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Abstract: The research involving the beneficial aspects of amino acids being added to poultry
feed pertaining to performance, growth, feed intake, and feed conversion ratio is extensive. Yet
currently the effects of amino acids on the gut microbiota aren’t fully understood nor have there
been many studies executed in poultry to explain the relationship between amino acids and the gut
microbiota. The overall outcome of health has been linked to bird gut health due to the functionality
of gastrointestinal tract (GIT) for digestion/absorption of nutrients as well as immune response.
These essential functions of the GI are greatly driven by the resident microbiota which produce
metabolites such as butyrate, propionate, and acetate, providing the microbiota a suitable and thrive
driven environment. Feed, age, the use of feed additives and pathogenic infections are the main
factors that have an effect on the microbial community within the GIT. Changes in these factors
may have potential effects on the gut microbiota in the chicken intestine which in turn may have an
influence on health essentially affecting growth, feed intake, and feed conversion ratio. This review
will highlight limited research studies that investigated the possible role of amino acids in the gut
microbiota composition of poultry.
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1. Introduction

All nutrients necessary for chicken’s health and ample performance are provided
by a defined formulated diet that contains energy, protein, mineral supplements, specific
amino acids, and vitamins. The nutrient profiles used in feed formulations for broiler
chickens are typically based on economically important production outcomes which include
weight gain, feed intake, feed conversion ratio, and carcass yield [1]. The management
practices of broilers, environmental stressors, and immunological challenges all drive the
need for essential nutrients. The nutritional needs of the intestine must be considered
when attempting to achieve optimization of the nutrient dispensing to broilers raised
under different sanitary environments, as the intestine may have increased nutritional
requirements to maintain its cellular proliferation [2]. An essential component of efficient
poultry production is optimized nutrition. Chickens’ feed account for about 70% of total
cost in chicken production, poultry diets are expensive since egg and meat production
require high amounts of energy and protein sources [3]. Regulation of important metabolic
avenues for growth, maintenance, and immunity as well as being a component of proteins
are integral roles of amino acids. They regulate gene expression and the synthesis of
hormones and molecules of countless biological importance [4]. Synthetic amino acids are
commonly added to feed to correct any nutrient deficiencies that may occur throughout the
growth process of poultry. The main amino acids for animal nutrition are dl-methionine,
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l-lysine, l-threonine, and l-tryptophan which continue to be manufactured for animal feed
use principally by chemical synthesis [5].

Methionine, a precursor of succinyl-CoA, homocysteine, cysteine, creatine, and carni-
tine, is an essential sulfur-containing amino acid [6] Methionine is the first limiting amino
acid in the diet and dictates the absorption of other amino acids such as cysteine [7,8].
In broilers, methionine helps in feather development, improved growth performance,
production of antibodies, and directly influences immunity responses [9,10] Methionine
has a positive effect on the expression of stress-related genes, which aids in protecting
cells against oxidative stress [11–14]. Methionine is supplemented during the fattening of
broilers, resulting in a better performance of animals and an increased growth of breast and
leg muscles [15–17]. Broilers fed increasing concentrations of methionine led to a decrease
in abdominal fat, an increase in growth rates as well as muscle yield in the breast, and
legs [18,19]. However, methionine deficiency decreases the relative weight of the lymphoid
organs, resulting in reduced growth [20]. A deficient supply of methionine has been shown
to affect the chemical composition of different tissues and certain aspects of breast meat
quality of broilers [21].

In corn-soybean meal for poultry production growth and maintenance is achieved
by lysine, the second limiting amino acid. Lysine is very important in protein synthesis
and an essential amino acid necessary for poultry nutrition. In broiler chickens, lysine
is a crucial amino acid which can’t be synthesized within the bird’s body and must be
supplemented through dietary means. Through metabolic pathways lysine interacts with
threonine which contributes to protein utilization in animal feeding [22–24] Lysine supports
muscle tissue formation, produces antibodies, and enzymes that are essential for growth.
Previous research has shown optimum dietary levels of lysine affect amino acid balance and
dietary protein levels in poultry [25–27]. The promotion of the conversion of amino acids
into protein occurs with diets high in lysine and the resulting in high carcass yield [28,29].
In other poultry species, such as the pearl grey guinea fowl, various concentrations of
lysine influence their growth performance [30]. Increasing dietary lysine increased feed
consumption, and weight gain in the starter period significantly; as well as the feed to gain
ratio at the grower period [31]. In contrast, decreased lysine concentration in broiler chicken
diets causes high mortality rates during early development, and depleted levels of lysine
produce an incredible decrease in body weight; all of which may be linked to the change in
expression of neuroendocrine molecules such as ghrelin, leptin, and adiponectin [32].

Threonine is another indispensable amino acid and is the third limiting amino acid
in poultry nutrition. An essential nutritional amino acid, due to the chicken’s inability to
synthesis threonine de novo, especially if the diet consists of corn and soybean meal. Protein
synthesis and the catabolism of threonine create many elements essential in metabolism [33].
Amino acid balance for the nutritional need for poultry is achieved by adding L-threonine
to the diet [34]. Broiler chickens have a high threonine requirement for maintenance
compared to other amino acids because it is abundantly high in the intestine and the
turnover rate is higher [35]. Supplementation with threonine has been shown to improve
growth performance and carcass trait [22]. Deficiencies in threonine could decrease the
efficiency of methionine and lysine use [36,37]. Threonine has been reported as being
involved in intestinal functionality and maintenance due to it being extracted in greater
proportion by the small intestine compared to the other dispensable amino acids [38,39].
The mention of threonine’s ability to influence the intestinal function in chickens from
previous studies may hint to amino acids ability to change the microbial balance within
the intestine.

Along with methionine, in chickens, tryptophan is an additional essential amino acid
that has an influential role in protein structure and is essential for the synthesis of serotonin
and melatonin [40]. The activity of certain neurotransmitters causing an alteration in
poultry behavior has been linked to tryptophan [41–47]. Tryptophan is also associated with
feed intake, growth, tissue repair, blood pressure, and body temperature [48–50]. In a most
recent study, tryptophan was shown to increase humoral and cellular immunity in broiler
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chickens, as well as improve growth performance [51]. Deficiencies in tryptophan may
have an effect on behavioral responses such as poultry stress and pecking behavior due to
tryptophan being a precursor for melatonin and serotonin in the diet and other precursors
of tryptophan (e.g., niacin) in poultry diet can help decrease fat synthesis in the body [52].
These factors constitute tryptophan as a critical nutrient for avian nutrition.

The mentioned amino acids have clearly shown their health benefits for chickens. The
manifestation of these benefits starts within the GIT of the chickens which are inhabited
by various microbes. Figure 1 illustration shows how essential amino acids methionine
(1st limiting), lysine (2nd limiting) and threonine (3rd limiting) can be added to poultry
feed grain to provide the necessary amino acids needed to meet the desired productivity.
The findings for the benefits of these added amino acids were looking at bird performance
not gut microbiota. Those amino acids are ingested by the birds and within the GIT the
microbes that are housed within share and/or absorb those amino acids. The mechanisms
or processes in which this takes place are unknown or poorly understood. The purpose of
this review is to showcase the possible role of 1st, 2nd and 3rd essential amino acids in the
balance or abundance of various microbiota within the gut of broiler chickens.
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Figure 1. Illustration of the addition of the 1st, 2nd, and 3rd limiting amino acids to chicken feed
with a snapshot of the microenvironment within the gut of the chicken. Gut microbes absorb amino
acid within the environment as well as exchange or share amino acids with gut epithelia cells in the
lumen of the gastrointestinal tract of the chicken. Illustration “Created with BioRender.com”.

2. Shaping the Gut Microbiota Population

The balance in the population of the bacteria within the gut is crucial. Its microbial
communities are known to have coevolved with their hosts to such an extent that it has
been suggested that the composition of host microbiota can be as unique as that of a fin-
gerprint [53]. The abundance of the microbial community in the gut is mostly affected by
feed, age, use of feed additives, and pathogenic infections [54,55]. It has been consistently
reported that the lead phylum of bacteria in the gut of chicken is Firmicutes, and that the
range of abundance of from 50% to 90% for the total bacterial population in the ceca [56,57],
while Firmicutes (mainly Lactobacillus) generally from more than 90% of all taxa in other
segments of the gut, ileum and jejunum [56–59]. Through phylogenic and statistical analy-
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sis of 16S rRNA gene sequences recovered from intestinal microbiome of both the chickens
and turkeys, a global bacterial consensus was created for poultry intestinal microbiome, yet
the consensus was incomplete [60]. Bhogoju et al. 2018 [61] used a metagenomic approach
to compare the microbial profile of guinea fowl and broiler chickens with the findings
showing total number of microbial species detected in the chicken GIT was higher than that
found in the Guinea Fowl GIT and the phylum Firmicutes was most abundant in both avian
species whereas phylum actinobacteria was most abundant in chickens than Guinea fowls.
The phylum level from broiler chicken jejunum mucosa, revealed that microbial colonies
were Actinobacteria, Aminicenantes, Bacteroidetes, Chloroflexi, Firmicutes, Fusobacteria,
Lentisphaerae, Proteobacteria, plus others and in the ileum and jejunum included mainly:
Bacilli, Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Deltaproteobac-
teria, Epsilonproteobacteria, Erysipelotrichia, Negativicutes, and others [54]. Many studies
have shown the associations between the balance of these microbes within the microbiota
and the effects on the overall health of the host, highlighting the importance of microbial
balance of the microbiota within the GIT. Also, pointing out the microbiota diversity be-
tween various types of poultry. In humans and mice, extremes in body weight gain are
related to altered intestinal microbial populations. Goodrich et al., 2014 [62] showed that
Mogibacteriaceae resides in the gut; however, these populations in humans and mice have
clustered with other organisms that are associated with lower body mass index (BMI). The
same is true for changes in diet of non-obese diabetic mice supplemented with cellulose,
pectin, and xylan [63]. High protein diets in rats were shown to decrease Faecalibacterium
prausnitzii in the large intestine [64,65]. Shifts in ratios of Firmicutes and Bacteriodetes have
been associated with obesity in humans [66,67] and this phenomenon was similar in the
cattle rumen concerning energy harvesting and correlated increases of fat [68]. Myer et al.
2015 [69] discovered that steers differing in feed efficiency rumen microbio was a compo-
nent that influenced the efficiency of weight gain at the 16S level. Changes within the gut
of the host possibly affect maturity, growth rate, and immune status [55].

Gut microbiota composition and activity can be rapidly shaped by different dietary
nutritional levels, nutrients, and texture. In the human small intestine, the most amino
acid abundant fermenting bacteria belong to Clostridium clusters, the Bacillus-Lactobacillus-
Strepococcus groups, and Proteobacteria [70] possibly making these bacterial groups essential
for protein digestion and amino acid absorption in the GIT. This symbiont relationship is
beneficial to the bacteria as well as the host in which the amino acids that these bacteria
provide can also be utilized by the host for protein and energy production. The undigested
and unabsorbed nutrients throughout the GI tract, more so in the distal ileum and ceca
may serve as potential substrates for the residing microbiota [71]. An extensive variety of
bacterial metabolites can be produced from all amino acids but most specifically valine,
isoleucine, tryptophan, tyrosine, phenylalanine, lysine, and cysteine [72].

Gut microbiome performs such a vital role in feed digestion and absorption, creating
interests with the associations between gut microbiome and the host feed utilization ef-
ficiency. Groups of bacteria were identified that may possibly be associated with broiler
growth performance by using microbial profiling of broiler chickens across many feeding
trials [73]. A few more comprehensive analyses using NGS also revealed certain bacteria
that might be associated with growth performance of broiler chickens [74,75]. There are
limited reports that observe dietary supplementation with some essential amino acids may
mediate gut microbiota compositions and diversity especially in broiler chickens. Research
studies with diets for poultry particularly broiler chickens and laying hens that have ob-
served any influence that amino acids have on the microbiota of poultry have been listed
in Table 1. The composition and population of microbiota of chickens has a crucial role in
performance and health status [76]. Poultry’s intestinal tract possesses a complex microbial
community consisting primarily of bacteria and diet is a major factor that can influence the
microbial population in the intestinal tract. In young broilers, threonine has been reported
to affect intestinal integrity and barrier function [77]. While in laying hens, dietary crude
protein (CP) reduction decreased intestinal bacterial diversity, whereas dietary threonine
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(Thr) supplementation to low CP diet recovered the bacteria diversity and significantly
increased the abundance of potential beneficial bacteria [78]. Supplementation with tryp-
tophan higher than the current recommended standard ileal digestible for Trp (0.22%)
produced a microbial shift in the ceacum and indicated a microbial shift towards beneficial
bacteria [79]. Saeed et al., 2019 [54] reported that theanine, which is found in green tea
has been reported to have health benefits, theanine in broilers feed increased number of
Lactobacillus with age and treatment within both ileum and jejunum yet, the number of
Bacteriodes decreased with age (at 42 d) with the treatment of L-theanine in the jejunum but
increased at 21 d with treatment in ileum and decreased to 42 d in the control group and
at day 21, bacterial richness and diversity were higher than at day 42 where Clostridium
cluster XI and Lactobacillus were found most abundant but theanine is not a 1st, 2nd or 3rd
limiting amino acid. Clustering of cecal communities using principal coordinates analysis
(PCoA), showed a clear separation of microbial communities based on age (P < 0.05) of
birds and between low and medium/ high levels of TSAA(DL-methionine) [80]. Lastly, in
another 16S metagenomics study involving lysine-restricted piglets, intestinal microbiomes
were sharply altered which; might influence higher feed intake in lysine-restricted group
compared to control group [81], showing lysine restriction can alter gut microbiome in pigs.

Table 1. Research studies observing amino acid effects on microbiota in broiler chickens and lay-
ing hens.

Amino Acid of Interest Published Work Findings

Threonine [77,78]

Threonine supplementation fluctuates the
microbial balance in the intestine.

Threonine supplemented with a low CP diet
brought back bacterial diversity and

abundance of beneficial bacteria in laying hens.

Tryptophan [79]
Tryptophan (0.22%) supplemented in diets of

hens produced a microbial shift toward
beneficial bacteria.

Theanine [54]

Theanine supplemented in broiler chicken
diets significantly increased lactobacillus

compared to the control group in the ileum
and jejunum.

Methionine [80]

Clear separation of microbial communities
based on age of birds and between low and

medium/ high levels of TSAA
(DL-methionine).

3. Amino Acid Utilization in Bacteria

Amino acids regulate energy and protein homeostasis [82,83] as well as supports
growth and bacterial survival [84]. They are one of the most valuable nutrient sources
for bacteria and can be utilized as the sole nitrogen, carbon, and energy sources [85].
Once up take of amino acids occur in bacteria, they can either be directly incorporated
into bacterial cells as protein building blocks or become catabolized. The presence of
amino acid is highly efficient in Streptococcus activities and the microorganism requires
glutamic acid, histidine, methionine, cysteine, valine, leucine, tyrosine, and lysine, which
cannot be produce these essential amino acids therefore depending on exogenous nitrogen
sources that utilize peptide proteins from growth medium by enzymatic activity [86,87].
Lysine has been responsible for the optimization of Streptococcus thermophilus growth [88].
Glucose and cysteine along with 5 other amino acids is essential in synthetic medium when
growing Virbio costioclus [89] and synthetic medium for Halobacterium salinarium contains
ten amino acids and cytidlyic acid; valine, methionine, isoleucine, and leucine are essential
for growth [90]. In mixed ruminal bacteria, studies have shown that certain amino acids or
amino acid subgroups stimulate in vitro growth yields. Dai et al. 2001 [67] proposed that
small intestine microbiota uses lysine in milk-fed piglets, and the catabolism of lysine in the
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intestinal mucosa was found to be quantitatively greater than lysine incorporated into the
mucosal proteins. Microbial fermentation of sugar has aided in the industrial production
of lysine, and genetic engineering uses various strains of bacteria to enhance efficiency of
production has allowed lysine to be prepared from other substances [91].

The preferred amino acid substrates of colonic bacteria include lysine, arginine, glycine,
leucine, valine, and isoleucine. Bacteria can sense amino acids in their environment. The
least nutritional valuable amino acids are also the non-utilized and least chemoattractant
amino acids to bacteria. Also, most of the amino acids that E. coli was attracted to are
preferentially utilized during growth, with a strong correlation between the order of
utilization and the chemo attractant potency. However, in this same study B. subtilis did not
demonstrate the same behavior having a weak response to glutamate, aspartate, arginine,
and lysine which suggests that attraction to and utilization of amino acids is dependent on
the physiology or the environment of the organism. In most studied bacteria, the number
of amino acids that attract is on average significantly larger in environmental than in
intestinal bacteria [92]. Laterally in the GI tract, exogenous and alimentary proteins are
hydrolyzed into peptides and amino acids by host-and bacteria derived proteases and
peptidases [93,94]. These peptides and amino acids that have been released by the bacteria
can be further used by the host thus highlighting the beneficial symbiotic relationship
between the host and its microbiota. Cecal bacteria can catabolize uric acid to ammonia,
which can be absorbed by the host and used to synthesize a few amino acids such as
glutamine [95]. Consequently, gut bacteria themselves can be a source of amino acids [96].
An in vitro study has shown chicken intestinal microbiome requires simple sugars and
peptides for balanced growth [97]. More simple sugars and peptides may be available
in the intestine of poultry which may have selected an intestinal microbiome adapted to
simple sugars and peptides [98]. This may have established a microbiome selected for
simple sugars and peptides.

Understanding how bacteria utilize amino acids may shed some light on bacteria
growth or lack thereof depending on the environment and available nutrient sources.
Poultry diet components are crucial in impacting the intestinal microbiome due to the
escape of the host digestion and absorption providing growth substrates to the intestinal
bacteria [99]. It has been reported that in comparison to corn-based diets, wheat-based diets
affect numerous bacteria and just a small modification in dietary cereal grain composition
can potentially affect the intestinal bacteria at strain level [100,101]. Many inhibitory factors
associated with the external environment, such as lack of nutrients, will slow down the
growth rate of lactic acid bacteria. Thus, demonstrating that protein level and source
within the diet of poultry can influence the gut microbiota. Rations composed of corn-
soybean favored Lactobacillus agilis type R5, while high wheat middlings favored L. agilis
tyle R1 [102]. Additionally, fermented cottonseed meal in poultry diets have been shown
to increase lactobacilli population in the cecum of broiler chickens [103]. L. reuteri S5, a
lactobacillus strain isolated from the intestines of healthy white feather broilers genome
encodes peptidases and amino acid transport systems, taking in nitrogen from the outside
environment [104]. A new form of genotyping maybe potentially be found in studying the
biochemical characteristics of bacteria. Yet, laboratory experiments that try to display this
concept may produce inconsistencies and uniformity within their results. These differences
are illustrated in Figure 2.
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4. Recent Studies That Relate to Amino Acid Influence of Intestinal Microbiota

The bulk of the research in this review concentrates on investigating the influence
of amino acids on GIT of chickens. Primarily, the focus lies on broiler chickens, consider-
ing factors such as the absence of additional feed additives, adjustments in optimal feed
formulations, occurrences of disease or deformities, and instances of stress. A recently
published research could provide an enhanced understanding of how amino acids might
affect the intestinal microbiota of chickens. For instance, a study on Qingyuan partridge
chickens revealed that enhancing dietary arginine led to improved growth performance
and positively influenced the population structure of gut microbiota [105]. Similarly, in
yellow feathering chickens supplemented with isoleucine, bacterial 16S rDNA full-length
sequencing indicated that dietary isoleucine increased the cecal abundances of the Firmi-
cutes phylum, as well as Blautia, Lactobacillus, and unclassified Lachnospiraceae genera.
Conversely, it decreased the abundance of Proteobacteria, Alistipes, and Shigella [106].

However, it’s worth noting that arginine is not among the most limiting amino acids
for broiler chickens, and isoleucine typically ranks as the 4th or 5th limiting amino acid. The
current review primarily focuses on research involving the 1st, 2nd, and 3rd limiting amino
acids for broiler chickens. Currently, there is a lack of research on this topic concerning
lysine, which is the 2nd limiting amino acid crucial for broiler chicken growth and immunity.
While past and present research on gut microbiota in broiler chickens, as well as other
poultry, has demonstrated similarities in the abundance of Firmicutes and Lactobacillus,
which are associated with positive gut health in other animals, more investigation is
necessary. It remains to be seen whether changes in the quantity of essential amino acids
provided by broiler chicken diets will affect the abundance of these microbiota in the GIT.

5. Future Studies

Microbiota within the gut functions like an endocrine organ to regulate host health
through influencing the function of the gastrointestinal tract including diet digestion,
nutrient resorption, immunity hormone synthesis, and nerve conduction [107,108]. It has
been reported that poultry housed according to the European legislation, stress levels were
not enough to change the microbiota composition [109]. Thus, leading to look more closely
at the nutritional factors that drive the gut microbiota composition. Subsequently, the
positive impact of gut microbiota of broiler chickens could be a key factor in enhancing
optimal health, welfare, and ultimately boosting resilience in poultry. Manipulation of
broiler chicken gut bacteria may be feasible to strengthen poultry productivity but the full

BioRender.com
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understanding of the variations of those microbiota and nutritional functions is lacking.
Evaluating the appropriate proportions and administering amino acids in poultry diet is
essential for enhancing the cadence of the poultry gut.

The full metabolic potential of broiler gut microbial is poorly understood, which gives
rise to more than just metagenomic studies to understand the behavior and interactions
that broiler chicken microbiota has within their complex environment. Large-scale culture-
based studies are necessary to acquire mechanistic comprehension into the functions of
broiler gut microbiota [110]. Alterations of growth media by totally removing or decreasing
the required amount of an essential amino acid such as lysine for a gut probiotic L. reuteri,
caused an inhibition of growth (unpublished data) The observed inhibition of growth for
this gut microbiota can have a huge impact on the balance and abundance of lactic acid
bacteria in the GIT of broiler chickens thus affecting the antimicrobial activities that L. reuteri
possesses. There may be a link between the essential amino acids needed for gut microbiota
growth that translate into broiler chicken health and growth. When nutritional needs of
L. reuteri and other lactic acid bacteria are met, the essential amino acids may modulate
the enhancement of the production of metabolites that are antimicrobial to pathogenic
bacteria. This preliminary study showcased statements #1 and #2 from Figure 2 provided
in this review as it pertains to the metabolic state of the microbiota and the essential
amino acid needs during bacterial growth. There are breaks within the knowledge of
how broiler chicken gut microbiota intermingles with essential amino acids and peptides.
More exploration needs to be done to understand in depth the modulation of essential
amino acids and broiler chicken gut microbiota. Additionally, administering probiotics
or prebiotics to the diet of boiler chickens without the use of antibiotics is considered as a
more natural approach to improve poultry production.

6. Discussion

There are three main classes as it pertains to the development of the gastrointestinal
tract of farm animals. Those three classes include omnivores, carnivores, and herbivores.
Absorption of nutrients from the diet and the excretion of waste products are the primary
function of the GI and the ecosystem of the gut is influenced by the flow of diet nutrients
and host derivative substrates [111]. The makeup of the gastrointestinal microbiota varies
between animal species, between individuals within the similar species and between the
body sites of the host. Profoundly the microbiota from the gastrointestinal tract interacts
with their animal host which aids in the determination of the initial development, quality
of life, ageing and resistance to infectious diseases [112]. In commercial poultry production
feed enzymes have been used to alter the gut environment and its connected microbiota to
improve poultry performance [113]. Colonization of bacteria in the gut begins instantly
after the hatching period, while the intestinal microbial composition is induced by several
factors such as pathological conditions, genetics, environment, age, and diet [114]. Host
diet can significantly affect the gastrointestinal tract microbiome, which in turn shapes
host metabolism and welfare [115]. The intestinal microbiota, which demonstrates high
diversity in the species of bacteria, is preserved in a comparative balance essential to the
host’s health [60]. Chickens’ gastrointestinal tracts are havens of diverse and intricate
microbiota that perform a protective barrier by attaching to the epithelial walls of the
enterocyte [116]. Chicken GI microbiota includes various bacterial species, and different
microbial communities are found in several sections of the chicken intestinal tract, with the
most dominant phyla being Firmicutes, Bacteroides, and Proteobacteria [117–119]. The factor
affecting the intestinal microbiota composition are age, sex, breed, diet, and pathogens [71].
Feed’s physical form and chemical makeup affect digestibility and nutrient absorption,
which impacts the chicken to gut microbial composition [120].

The composition of microbiota can be affected or influenced by nutrition as well as the
function that the microorganisms are going to present for the host [121]. The gut microbiota
among humans and animals has been shown to remain a very crucial influencer of health.
Various health conditions and disorders have been linked to the lack thereof types and
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number of microbes that are housed in the GIT. In comparison to other mammals that
are food animals, poultry (chicken, turkey, and duck) has a shorter GI tract and faster
digesta transit, ref. [122] which gives rise to a very different intestinal microbiome. A great
importance to poultry production is the effect that the intestinal microbiome has on the
interaction of the host and diet. Due to the large impact that diet plays on the intestinal
microbiome of poultry dietary components such as wheat, barley rye, and corn have been
studied extensively. The high starch and crude protein substances that wheat provides to
broiler chickens makes it a crucial source of energy. Indeed, arabinoxylans, the primary
non-starch polysaccharides found in wheat, have the capability to form highly viscous
solutions. This viscosity can affect the digesta within the intestines, potentially limiting the
contact between nutrients and absorption sites in the intestinal mucosa. This phenomenon
has been observed to influence the performance, gut morphology, intestinal microbiota, and
digesta of broiler chickens [123]. Various studies have revealed that the protective potential
of the native commensal microbiota may simply be disrupted by different nutritional
factors, thus compromising one of the indicated ways for the commensal microbiota to
maintain performance and health of broilers [124]. In the poultry industry, the achievement
of meeting the amino acid requirements of fast-growing broilers has been the major concern
for the farmers, nutritionists, and commercial industry. However, amino acids of undigested
proteins are usually manipulated by hind-gut microbiota [125]. Yet, the components that
may escape host digestion and absorption such as amino acids, may serve as elements
for growth. The free formed amino acids provided in a highly digestible protein source
seem to be preferential over those less digestible sources [126]. Increased dietary amino
acid density has been studied to reduce atrophy of the intestinal mucosa and maintain the
balance of the microbiota [127].

7. Concluding Remarks

In conclusion, this review undergoes the limited research available on the influence
of amino acids on the gut microbiota of broiler chickens. The impact of amino acids on
the host microbiota is notably influenced by the sources of nutrients, primarily protein
in nature. Before delving into specific findings in chickens, it is essential to showcase
similar effects observed in human microbiota, as well as in pigs and mice, owing to their
precedence in research. Emerging evidence suggests that amino acids can not only affect the
GI barrier function but also influence inflammation in broiler chickens, thereby significantly
impacting gut microbiota and overall health.

Functional amino acids such as lysine, arginine, methionine, glutamine, and threonine
are recognized for their importance in addressing gut integrity-related issues. In broiler
chickens, the GI is subjected to many challenges which alter performance, animal health,
welfare and livability which are influenced by these amino acids, whether beneficial or
disadvantageous to birds. Therefore, preventive measures are crucial to mitigate the
impacts of the changes brought by amino acids on gut health while reducing the need to
use antimicrobial agents. Further studies are vital to understand, access, and discover the
role amino acids play in shaping and maintaining the gut microbiota in poultry.
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