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Abstract: Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human
disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor
through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga
toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic
virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and
virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and
its respective co-isolated stx− strain, TT12B. Sequencing the genomes to closure proved critical to the
cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level
of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles
similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably
different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of
both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations
in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was
directly impacted by the strains’ distinct lytic phage complement. Altogether, our phylogenomic and
phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx−)
evolutionary paths.

Keywords: Shiga toxin (Stx)-producing Escherichia coli (STEC); O157:H7; Stx-converting bacteriophages;
whole genome sequencing and typing (WGST); comparative phylogenomics; bacterial isogens; lost
Shiga toxin (LST)

1. Introduction

Shiga toxin-producing Escherichia coli (STEC) are causative agents of severe foodborne
human disease [1]. Among these, the O157:H7 lineage has emerged as one of the globally
predominant pathogenic serotypes [2–8]. Infections with STEC O157:H7 can cause hem-
orrhagic colitis (HC) [9–11], which may lead to life-threatening complications such as the
hemolytic uremic syndrome (HUS), ultimately resulting in renal failure [12–16].

Notable virulence determinants in STEC are the Shiga toxins [17], the lineage-specific
pO157 virulence plasmid [18], and the locus of enterocyte effacement (LEE) [19–21], respon-
sible for the characteristic attaching and effacing lesions [22,23]. The LEE pathogenicity
island contains type III secretion system (T3SS) along with various LEE and non-LEE effec-
tors [22,24,25]. The defining virulence hallmark is the production of the phage-borne Shiga
toxin, a potent protein synthesis inhibitor [26,27], which is sufficient to cause disease [28].
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This toxin is cytopathic for eukaryotic cells and specifically toxigenic to renal cells [29–35].
Single or multiple ΦStx-prophages can be carried, with the toxin expressed and produced
after phage mobilization during the phage lytic cycle [31,36–40]. Various suballeles of
the major stx alleles 1 and 2 have been described [41–44]. Among these, Stx2a is highly
cytopathic, with up to 400x increased toxicity in mice as compared to Stx1a [11,28,45–49].

Serotype O157:H7 evolved from an stx-negative enteropathogenic E. coli (EPEC)
O55:H7 progenitor through the toxigenic conversion of strains by Stx-phages [50–61]. How-
ever, atypical non-shigatoxigenic strains have been described in diverse STEC serotypes
[52,54,62–77]. Complex genomic alterations can result in the disruption, confinement,
or complete loss of the stx locus or entire ΦStx-prophages [68]. Such alterations may
occur during routine culturing or intentionally in the laboratory through the addition of
phage-mobilizing agents to the growth media [69,70,74,75,77,78].

This study analyzes the clinical O157:H7 isolate, TT12, which originated from
a patient presenting with hemorrhagic colitis. When grown on selective media, the original
study found that the isolates exhibited two distinct colony morphologies, designated as
TT12A and TT12B [62]. Subsequent stx PCR-interrogation indicated that TT12A and TT12B
were Stx(+) and Stx(−), respectively. Further molecular analyses suggested that these
strains were isogenic, but the results were not definitive, and not informed by genome
sequences. For this study, we investigated the isolates’ presumed isogenic status from
a whole genome perspective making use of high-resolution comparative genomics tech-
niques. The generation of high-quality closed genomes provided the basis for in-depth
phylogenomic comparisons and allowed us to catalogue subtle strain-differentiating se-
quence and structural polymorphisms, which explain the atypical, non-shigatoxigenic
status of strain TT12B.

2. Materials and Methods
2.1. Bacterial Strains Analyzed in This Study

Strain-associated metadata for TT12A and TT12B, along with other O157:H7 strains
investigated in this study, can be found in Supplemental Table S1. The genome of TT12A
was sequenced to closure in this study, while the co-isolated TT12B genome was previously
sequenced by our group [68].

2.2. Genome Sequencing, Assembly, and Annotation

TT12A strain was cultured overnight at 37 ◦C with shaking at 220 rpm in lysogeny
broth (LB) (Thermo Fisher Scientific, Asheville, NC, USA). The culture was then diluted to
an OD600 of 0.03 in fresh LB medium and grown at 37 ◦C with shaking at 220 rpm to mid-log
phase (OD600~0.5). Total genomic DNA (gDNA) was extracted using the QIAamp DNA
Mini Kit (Qiagen, Inc., Valencia, CA, USA) according to the manufacturer’s instructions.
Genomic DNA preparation was subjected to both long-read (Pacific Biosciences, Menlo
Park, CA, USA) and short-read (Illumina, San Diego, CA, USA) sequencing. For long-
read sequencing on the PacBio RS II platform, gDNA was sheared into 20 kb fragments
using g-TUBE (Covaris, Inc., Woburn, MA, USA). The library was prepared based on the
20 kb PacBio sample preparation protocol and sequenced using P6/C4 chemistry on four
single-molecule real-time (SMRT) cells with a 240 min collection time. The continuous
long-read data were de novo assembled using the PacBio hierarchical genome assembly
process (HGAP v.3.0) with the default parameters in SMRT Analysis (v.2.3.0), including
consensus polishing with Quiver [79]. Long-reads were complemented with Illumina
short-reads generated on the MiSeq platform. Paired-end libraries were prepared with the
NxSeq AmpFREE Low DNA Library Kit (Lucigen, Middleton, WI, USA) with a 250 bp read
length and sequenced using the MiSeq Reagent kit (v2) (500-cycle). Sequencing reads in
the fastq format were imported into Galaxy [80], and the default software parameters were
used for all analysis unless specified otherwise. FastQC (v.0.74 + Galaxy0) (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc, accessed on 10 December 2023) and Trim
Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, accessed on
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10 December 2023) were used to determine read quality. Illumina reads were utilized for
PacBio sequence error correction using Pilon (v.1.23) [81], and read-based SNP discovery as
described below. The resulting contigs were evaluated with QUAST (v.5.2.0 + Galaxy1) [82].
The chromosomal oriC (http://tubic.tju.edu.cn/Ori-Finder/, accessed on 10 December
2023) [83] and plasmid repA genes were designated as the zero point of the closed molecules,
prior to annotation, using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [84].

2.3. Pathogenome Make-Up and Virulence Complement

Chromosomes and plasmids of the strains, TT12A and TT12B, were comprehensively
analyzed and visualized in Blast Ring Image Generator BRIG (v.0.95) [85]. Serotypes in the
assembled genomes were confirmed in silico using the EcOH database [86] in ABRicate
(Galaxy v.1.0.1); (https://github.com/tseemann/ABRicate, accessed on 10 December 2023)
with the options –minid 80 –mincov 80 in Galaxy [80]. The average nucleotide identities
(ANI) for the chromosomes and pO157 plasmids using the E. coli strain TT12A as designated
reference were calculated with FastANI (Galaxy v.1.3), based on MinHash mapping [87].
Clade typing was performed according to [88]. Clades and subgroups were assigned by
in silico interrogation of the allelic status of 89 core genome-single nucleotide polymor-
phisms (cgSNPs) in the assembled genomes using a custom workflow on Galaxy [80],
which was informed by eight definitive polymorphic positions [89,90]. Lineages were
assigned according to published protocols [91]. Chromosomal repeats were identified with
FindRepeats (v.1.8.2 + Galaxy1) [92,93]. Virulence and antibiotic resistance genes were
identified using VFDB [94] and ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/,
accessed on 10 December 2023) [95], respectively. Prophage regions including intact, par-
tial, or remnant prophages were identified using PHASTER [96,97]. The mechanism of
phage insertion can create direct repeats (DR), hence insertion sites were investigated for
DR and attachments sites (att) using NUCmer (v.4.0.0rc1 + Galaxy2) [98] and BLASTn [99].
Prophages of interest were manually curated with BLASTn/p against the non-redundant
NCBI databases [99] and visualized in Easyfig (v.2.2.2) [100]. Insertion sequence (IS) el-
ements were identified and curated using ISEScan (v.1.7.2.3 + Galaxy0) [101]. Genomic
islands (GI) were detected with IslandViewer4 [102–104]. Plasmid incompatibility groups
were identified and analyzed with MOB-Typer (v.3.0.3 + Galaxy0) [105].

2.4. Core Genome SNP Phylogeny

To place strains TT12A and TT12B into their phylogenomic context, a custom-built
cgSNP discovery pipeline [68,106,107], implemented on Galaxy [80], was applied. The
chromosomal core genome is defined as a set of genic and intragenic regions that are not
repeated and do not contain mobile elements, such as phages, genomic islands, IS elements,
or plasmids, which evolve at different rates and are not indicative of evolutionary relation-
ships. These regions were determined in the designated reference chromosome of E. coli
strain EC4115 (GenBank accession: CP001164) [106] as described above. All mobile genetic
elements were excluded from SNP discovery. Illumina reads were used for read-based SNP
discovery. The modular pipeline contained the following workflow steps: (i) SNP discovery
and typing Illumina reads were used for read-based SNP discovery and aligned to the
designated reference with BWA–MEM (Galaxy v.0.7.17.2) [108]. The resulting alignments
were processed with FreeBayes (Galaxy v.0.4.1.0) [109] with the following threshold settings:
mapping quality 30, base quality 30, coverage 10, and allelic frequency 0.75. For contig-
based discovery, assemblies were aligned to the O157:H7 strain EC4115 reference molecules
using NUCmer [98], followed by SNP prediction with delta-filter (v.4.0.0rc1 + Galaxy2)
and show-snps distributed with the MUMmer package (v.4.0.0rc1 + Galaxy2) [98,110].
The resulting SNP panel for each of the query genomes was used for further processing;
(ii) SNP validation and filtering Catalogued SNPs from each genome were merged into
a single SNP panel and SNPs located within the identified excluded regions were removed,
as well as low-quality alignments or misalignments, non-uniformly distributed regions,
and variant insertions and deletions (InDels), as previously described [106,107,111]. SNPs
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were further curated by extracting the surrounding 40 nucleotides (nt) for each predicted
SNP in the reference genome, followed by BLASTn of these fragments against the query
genomes. SNPs with missing information (“no hits”) or multiple hits were filtered out as
well as ambiguous nucleotides; (iii) SNP annotation and chromosomal distribution The
functional effects of SNPs were inferred from the reference genome annotation. Identified
SNPs were classified into genic or intergenic by mapping the SNPs to the reference genome.
The SNP-matrix tables were manipulated with Query Tabular Tool (Galaxy v.3.3.0] [112]; (iv)
SNP phylogeny The curated panel of high-quality SNPs served as a basis for phylogenetic
reconstruction by maximum parsimony with PAUP (v.4.0) [113] with 100,000 bootstrap
replicates. The majority-rule consensus SNP tree was visualized in Geneious (v.2022.2) [114]
and decorated in iTol (v.6.5.8) [115]. Calculation of the consistency index (CI) in Mesquite
(v.3.6) [116] for each SNP allowed us to identify parsimony-informative SNPs and flag ho-
moplastic SNPs as previously described [68,106,107,111,117,118]. Locally collinear blocks
between TT12A and TT12B chromosomes and plasmids were identified with progressive
Mauve (v.2.4.1) [119] with the default settings in Geneious (v.2022.2) [114]. Subtle sequence
disambiguities comprising SNPs and InDels between the respective molecules were identi-
fied using “Find Variations/SNPs” in Geneious. A prediction of protein stability changes
for single-site mutations was analyzed with MuPro (v.1.0) [120].

2.5. Core Genome MLST

The closed genomes of the representative O157:H7 strains (Supplemental Table S1)
were imported into SeqSphere+ (v.8.3) (Ridom GmbH, Münster, Germany) for gene-by-gene
alignment, allele calling, and comparison [121]. A core genome MLST (cgMLST) schema
was developed using the closed chromosome of E. coli K-12 substrain, MG1655, (GenBank
accession U00096) [122] as a seed and queried against 11 closed genomes representing the
9 distinct O157:H7 phylogenetic clades [68,88,106,107]. Core and accessory MLST targets
were identified according to the inclusion/exclusion criteria of the SeqSphere+ Target De-
finer. The allele information from the defined core genome gene of the queried strains was
used to establish phylogenetic hypotheses using the minimum-spanning method [123,124]
with default settings in Ridom SeqSphere+ (v.8.3).

2.6. Bacterial Growth, Phage Induction, and Cell Viability

All experiments were executed with two biological replicates. TT12A and TT12B
strains were cultured overnight (o/n) at 37 ◦C with shaking (220 rpm) in LB medium.
Bacterial o/n cultures were diluted to an OD600 of 0.03 in fresh LB medium and grown
at 37 ◦C with shaking (220 rpm) to early-log phase (OD600~0.3) and then divided into
two subcultures, LB and LB + Mitomycin C (MMC). Triggering the RecA-dependent SOS
response with MMC constitutes a major pathway of Stx phage induction and mobiliza-
tion [125]. Subculture LB + MMC was supplemented with MMC (Sigma-Aldrich, Saint
Louis, MO, USA) at a final concentration of 0.5 µg/mL to mobilize carried prophages, while
subculture LB was used to evaluate spontaneous prophage mobilization. Growth curves
were recorded in a 96-well plate (Corning 3370, Corning Inc., Corning, NY, USA) at OD600
on a BioTek Synergy H1 plate reader (BioTek Instruments, Inc., Winooski, VT, USA) for 16
hrs at 10 min intervals to assess prophage-induced bacterial lysis.

2.7. Prophage Profiling and Gene Expressions

PCR primer sequences, conditions, and amplicon lengths are provided in Supplemental
Table S2. PCR was performed on gDNA preparations using the boiling extraction method [126]
for strains TT12A and TT122B, processing three cultures each for the characteristic TT12A- and
TT12B-specific morphology [62]. To determine the orientation of an inversion in the shared
Enterobacteria phage SfI-PP2, primers were designed with the NCBI primer design tool [127].
PCR-amplicons were separated on a 1.5% agarose gel at 120V and examined in the GelDoc EZ
Gel Imaging System and ImageLab (v.6.1) (BioRad, Hercules, CA, USA).
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2.8. Mobilization of TT12A-Specific Prophages

To assess TT12A-specific phage mobilization upon MMC-induction, LB and LB + MMC
subcultures were grown for 6 hrs at 37 ◦C with shaking (220 rpm) and then centrifuged at
5000× g for 10 min. Supernatants were filtered through low-protein-binding 0.22 µm pore
size membrane filters (Millex-GP; Merck Millipore Ltd., Burlington, MA, USA) and treated
with DNase I (Invitrogen, Waltham, MA, USA) for 15 min to remove bacterial gDNA. Phage
DNA was extracted from the lysate using the QIAamp DNA Mini Kit (Qiagen Inc., Valencia,
CA, USA), and eluted with 50 µL nuclease-free water. Phage mobilization was determined
by qPCR targeting the phage-borne toxin genes stx1 and stx2 as well as ΦPP10-carried nleL
gene on the StepOne Real-Time PCR System software (v 2.3) (Applied Biosystems, Foster
City, CA, USA). Statistical significance was determined using Prism (v.9.5.0) (GraphPad
Software, San Diego, CA, USA) with two-way ANOVA with Sidak’s multiple comparisons
test to compare non-induced to MMC-induced conditions.

2.9. Gene Expressions

Transcripts were quantified relative to the endogenous tufA gene by RT-qPCR [128].
Cultures were grown in LB and LB + MMC for 6 hrs at 37 ◦C with shaking (220 rpm)
then centrifuged (5000× g, 10 min). Cell pellets were used for total RNA purification
using the PureLink RNA Mini kit (Invitrogen, Waltham, MA, USA). RNA quantity and
quality were measured with the NanoDrop ND-1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Total RNA was treated with amplification grade DNase I
(Invitrogen, Waltham, MA, USA), and reverse transcribed using the RevertAid H Minus
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA). Targets for
qPCR were the toxin genes stx1 and stx2 and the SOS-regulator recA. PCR reactions were
performed on the StepOne Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA) using GoTaq qPCR Master Mix (Promega, Madison, WI, USA). Primer sequences, RT-
qPCR conditions, and amplicon lengths are provided in Supplemental Table S2. Statistical
significance was determined using Prism (v.9.5.0) (GraphPad Software, San Diego, CA,
USA) with two-way ANOVA with Sidak’s multiple comparisons test to compare results of
non-induced to MMC-induced conditions for each strain.

3. Results and Discussion
3.1. Pathogenome Architectures and Mobilome Inventories of TT12A and TT12B

The proposed isogenic status for the O157:H7 isolates TT12A (stx+) and TT12B
(stx−), was originally inferred from the PCR-based interrogation of the stx locus, along
with a similar PFGE fragmentation pattern [62]. To reassess the isolates’ relationship,
their closed genomes were subjected to high-resolution whole genome sequence typing
(WGST) [107,129]. Due to the homogeneity of prophage content and other repeats, E. coli
O157:H7 genomes are known to assemble into fragmented drafts when only short-read
sequencing technologies are applied [130,131]. In response, we used PacBioRS long-read se-
quencing followed by error correction with Illumina short-reads. The resulting high-quality
genomes allowed us to catalogue strain-differentiating sequence and structural polymor-
phisms at a high degree of phylogenetic resolution. Strain-associated metadata and genome
statistics for the chromosomes and carried lineage-specific pO157 virulence plasmids are
provided in Supplemental Table S1. Major drivers of the pathogenome diversification
in the O157:H7 lineage are mobile genome elements and more prominently, the individ-
ual prophage contents [106,107,132–136]. As evident in the chromosome comparison in
Figure 1, the TT12A and TT12B backbones are largely conserved and syntenic with an aver-
age nucleotide identity (ANI) of 99.99%. In comparison to non-pathogenic E. coli K12-type
strains, O157:H7 acquired ΦStx and non-Stx prophages resulting in widespread genetic
mosaicism [132,137–139]. Bacteriophages target conserved chromosomal loci and undergo
evolutionary acquisition, loss, and dissemination, which collectively shape a strain’s indi-
vidual gene inventory and pathogenicity traits [140–142]. A substantial proportion of the
TT12A and TT12B chromosomes is made up of prophages, accounting for 16% and 13.1%,
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respectively, of the total chromosomal sequence information. 21 phages are shared; how-
ever, strain TT12A (5,501,009 bp) is distinguished from strain TT12B (5,335,866 bp) by the
presence of three additional phages, ΦStx1a, ΦStx2a, and non-Stx Enterobacteria phage ΦBP-
4795 prophage. The latter is partly homologous to the 57,930 bp ΦStx1-prophage carried
by the E. coli O84:H4 strain with an average nucleotide identity of 45.3% [143]. The direct
evolutionary relationship of these Stx/non-Stx phages is unknown; however, alterations of
the stx locus, resulting in confined loss or deletion of the entire phage, has been described
in diverse STEC lineages [68]. The absence of these three prophages, ΦStx1a, ΦStx2a, and
non-Stx Enterobacter phage ΦBP-4795, in the strain TT12B results in a 165,143 bp larger
genome of strain TT12A (Figure 1, Supplemental Table S3). The three strain-differentiating
prophages along with an inversion in the shared ΦPP2 are visualized in their chromosomal
context in Figure 2. In analogy to the chromosomes, the carried pO157 plasmids have an
ANI of 99.98%, and differ in size by only 3 bp, again indicative of a close phylogenetic
relationship of these strains (Figure 3).
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Figure 1. Chromosome comparison of TT12A and TT12B BRIG comparison of the Stx(+) TT12A
and Stx(−) TT12B genome architecture and gene content referenced to the larger Stx(+) genome.
The comparison is further extended to include the EDL933 strain, clade 3.12, and the K-12 E. coli
strain. CDSs are presented as arrows on the +/− strands, and functional annotations for the shared
and three TT12A-specific prophages, virulence, and resistance genes, along with polymorphisms
differentiating the two strains, are highlighted as shown in the legend. Chromosomal synteny in K-12
is disrupted by multiple prophages and other MGEs.
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Figure 2. Prophages and Stx-status of TT12A and TT12B BLASTn-based comparison of the prophage
inventory and polymorphisms visualized in Easyfig. Strains are differentiated by the presence of
three additional ΦStx- and Φnon-Stx prophages in the larger (stx+) TT12A strain at the following
loci: (A) ΦStx2a-phage at wrbA: This locus is unoccupied in TT12B, while in strain A, a 63,250 kb
ΦStx2a-prophage is inserted at wrbA, a preferred target locus for ΦStx2a-phage insertion in O157:H7.
(B) ΦStx1a-phage at yehV: This locus is unoccupied in TT12B, while a 53,637 kb ΦStx1-prophage
is inserted at yehV, a preferred target locus for ΦStx1a-phage insertion in O157:H7. (C) ΦPP10-
Enterobacteria phage BP-4795 at potC: This locus is unoccupied in TT12B, while a 49,073 kb prophage
is inserted at potC, a known target for phage insertion in O157:H7. (D) ΦPP2-Enterobacteria SfI phage:
Chromosome assemblies feature an inversion within the shared ΦPP2-Enterobacteria SfI prophage.
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Figure 3. Comparison of clade 3 pO157 plasmids BRIG comparison of the pO157 plasmid architecture
and gene content. CDSs are presented as arrows on the +/− strands, and functional annotations for
notable virulence determinants, such as EHEC hemolysin (hlyCABD), the serine protease (espP) along
with plasmid differentiating polymorphisms, including SNPs and InDels, are highlighted as shown
in the legend.

3.2. Phylogenomic Position of TT12A and TT12B within the O157:H7 Lineage

In silico genotyping classified TT12A Stx(+) and its co-isolated TT12B Stx(−) strains as
Sequence Type ST11, Lineage I, Clade 3.12 isolates (Supplemental Table S1) [88,91,121,144]. To
place the strains into the broader context of O157:H7/NM evolution [51–56], we constructed
a phylogenetic hypothesis based on reference-based cgSNP discovery including representative
O157:H7 strains for the nine distinct clades [68,88,106,107] (Supplemental Table S4). As evi-
dent in Figure 4, the overall tree topology reflects the general understanding of O157:H7/NM
evolution from an enteropathogenic E. coli (EPEC) O55:H7 progenitor [51–56,145]. Clade
3.12 strains TT12A, TT12B, and EDL933 form a cluster, and strains TT12A and TT12B
were found to be indistinguishable on the chromosomal cgSNP level [62]. This intimate
relationship is further mirrored in the cgMLST analysis, with no allelic changes observed
(Supplemental Figure S1, Supplemental Table S4), and along with the SNP information
being consistent with an isogenic status. The strains’ intimate relationship is also re-
flected in the IS element profiles. In total, ISEScan detected 87 IS elements and categorized
them into 14 families and 27 clusters (Supplemental Table S3). The strains feature iden-
tical chromosomal or plasmid-borne profiles, not considering the two phage-borne IS
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elements that are part of the TT12A-specific Enterobacteria phage ΦBP-4795-PP10 (Figure 1,
Supplemental Table S3), supporting an intimate relationship between these two strains. To
build the clade-inclusive cgSNP phylogeny (Figure 4), we excluded SNPs within mobile
elements and repeats, as the alignment of homologous regions of different evolutionary ori-
gins can introduce false positive signals and ultimately, phylogenetic inaccuracies [106,107].
We thus used an alternative approach for these closely related isolates and processed
all collinear blocks in their genomes to record the SNPs and InDels. This resulted in the
detection of 16 chromosomal intragenic SNPs, all situated within two prophages, while
no SNPs were recorded on the pO157 (Supplemental Table S4). In this context, we note
that plasticity in the ΦStx-phage complement of O157:H7 and other STEC serotypes is
well established [138]. Particular variations within the ΦStx2a-phages have been associ-
ated with altered toxin production capabilities [146–149]. Exploring the effects of such
phage-to-phage variants on phage–host interactions or pathogenesis could deepen our
understanding of the evolution of O157: H7 virulence. A single nonsynonymous (ns) SNP
was detected in the shared ΦPP4-phage, while 15 SNPs were located within a single gene
on the carried TT12A-ΦPP13 and TT12B-ΦPP11 prophages that code for the host specificity
protein J [150]. Though we cannot delineate the physiological effects of these variants, we
note that 80% of SNPs are non-synonymous and are predicted to decrease protein stability
in TT12B [120] with potential impacts on phage biology.
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Figure 4. Phylogenomic position of TT12A and TT12B within the O157:H7 serotype Genome compar-
isons of TT12A and TT12B and the representative strains from clades 1 to 9 O157:H7 genomes yielded
a total of 2,654 SNPs when referenced to strain EC4115. The tree shown is the majority-consensus tree
of three equally parsimonious trees with a CI of 0.998. Trees were recovered using a heuristic search
in PAUP with 100,000 bootstrap replicates. The tree is rooted to the clade 9 strain, PA48, visualized
and decorated in iTol. Nodes are color-coded according to clade, and numbers of separating SNPs
are shown. The prevalence of Stx-subtypes is indicated by black (stx+) and white (stx−) boxes.

In addition, we detected 65 strain-differentiating InDels, 56 of which are chromosomal
(Supplemental Table S4, Figures 1 and 3). The majority, 38 chromosomal and 8 plasmid-
borne InDels, are located within homopolymer repeats, which are prone to dynamic
expansion or shrinkage during short-term evolutionary terms [151]. We also note here that
37 of the chromosomal and 1 of the plasmid InDels are associated with mobile genetic
elements, including prophages, IS elements, and genomic islands (Supplemental Table S4).

3.3. Comparison of Virulence and Resistance Determinants

We surveyed the TT12A and TT12B genomes for chromosomal and plasmid-borne vir-
ulence and resistance loci. Neither strain carries antibiotic resistance genes, other than the
chromosomal broad-spectrum multidrug resistance efflux pump, MdfA [152], commonly
found in E. coli [153–155]. Not taking into account the TT12A-specific phage inventory,
comprising the ΦStx1/2a-phages and several T3SS effectors nleL, espN, and espK on the
Enterobacteria phage ΦBP-4795-PP10 (Figure 1), the strains’ virulence profiles are indis-
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tinguishable, showing a characteristic O157:H7 virulence repertoire [156,157] (Figure 5,
Supplemental Table S3). The virulence factors include the locus of enterocyte effacement
(LEE) at the tRNA-Sec (Figure 1) [23,158–161] which causes attaching and effacing (A/E)
lesions [22,23]. This pathogenicity island encodes T3SS components, such as regulators,
chaperones, and LEE/non-LEE effectors [22,24,25]. Among the LEE-encoded proteins
is intimin (eae-γ1) [162,163], an outer membrane adhesin that facilitates intimate bacte-
rial attachment to the host’s intestinal cells [24,158,164–167] (Figure 5). Variation in the
architecture and coding capabilities of the lineage-specific virulence pO157 plasmid has
provided insight into O157:H7 evolution [68,168–171]. The TT12A (92,710 bp) and TT12B
(92,707 bp) plasmids are highly conserved with a size difference of only 3 bp, supporting an
intimate relationship between these two strains [18,68,168,172,173] (Figures 3 and 5). Loss
of pO157 has been linked to diminished virulence in O157:H7 strains [174]. Characteristic
plasmid-borne virulence determinants are a type II secretion system metalloprotease (stcE),
hemolysin (hlyCABD), enterohemolysin (ehxA), type V-secreted serine protease (espP), and
adhesin (toxB) [18,172,173,175–177] (Supplemental Table S3).
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Figure 5. Virulence determinants in TT12A and TT12B A heatmap visualizing the percentage identities
for each virulence determinant identified in TT12A and TT12B. Apart from Stx-phage contributed
toxins and nleL, espN, and espK genes on ΦPP10 Enterobacteria phage BP-4795 only present in TT12A,
the strains’ virulence profiles are similar.

3.4. Prophage Content and Genomic Basis of the Attenuated Stx(−) Status

Toxin production and organ toxicity is dependent on the carried stx suballeles [48,178–180].
Diverse stx-phage combinations are found in the O157:H7 lineage [68,107,133,147]. A genet-
ically altered nonstandard stx-locus, such as through IS element disruption [68], might not
amplify with generic PCR primers and thus can create false-negatives [42,62,143,181]. The
availability of closed genomes is thus critical to describe the genomic basis of the absence
of stx genes in TT12B. Strain TT12A carries two Stx-prophages, ΦStx2a-PP6 (63,250 bp)
(Figure 2A) and ΦStx1-PP18 (53,637 bp) (Figure 2B) inserted into wrbA and yehV [182,183]
(Figure 1), respectively, which are the preferred insertion targets of these particular Stx-
phage subtypes [68,106,138]. In mice, Stx2a confers up to 400x times higher toxicity than
Stx1 [11,28,45–49]. Both Stx B-subunits bind to the Globotriaosylceramide receptor, Gb3,
on the eukaryotic cell. The Stx2a–Gb3 binding, however, is weaker in comparison to
Stx1a–Gb3 [147,184]. Consequently, the Stx1/2a toxin status of TT12A may indicate lower
toxicity in comparison to stx2a-only strains [147,180,184–186]. Furthermore, we quantified
the expression levels of the co-carried toxin variants. In cultures of TT12A treated with
MMC, both phages were responsive, and we recorded a 4.4-fold and a 3.4-fold increase
in stx2a and stx1a transcripts, respectively (Supplemental Figure S2). The ΦStx2a phage
is of the Eru-2 type, characterized by the absence of the lambdoid O and P genes, while
the ΦStx1a identifies as the lambdoid–Eru type [148,149] (Figure 2). The ΦStx1a phage
features a γ-replicase, when applying a replicase P-informed subtyping schema [146]. How-
ever, the ΦStx2a phage is not typable, showing only 53% identity to β-replicase subtype.
TT12A is further distinguished by the presence of Enterobacteria phage ΦBP-4795-PP10
(49,073 bp) at potC (Figure 2C), a known phage insertion site in O157:H7 and other STEC
serotypes [187–189]. In silico comparison further identified an 1833 bp inversion within
the shared incomplete ΦPP2-prophage (Figure 2D, Supplemental Table S3). Further PCR
interrogation, however, revealed that this polymorphism is not strain-specific; and both
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orientations were detected in cultures of TT12A and B (Supplemental Figure S3). This
inversion affects a single gene, annotated as a phage tail protein in the TT12B assembly
(locus tag: E5F07-04800) and a hypothetical protein in TT12A (E5F08-04795) (Figure 2D).

3.5. Differences in Growth Phenotypes and Impact of the Prophage Inventories

We recorded growth in LB and under phage-mobilizing conditions in LB + MMC
to determine the degree of prophage-induced lysis in TT12A and TT12B. Increased ex-
pression of recA post MMC treatment confirmed the successful SOS response activation in
both cultures (Supplemental Figure S4A) [125,190–192]. Culture growth of TT12A is consid-
erably affected through phage lysis, unlike strain TT12B (Supplemental Figure S4B). The
different growth phenotypes in the MMC-treated cultures thus seem to be mediated by the
three TT12A-specific ΦStx1a/2a/non-Stx phages, all of which are known or predicted to be
lytic in the case of Enterobacteria phage ΦBP-4795-PP10 (Figure 2, Supplemental Table S3).
Even though another seven lytic phages are predicted as part of the shared phage com-
plement (Supplemental Table S3), these phages are likely not mobilized through the
SOS response pathway activation, as evident in the similar growth of TT12B in LB and
LB + MMC media (Supplemental Figure S4B).

4. Conclusions

Whole genome sequence typing has proven to be invaluable for the identification
and strain attribution of near clonal E. coli pathogen populations [40,107,193,194]. Avail-
ability of high-resolution closed genomes allowed us to record subtle strain-level se-
quence and structural polymorphisms with high phylogenetic accuracy, demonstrat-
ing an isogenic relationship of these Stx(+/−) TT12A and TT12B isolates. The num-
ber of strain-differentiating SNPs is similar to the range reported for clonal O157:H7
outbreak strains [40,106,107,111,195]. However, SNP data on its own are clearly insuffi-
cient to infer clonality in microbes without further assessing changes in genome struc-
ture and content. Dynamic phage acquisition and loss resulted in the strain-specific
ΦStx and non-ΦStx prophage content, which may have occurred in a single or sepa-
rate evolutionary events likely triggered by the mobilization and ultimately, loss of these
phages. STECs have been intentionally cured from their Stx-phages by antibiotic or MMC
addition to the growth medium [63,68,196]. In this context, it is noteworthy that ex-
cised copies of the three TT12A-differentiating prophages ΦStx/non-Stx phages, absent in
TT12B, were significantly increased when grown in the phage-inducing LB + MMC media
(Supplemental Figure S5). Additionally, none of the insertion sites occupied in TT12A
showed scarring that would indicate a former phage presence in TT12B. Alternative evo-
lutionary scenarios can explain the Stx-phage absence in atypical O157:H7 strains, such
as TT12B [51,68,197]. We can only speculate about the events that gave rise to the TT12A
and TT12B variants. Given the fact that these strains originate from a patient suffering
from hemorrhagic colitis [62] along with the strains’ established intimate phylogenetic
relationship, the secondary loss of both ΦStx1/2 prophages along with Enterobacteria phage
ΦBP-4795-PP10 in TT12B during the course of infection, in a singular or in multiple events,
seems likely. The ratio of Stx(+) to non-shigatoxigenic isolates is not known; however,
dynamic loss of Stx-phages and potential re-acquisition may cause transitional stx(+/−)
shifts in pathogenic potential [68,69,74]. Bacteriophages control diverse bacterial biological
functions. Stx has a dual role in human disease and spontaneous low-level Stx production
is considered a form of bacterial altruism, promoting the toxin-dependent killing of eukary-
otic predators and macrophages [29,198–205]. The ΦStx phage carriage has been associated
with a number of virulence and fitness traits beyond Stx-production. The characterization
of laboratory-engineered Stx-lysogens, often recovered in E. coli K12 backgrounds, indi-
cated an impact on acid resistance, type III secretion, motility, and metabolism [206–215].
The analyzed Stx(+/−) isogen cultures and genomes provide an excellent model to further
investigate the impact of ΦStx-phage carriage in a native O157:H7 genome background
that is not accounted for in the K12-engineered Stx-lysogens [206,208,210,215]. Altogether,
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the genomic and phenotypic comparisons show that this isogen pair is intimately related,
yet perhaps on a divergent evolutionary path. The role of the catalogued sequence and
architectural polymorphisms, however, cannot be simply inferred from static genome com-
parison. Further investigations using transcriptomic and phenotypic profiling may provide
greater insight into the role these variants may play in the physiology and pathogenicity of
strains TT12A and TT12B.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12040699/s1, Figure S1: Core genome MLST, Figure
S2: Expression of stx genes, Figure S3: PCR interrogation of inversion boundaries and directionality
in ΦPP2, Figure S4: Growth phenotypes, Figure S5: Mobilization pattern of TT12A-specific phages;
Table S1: Strain-associated metadata and sequence accessions, Table S2: Primers used in this study,
Table S3: Genome features and contents, Table S4: Core genome SNP and MLST loci.
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