iso-
lated from medical devices were biofilm-producing. They isolated the primary pathogens
contaminating medical devices and studied their capacity to form biofilms and the preva-
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lence of MDR-biofilm-producing strains. Klebsiella pneumoniae strains were detected in
central venous catheters (CVCs), nephrostomy tubes, abdominal drain tubes, and Foley
catheters. Some devices were colonized by more than one microorganism. Following
analysis of the antibiotic susceptibility profiles detected of all isolated strains, 59.2% were
MDR strains [80].

Klebsiella pneumoniae easily forms biofilms on catheters, nephrostomy tubes, abdominal
drain tubes, Foley’s catheters, intubation cannulas, endoscopes, and other medical devices,
but also on the hands of health professionals, and on intensive care unit environment
surfaces [30,31,80–83]. The materials from which invasive medical devices and medical
equipment are made, but also surfaces in patient rooms (e.g., furniture, paintwork) can
influence the persistence of bacteria and the formation of biofilms. In their prospective study,
Thorarinsdottir et al. showed the differences between the material of endotracheal tubes
and biofilm formation. Compared to the uncoated polyvinyl chloride (PVC) endotracheal
tubes, the noble-metal-coated PVC endotracheal tubes were associated with a lower rate of
biofilm formation [82].

There are several biofilm-related infections, such as urinary-catheter-associated urinary
tract infections, central-venous-catheter-associated bloodstream infections, and respiratory
infections due to biofilms in the intubation cannula. Ventilator-associated pneumonia (VAP) is
one of the most common intensive-care-unit- (ICU-) acquired infections occurring in patients
who have been on mechanical ventilation for at least 48 h. The most common causes of
VAP are bacteria (with an important role in MDR pathogens). The microorganisms most
frequently isolated from these patients are aerobic Gram-negative bacteria (Klebsiella pneumonia,
Pseudomonas aeruginosa, Acinetobacter spp., etc.) and, in more than 60% of the cases, Gram-
positive cocci (particularly methicillin-resistant Staphylococcus aureus) [31,84–87].

Despite advanced disinfection methods, Klebsiella pneumoniae can survive on the
surfaces of endoscopes, easily forming biofilms, which leads to the transmission of the
bacteria from one patient to another, thus increasing the risk of infection. In a study
conducted by Bourigault et al. in 2018, the phenomenon of cross-transmission during an
outbreak of carbapenemase-producing Klebsiella pneumoniae was investigated. The study
revealed a pattern wherein five patients were identified as having undergone endoscopic
retrograde cholangiopancreatography (ERCP) procedures with the same endoscope. KPC-
producing Klebsiella pneumoniae were identified in these patients and the duodenoscope
was the only epidemiological link [10]. In a review published in 2020, Snyder describes that
studies have demonstrated persistent gastrointestinal endoscope contamination despite
appropriate and advanced disinfection techniques. Several factors contribute to endoscope
contamination, including exposure to endogenous flora during procedures, the ability of
bacteria such as Klebsiella pneumoniae to form biofilm on the endoscope surfaces, and the
design and surface characteristics of endoscopes. The most commonly identified bacteria
associated with contamination, transmission, and infections associated with endoscope are
Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa [9].

The survival of Klebsiella pneumoniae poses questions about its persistence in healthcare
settings. Dry surface biofilms (DSB) persist in the hospital environments, differ from the
traditional “wet” biofilms, and represent a challenge for cleaning and disinfection. Biofilms
in a dry state have recently been found to colonize dry surfaces such as ceilings, curtains,
keyboards, door handles, light switches, trolley handles, ventilator inlets, mattresses, and
bed rails. DSBs are challenging to remove due to increased resistance to disinfectants and
detergents, and they periodically release bacteria that are a source of infection into the
environment [88–92]. Hu and colleagues (2015) showed that ICU environmental surfaces
are contaminated by MDR bacteria found in dry surface biofilms despite terminal disinfec-
tion with chlorine solution. Multiple species of microorganisms formed biofilms in 93% of
samples. Polymicrobial biofilms are less susceptible to disinfection than mono-bacterial
biofilms [91,93]. Centeleghe and colleagues published (2023) the first study that confirmed
that Klebsiella pneumoniae can survive for a long time on dry surfaces as a dry surface biofilm
(DSB). Although the culturability of K. pneumoniae from DSB is low after four weeks, the
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viability remains high. Transfer of bacteria from DSB is reduced over extended periods.
After removing Klebsiella pneumoniae from surfaces by mechanical wiping and reducing cul-
turability over time, the bacteria remained viable for up to 4 weeks of incubation, indicating
viable but non-culturable status [94]. The biofilms on healthcare facility surfaces, especially
high-touch surfaces, constitute an essential reservoir of pathogens and multidrug-resistant
organisms, as dry surface biofilms persist for a long period of time and are difficult to clean
and disinfect (Costa et al., 2019) [90].

3.2. Studies on Antimicrobial and Antibiofilm Effects of TiO2 Nanocomposite Coatings

Nanomaterials are used for biomedical applications, constituents of coatings, cancer
treatment, tissue engineering, drug/gene delivery vehicles, and medical implants. Many
studies describe the antimicrobial effects of TiO2 nanoparticles. Several reports have been
conducted on photocatalytic biofilm inhibition by metal oxide nanoparticles, including
TiO2 [29,84,95,96]. The antibacterial mechanism is linked to the ability of TiO2 NPs to pro-
duce ROS in microbial cells, lipid peroxidation of EPS, and oxidation of internal enzymes,
which impairs cellular respiration and leads to apoptosis [39,97–110].

In December 2023, Pourmehdiabadi and colleagues published their study about the
effects of ZnO and TiO2 NPs on forming biofilm and persister cells in Klebsiella pneumoniae.
They investigated the expression of genes in Klebsiella pneumoniae, which has a role in
bacterial persistence, under nanoparticle exposure and compared it with the expression of
untreated bacteria as a control. They showed that another antibiofilm mechanism of NPs
can be the change in gene expression in biofilm production [26].

There is an interest in using nanoparticles for antibacterial and anticancer properties,
while avoiding their cytotoxic and genotoxic effects in long-term or invasive use (e.g., im-
plants and invasive medical devices) [60]. Thus, the applicability of biogenic nanoparticles
in medicine is being studied. Pandya and Ghosh published (February 2024) their study and
reported that biogenic TiO2 NPs inhibit bacteria such as Klebsiella pneumoniae, Escherichia coli,
Pseudomonas aeruginosa, Proteus vulgaris, Salmonella enterica, Yersinia enterocolitica, Clostridium
perfringens, Clostridium tetani, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus
aureus, Enterococcus faecalis, and Vibrio cholerae [63]. Biogenic, environmentally friendly,
non-toxic nanoparticles have remarkable properties due to their biocompatibility, stabil-
ity, and size. Biogenic TiO2 nanoparticles have less applicability but have been actively
investigated [60–63,109]. Thakur et al. (2019) published a paper describing the antibacterial
efficacy of the TiO2 nanoparticles against Klebsiella pneumoniae, Escherichia coli, Staphylo-
coccus aureus, Bacillus Subtilis, and Salmonella enterica using Azadirachta indica leaf extract
(green synthesis). This investigation showed that TiO2 nanoparticles (TiO2 NPs) prevented
bacterial development. The minimum inhibitory concentration (MIC) of titanium dioxide
nanoparticles against K. pneumoniae was 16.66 µg/mL and minimum bactericidal con-
centration (MBC) was 83.33 µg/mL (the lowest MBC value compared with Escherichia
coli, Salmonella enterica, Bacillus subtilis, and Staphylococcus aureus). Titanium dioxide NPs
showed the highest zone of inhibition (ZOI) 20.67 ± 1.45 mm at 200 µg/mL concentration
against K. pneumoniae [109].

TiO2 coatings with active inorganic metals (like Ag or Cu), organic polymers, or 2D
materials could demonstrate the maximum antibacterial efficacy compared to TiO2 or
bare metals [29,98,100,103–105]. In their study (2016), Tahir and colleagues demonstrated
that the Ag/TiO2 nanocomposite has a much higher photo inhibition activity against
Gram-negative bacteria than bare TiO2 and Ag nanoparticles [111]. In their study, Naik
and colleagues (2013) reported that mesoporous TiO2 nanoparticles containing Ag ions
have excellent antimicrobial activity against Gram-negative and Gram-positive pathogens
at low silver concentrations without photoactivation, and ensure long-term antibiofilm
activity [112]. Bonan and colleagues (2019) investigated in vitro antimicrobial and an-
ticancer activities of mesoporous and superhydrophilic TiO2 nanofibers containing Ag-
NPs. They demonstrated that Ag/TiO2 nanofibers have antibacterial activity against
Gram-negative and Gram-positive tested bacteria and strong potential for local cancer
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therapy [113]. Rahman and colleagues (2021) describe in their research work the influence
of multimodal and flexible hybrid membranes that contain bacterial cellulose (BC) and pho-
toactive (TiO2) and antibacterial (Ag) components (BC-SiO2-TiO2/Ag). This nano platform
contained TiO2 and Ag with antibacterial properties and photocatalytic and self-cleaning
characteristics, and showed significant antibacterial efficacy. These flexible membranes
can be easily disinfected under UV irradiation and/or natural sunlight and can be used in
different areas (antibacterial surfaces, filters, and face masks) [114].

There are not many large reviews on the antibacterial and antibiofilm applications of
TiO2 photocatalytic nanocomposite coatings.

Table 1. Details of the papers identified through the systematic search.

Study Country Type of Study Keywords

Alipanahpour Dil E et al.,
2019 [53] Iran Experimental study TiO2 nanocomposite coating

Araújo BF et al.,
2018 [64] Brazil Cross-sectional Biofilms, KPC-Kp

Aslam M et al.,
2021 [62] Malaysia Review TiO2 nanoparticles

Bai J et al.,
2023 [77] China Cross-sectional Biofilms, KPC-Kp

Banerjee D et al.,
2019 [28] India Review Biofilms, TiO2

nanocomposite coatings

Barani M et al.,
2022 [95] Iran Review Biofilms, nanocomposite coating

Bevacqua E et al.,
2023 [60] Italy Review TiO2 nanoparticles

Bode-Aluko et al.,
2021 [40] South Africa Experimental study Biofilms, nanocomposite coating

Booq RY et al.,
2022 [68] Saudi Arabia Cross-sectional Biofilms, KPC-Kp

Bonan RF et al.,
2019 [113] Brazil Experimental study Biofilms, nanocomposite coating

Bourigault et al., 2018 [10] France Experimental study Klebsiella pneumoniae

Brunke MS et al.,
2022 [7] Germany Case control Biofilms, KPC-Kp

Cai Y et al.,
2013 [101] Sweden Experimental study Biofilms, TiO2

nanocomposite coatings

Centeleghe I et al.,
2023 [94] UK Experimental study Biofilms, KPC-Kp

Costa DM et al.,
2019 [90] Brazil Cohort study Biofilms, KPC-Kp

Dan B et al.,
2023 [8] China Cohort study Biofilms, KPC-Kp

D’Apolito D et al.,
2020 [69] Italy Cohort study Biofilms, KPC-Kp

Dey D et al.,
2016 [76] India Experimental study Biofilms, KPC-Kp

Fasciana T et al.,
2021 [16] Italy Cohort study Biofilms, KPC-Kp

Fetyan NAH et al., 2024 [61] Egypt Experimental study TiO2 nanoparticles



Microorganisms 2024, 12, 684 11 of 19

Table 1. Cont.

Study Country Type of Study Keywords

Folliero V et al.,
2021 [80] Italy Cohort study Biofilms, KPC-Kp

Hebeish AA et al.,
2013 [98] Egypt Experimental study TiO2 nanocomposite coatings

Horváth E et al.,
2020 [42] Switzerland Experimental study TiO2 nanocomposite coatings

Hu H et al.,
2015 [91] Australia Cross-sectional Biofilm

Jones RN,
2010 [84] USA Cohort study Biofilms, KPC-Kp

Joya YF et al.,
2012 [106] UK Experimental study TiO2 nanocomposite coatings

Kerbauy G et al.,
2016 [74] Brazil Experimental study Biofilms, KPC-Kp

Kumar A et al.,
2017 [56] India Review Biofilms

Kumaravel V et al.,
2021 [39] Ireland Review TiO2 nanocomposite coatings

Kiran ASK et al.,
2018 [97] India Experimental study TiO2 nanocomposite coatings

Ledwoch K et al.,
2018 [89] UK Multicenter study Biofilms

Liu Y et al.,
2017 [70] China Experimental study Biofilms, KPC-Kp

Lin Y et al.,
2021 [102] China Experimental study TiO2 nanocomposite coatings

Mahmud ZH et al.,
2022 [71] Bangladesh Cohort study Biofilms, KPC-Kp

Melsen WG et al.,
2011 [86] Netherlands Systematic review Biofilms, KPC-Kp

Mohammadi M et al.,
2023 [87] Iran Cohort study Biofilms, KPC-Kp

Moongraksathum B et al.,
2019 [99] Taiwan Experimental study TiO2 nanocomposite coatings

Motay M et al.,
2020 [55] France Experimental study TiO2 nanocomposite coatings

Mousavi SM et al.,
2023 [59] Iran Experimental study Biofilms, TiO2 nanocomposite

coatings

Naik K et al.,
2013 [112] India Experimental study TiO2 nanocomposite coatings

Nica IC et al.,
2017 [107] Romania Experimental study TiO2 nanocomposite coatings

Nica IC et al.,
2017 [108] Romania Experimental study Biofilms, TiO2

nanocomposite coatings

Noreen et al.,
2019 [105] Pakistan Experimental study TiO2 nanocomposite coatings

Nosrati et al.,
2017 [103] Iran Experimental study TiO2 nanocomposite coatings
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Table 1. Cont.

Study Country Type of Study Keywords

Ochońska et al.,
2021 [83] Poland Experimental study Carbapenemase-producing

Klebsiella pneumoniae

Ohko et al.,
2009 [110] Japan Experimental study Biofilms, TiO2

nanocomposite coatings

Palacios et al.,
2022 [75] Spain Experimental study Carbapenemase-producing

Klebsiella pneumoniae, biofilms

Pandya et al., 2024
[63] India Review TiO2 nanoparticles

Papalini et al.,
2020 [73] Italy Experimental study KPC-producing

Klebsiella pneumoniae, biofilms

Pourmehdiabadi et al.,
2023 [26] Iran Experimental study KPC-producing

Klebsiella pneumoniae, biofilms

Prasad et al.,
2019 [100] India Experimental study TiO2 nanocomposite coatings

Rafiq et al.,
2016 [37] India Experimental study Carbapenemase-producing

Klebsiella pneumoniae

Rahman et al.,
2021 [114] Pakistan Experimental study TiO2 nanocomposite coatings

Rani et al.,
2021 [104] India Experimental study TiO2 nanocomposite coatings

Sabenca et al.,
2023 [81] Portugal Experimental study Carbapenemase-producing

Klebsiella pneumoniae, biofilms

Shadkam et al.,
2021 [38] Iran Experimental study Carbapenemase-producing

Klebsiella pneumoniae, biofilms

Snyder et al.,
2020 [9] USA Review Biofilms

Silva et al.,
2021 [72] Brazil Experimental study KPC-producing Klebsiella pneumoniae

Singha et al.,
2023 [54] Bangladesh Experimental study TiO2 nanocomposite coatings

Stallbaum et al.,
2021 [65] Brazil Cross-sectional study Biofilms

Tahir et al.,
2016 [111] China Experimental study TiO2 nanocomposite coatings

Taylor et al.,
2011 [96] USA Review Biofilms

Thakur et al.,
2019 [109] India Experimental study TiO2 nanocomposite coatings

Thorarinsdottir et al.,
2020 [82] Sweden Observational study Biofilms

Veltri et al.,
2019 [47] Italy Descriptive study TiO2 nanocomposite coatings

Vickery et al.,
2012 [88] Australian Experimental study Biofilms

Yazgan et al.,
2018 [67] Turkey Experimental study Biofilms

Zhang et al.,
2019 [43] UK Experimental study TiO2 nanocomposite coatings
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Table 1. Cont.

Study Country Type of Study Keywords

Zheng et al.,
2020 [50] Singapore Experimental study Biofilms

Zhou C et al.,
2023 [79] China Experimental study Carbapenemase-producing

Klebsiella pneumoniae

Zhou H et al.,
2021 [48] China Experimental study TiO2 nanocomposite coatings

4. Conclusions

The degree of virulence of Klebsiella pneumoniae carbapenemase- (KPC-) producing
Klebsiella pneumoniae has led scientists to identify new antibacterial compounds. Under-
standing the resistance mechanisms of Klebsiella pneumoniae can guide the development
of new technologies to inhibit microbial growth and proliferation. K. pneumoniae is fre-
quently associated with biofilms formed on central venous catheters, urinary catheters,
and endotracheal tubes, but also endoscopes and different dry surfaces in the hospital.
Recent developments in nanotechnology have significantly boosted the treatment of biofilm
infections and proved promising for applications in removing pathogens. TiO2 photocat-
alytic coatings are one of the best long-term options for antimicrobial efficacy due to their
biocompatibility, stability, corrosion resistance, and low cost. TiO2 nanoparticles demon-
strated marked antibiofilm activity. TiO2 nanocomposite coatings with active inorganic
metals, organic polymers, or 2D materials demonstrated the maximum antimicrobial and
antibiofilm efficacy compared to TiO2 or bare metals. There are few comprehensive reviews
regarding the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocom-
posite coatings. This review summarized research studies on the role of nanomaterials,
in particular TiO2 nanocomposite coatings, and their medical applications for preventing
the spread of nosocomial infections with KPC-producing Klebsiella pneumoniae. The Inter-
national Agency for Research on Cancer (IARC) has recently classified titanium dioxide
nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the
ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic,
environmentally friendly, non-toxic nanoparticles have remarkable properties due to their
biocompatibility, stability, and size. Research remains open in these areas, and questions
regarding the interactions between nanoparticles, biofilm, and hosts, and their impact on
natural systems need to be resolved. Biogenic TiO2 nanoparticles have less applicability
but are actively investigated. Further research is needed to prevent and remove biofilm, to
determine the safety and long-term effects of using metal nanoparticles as antimicrobial
agents, and to ensure successful clinical applications.
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Abbreviations

AHL Acyl homoserine lactose inducer
Ag Silver
Au Gold
BC Bacterial cellulose
Cu Copper
CuO Copper oxide
CVC Central venous catheter
CRKP Carbapenem-resistant Klebsiella pneumoniae
CS Chitosan
DSB Dry surface biofilms
EPS Extracellular polymeric substances
ICU KP Intensive care unit Klebsiella pneumoniae
KPC Carbapenemase-producing Klebsiella pneumoniae
MBC Minimum bactericidal concentration
MIC Minimum inhibitory concentration
MDR Multidrug-resistant
MRSA Methicillin-resistant staphylococcus aureus
NPs Nanoparticles
PDR Pandrug-resistant
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis
PVC Polyvinyl chloride
ROS Reactive oxygen species
SiO2 Silicon dioxide
TiO2 Titanium dioxide
VAP Ventilator-associated pneumonia
XDR Extensively drug-resistant
ZnO Zinc oxide
ZOI Zone of inhibition
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