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Abstract: Shortly after the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
cases of viral, bacterial, and fungal coinfections in hospitalized patients became evident. This retro-
spective study investigates the prevalence of multiple pathogen co-detections in 1472 lower respi-
ratory tract (LRT) samples from 229 SARS-CoV-2-positive patients treated in the largest intensive
care unit (ICU) in Slovenia. In addition to SARS-CoV-2, (rt)RT-PCR tests were used to detect cy-
tomegalovirus (CMV), Epstein–Barr virus (EBV), herpes simplex virus 1 (HSV-1), herpes simplex
virus 2 (HSV-2), varicella zoster virus (VZV), and atypical bacteria: Chlamydia pneumoniae, Mycoplasma
pneumoniae and Legionella pneumophila/spp. At least one co-detection was observed in 89.1% of
patients. EBV, HSV-1, and CMV were the most common, with 74.7%, 58.1%, and 38.0% of positive
patients, respectively. The median detection time of EBV, HSV-1, and CMV after initial SARS-CoV-2
confirmation was 11 to 20 days. Bronchoalveolar lavage (BAL) and tracheal aspirate (TA) samples
showed equivalent performance for the detection of EBV, CMV, and HSV-1 in patients with both
available samples. Our results indicate that SARS-CoV-2 infection could be a risk factor for latent
herpesvirus reactivation, especially HSV-1, EBV, and CMV. However, additional studies are needed
to elucidate the clinical importance of these findings.

Keywords: SARS-CoV-2; co-detections; coinfections; lower respiratory tract; ICU; herpesviruses;
atypical bacteria

1. Introduction

Soon after the onset of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
in Wuhan, China [1], the first patients were being hospitalized and coinfections became
evident and an important research topic, especially in critically ill patients in intensive care
units (ICU) [1,2]. The treatment of such patients is not only invasive but often requires
immunomodulatory agents that can induce an altered immune system response, leading to
a higher risk of additional infections and reactivations of latent viral infections [3–5].

In this context, some members of the Herpesviridae family—herpes simplex virus 1/2
(HSV-1/2), varicella zoster virus (VZV), cytomegalovirus (CMV), and Epstein–Barr virus
(EBV)—come to attention due to their high prevalence in the general population and reacti-
vation capabilities [4,6]. Herpesviruses cause chronic infections because a latent infection is
established after the primary lytic infection. Various stimuli, such as immunosuppressive
treatment, the damage caused by disease, microtrauma caused by endotracheal tubes, and
so on, can cause reactivation of herpesviruses and, therefore, infectious virus production.
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After SARS-CoV-2 infection, various hyperinflammatory events occur with immune system
dysregulation, which may serve as a potential gateway for latent herpesvirus reactiva-
tion [4–6]. Not only may herpesvirus reactivations contribute to the severity of SARS-CoV-2
infection [6], but ICU SARS-CoV-2 patients with herpesvirus reactivation are also more
vulnerable to bacterial superinfections [4].

With regard to additionally acquired bacterial superinfections, the atypical bacteria
Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila/spp. were of
interest because of data from some previous studies [7–11]. C. pneumoniae and M. pneumo-
niae usually cause mild respiratory infections and, only occasionally, severe complications
in some patients [8,9]. However, C. pneumoniae, M. pneumoniae, and L. pneumophila/spp.
can cause atypical pneumonia, which may induce severe clinical manifestations. Despite
the fact that atypical bacteria are not as frequently detected as viral superinfections, their
importance should not be overlooked [7,9,12].

A number of previous studies on SARS CoV-2-positive patients and coinfections with
CMV [5,13–18], EBV [15,16,19–21], and HSV-1 [5,13,17,18,22–25] are available. On the other
hand, only a limited number of reports for HSV-2 [13,22] and VZV [18,26] are available.
However, most of these studies were performed on upper respiratory samples or blood
or are based on serology data. Studies of co-detections in lower respiratory tract samples
(LRT) and longitudinal follow-up samples from an analytical point of view approached
by a direct method of pathogen detection are scarce, but they are greatly needed to better
estimate the impact and dynamics of viral and bacterial co-detections in COVID-19 patients.

Therefore, the aim of the study was to retrospectively determine co-detections of
CMV, EBV, HSV-1/2, VZV, C. pneumoniae, M. pneumoniae, and L. pneumophila/spp. in LRT
samples of severe COVID-19 patients and to determine the frequency and type of such
co-detections. Additionally, time between the first SARS-CoV-2 detection and co-detection
was also assessed. Furthermore, a comparison between TA and BAL samples from the
same patient for consistency in specific herpesvirus detection was performed. Finally, we
explored if SARS-CoV-2 infection could be one of the risk factors for latent herpesvirus
reactivation in LRT samples of severely ill patients admitted to the ICU.

2. Materials and Methods
2.1. Selection of Patients and Samples

Between 1 March 2020 and 15 December 2021, a total of 665 COVID-19 patients were
hospitalized in the ICU of the Department of Infectious Diseases at the Ljubljana University
Medical Center, the largest tertiary hospital and main teaching hospital in Slovenia. All
collected LRT samples were collected for SARS-CoV-2 diagnostic and follow-up purposes.

For the study, a subset of 229 patients (171 men, 58 women) with at least three con-
secutive LRT samples (between 3 to 18 samples per patient) were included. A total of
1187 tracheal aspirates (TA), 199 bronchoalveolar lavages (BAL), 29 bronchoaspirates (BA),
and 57 sputum (SP) samples collected at different timepoints during their stay in the ICU
were identified and selected for retrospective analysis on herpesviruses and atypical bacte-
ria. The mean age of the included patients was 63.8 ± 10.4 years, with an age range from
28 to 84 years. More specifically, 11.8% (27/229) of patients were younger than 50 years,
54.1% (124/229) were between 50 and 69 years of age, and 34.1% (78/229) of patients were
70 or older. Clinical data on the disease outcome (survived/deceased), the application of
immunosuppressive treatment, and/or antiviral treatment were also collected and included
in the final analysis.

This study was performed in accordance with the ethical guidelines for human re-
search, the World Medical Association’s Declaration of Helsinki, the Oviedo Convention on
Human Rights and Biomedicine, and the Slovenian Code on Medical Deontology. The study
was approved by the National Medical Ethics Committee, Ministry of Health, Republic of
Slovenia (0120 211/2020/7).
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2.2. Total Nucleic Acid Isolation and (rt)RT-PCR

The total nucleic acids were isolated using the MagNA Pure 96 DNA and Viral NA
Small Volume Kit (Roche Applied Science, Mannheim, Germany) according to the manu-
facturer’s instructions. All subsequent (rt)RT-PCR reactions were performed with the same
eluate of the respective sample.

Multiplex reverse-transcription real-time PCR (rtRT-PCR) was performed for the
detection of SARS-CoV-2 using a Lightmix® Kit SARS-CoV-2 E+N UBC (Roche Applied
Science, Mannheim, Germany). Real-time PCR (RT-PCR) was performed for the detection
of selected members of the Herpesviridae family using commercially available RT-PCR
kits (GeneProof a. s., Brno, Czech Republic), and for C. pneumoniae, M. pneumoniae, and
L. pneumophila/spp. detection, multiplex RT PCR was performed using LightCycler®

Multiplex DNA Master (Roche Applied Science, Mannheim, Germany) and LightMix®

Modular primers (TIB Molbiol, Berlin, Germany). Additional details of the procedures
used are available in Appendix A.

2.3. Data Analysis

In the analysis, cycle threshold (Ct) values were used, which refer to the number of
cycles in a PCR reaction needed to replicate enough PCR product to be detected (crosses a
threshold line). Maximum Ct value spans were calculated for each positive patient from the
corresponding sample with the lowest Ct value as an absolute Ct difference between the Ct
value of the sample and Ct value of the limit of detection (Ct = 40). Maximum spans were
arbitrarily divided into five groups by an increment of five Ct values to mitigate sample
type and quality of collection difference (0–5.0, 5.1–10.0, 10.1–15.0, 15.1–20.0, 20.1–25.4). The
normality of the data distributions was assessed with Q–Q plots and the Shapiro–Wilk test.
The distribution of variables informed the decision on using parametric or non-parametric
statistical tests. The differences in maximum Ct value spans between different patient
groups (survived: deceased, immunosuppressive treatment: no immunosuppressive treat-
ment, antiviral treatment: no antiviral treatment) were assessed with a pairwise Welch’s
t-test. The differences in the number of co-detections between patient groups were assessed
with a pairwise Wilcoxon rank sum test. Multiple comparison correction was performed
using the false discovery rate (FDR).

The threshold for statistical significance was set at p < 0.05 in all cases. Data analyses
were performed using Microsoft® Excel® 2016 version 16.0.5356.1000 (Microsoft Corpora-
tion, Redmond, WA, USA) and R statistical software version 4.3.1 (The R Foundation for
Statistical Computing, Vienna, Austria).

3. Results
3.1. Sample Type Structure

The samples included were sorted according to sample type and the number of
consecutive samples per patient for better insight into the sample type structure in the
study. The majority of available samples were TA, available for 98.7% of patients. BAL
samples were available for 48.9% of patients (24.9% of patients had one BAL sample, 16.2%
two, 3.0% three, 4.4% four, and 0.4% seven). The SP and BA samples were available only
for 17.5% and 10.0% of patients, respectively.

A stratification analysis of consecutive samples per patient shows that the majority
of patients (93.5%) had 3 to 10 LRT samples available. Patients with a higher number of
consecutive samples (maximum 18) were fewer (Table 1).

Table 1. Number of patients and consecutive follow-up samples.

Patients, n 16 40 44 44 28 19 8 15 1 2 5 2 1 2 1 1

Consecutive samples
per patient, n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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3.2. Clinical Data Analysis of SARS-CoV-2-Positive Patients

Among the 229 patients included, the mortality rate was 25.8%; clinical criteria
are listed in Table A1—Appendix B. Due to severe disorder of the immune system,
22 (9.6%) patients received immunosuppressive treatment: rituximab and other biologics
that act against B lymphocytes (anti-CD20, anti-CD38, anti-CD52, proteasome inhibitors,
chimeric antigen receptor (CAR) T-cell cell therapy directed against antigens on the surface
of B lymphocytes); antimetabolites, alkylating agents, methylprednisolone (or equiva-
lent) ≥ 16 mg > 14 days. Antiviral treatment was administered to 34 (14.8%) patients.
Detailed clinical data are presented in Table 2.

Serology data of herpesvirus infection were available for the majority of patients who
were found to be HSV-1, EBV, or CMV positive in LRT samples included in this study.
More accurately, for 125/133 (94.0%), 157/171 (91.8%), and 77/87 (88.5%) patients, serology
data were available for HSV-1, EBV, and CMV, respectively. HSV-1 specific IgG antibodies
were detected in 124 patients. One patient had no HSV-1 antibodies detected (neither
IgG nor IgM). EBV specific antibodies (IgG EBNA/VCA) were detected in 155 patients.
Two patients had no specific EBV antibodies detected (neither IgG EBNA/VCA/EA nor
IgM). CMV specific IgG antibodies were detected in 75 patients. Two patients had no
specific CMV antibodies detected (neither IgG nor IgM).

Table 2. Detailed data of antiviral and immunosuppressive treatment for all patients (N = 229).

Treatment Type Antiviral Agent Patients, n (%)

Immunosuppressive treatment 22 (9.6)

Antiviral treatment
Acyclovir 21 (9.2)
Valganciclovir/ganciclovir 12 (5.2)
Acyclovir + ganciclovir 1 (0.4)

Immunosuppressive + antiviral treatment 12 (5.2)

Mean duration, days (min–max)

Antiviral treatment
Acyclovir 11 (3–16)
Valganciclovir/ganciclovir 25 (6–47)

3.3. Overall Results of SARS-CoV-2, Herpesviruses, and Atypical Bacteria Detection in Lower
Respiratory Tract Samples

SARS-CoV-2 infection was confirmed by rtRT-PCR in all 229 patients enrolled; however,
since multiple consecutive follow-up samples were available for individual patients, in
some samples, SARS-CoV-2 was not detected, 187/1472 (12.7%). The overall results of
RT-PCR for the detection of selected herpesvirus family members showed that EBV, HSV-1,
and CMV were detected in 171 (74.7%), 133 (58.1%), and 87 (38%) patients, respectively,
with corresponding positive samples for EBV, HSV-1, and CMV: 821 (55.8%), 579 (39.3%),
and 347 (23.6%), respectively. On the other hand, VZV and HSV-2 were detected in
two patients; that is, nine (0.6%) and eight (0.5%) samples, respectively. M. pneumoniae
and L. pneumophila were detected in one patient: in five (0.3%) and three (0.2%) samples,
respectively. C. pneumoniae was not detected in any sample.

3.4. Ct Value Distribution Analysis of Detected Herpesviruses and Atypical Bacteria

Further analysis was performed to obtain better insight into the distribution of the
samples according to the Ct values of the respective pathogen tested. The overall Ct value
differences between the minimum and maximum Ct values were 33.8 for SARS-CoV-2,
followed by 25.4 for HSV-1, 20.9 for EBV, 16.9 for VZV, 15.2 for HSV-2, 13.5 for CMV, 12.6 for
L. pneumophila, and 4.4 for M. pneumoniae. The Ct value distribution intervals and median
values for all pathogens tested are presented in Figure 1.
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3.5. Combination of Co-Detections of Herpesviruses and Atypical Bacteria in SARS-CoV-2-Positive
Patients

A total of 204 (89.1%) patients had at least one co-detection present. Further analysis
of co-detections showed that most often, two additional pathogens were detected alongside
SARS-CoV-2 in 88 (38.4%) such patients. One co-detection was observed in sixty-four
(27.9%), three in fifty-one (22.3%), and four in one (0.4%) patient.

A further analysis of SARS-CoV-2-positive patients with only one additional co-
detection showed that 38 (16.6%) were positive for EBV, 22 (9.6%) for HSV-1, and 4 (1.7%)
for CMV. Co-detections of SARS-CoV-2 with HSV-2, VZV, M. pneumoniae, or L. pneumophila
only were not observed.

Interestingly, in the group of 140 (61.1%) patients with more than one additional
detection alongside SARS-CoV-2, herpesviruses were implicated in all combinations. The
majority of multiple co-detections were represented by combinations of HSV-1, CMV, and
EBV, which were detected in 129 (56.3%) patients. The detailed results and respective
combinations are presented in Table 3.

Table 3. SARS-CoV-2-positive patients with more than one co-detection (N = 229).

Target 1 Target 2 Target 3 Target 4 Target 5 Patients with
Co-Detections, n (%)

SARS-CoV-2 HSV-1 EBV 53 (23.1)
SARS-CoV-2 HSV-1 EBV CMV 48 (21.0)
SARS-CoV-2 EBV CMV 28 (12.2)
SARS-CoV-2 HSV-1 CMV 6 (2.6)
SARS-CoV-2 HSV-1 EBV CMV VZV 1 (0.4)
SARS-CoV-2 HSV-1 EBV HSV-2 1 (0.4)
SARS-CoV-2 HSV-1 EBV VZV 1 (0.4)
SARS-CoV-2 HSV-1 Mpn 1 (0.4)
SARS-CoV-2 HSV-2 EBV Lpn 1 (0.4)

Legend: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; HSV-1, herpes simplex virus 1; EBV,
Epstein–Barr virus; HSV-2, herpes simplex virus 2; CMV, cytomegalovirus; Mpn, Mycoplasma pneumoniae; VZV,
varicella zoster virus; Lpn, Legionella pneumophila.
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3.6. Detailed Analysis of Herpesviruses Co-Detections in LRT Samples

Because EBV, HSV-1, and CMV were the most common co-detections in our cohort
of patients, further analyses based on (rt)RT-PCR Ct values were performed for a more
in-depth evaluation of these cases. The individual patients were divided into five groups
based on Ct value span differences, as described in the methods section. This measure
serves as a surrogate marker for putative reactivation based on the assumption that the
higher the maximum Ct span, the stronger the indication of active replication/reactivation
is present, rather than the change due to sample type/quality/collection. There were 96.2%,
81.9%, and 60.9% of patients with a maximum Ct value span greater than 5.0 for HSV-1,
EBV, and CMV, respectively. It is interesting that the largest share of HSV-1-positive patients
(39.1%) corresponded to the group with a maximum Ct value span in the range of 15.1
to 20.0, followed by 29.3% of patients in the group 20.1 to 25.4, both pointing to possible
reactivation. The greater share of patients positive for EBV (55.6%) and CMV (41.4%)
corresponded to the group with a Ct value span in a range of 5.1 to 10.0, which could still
be indicative of presumable reactivation. On the other hand, 3.8%, 18.1%, and 39.1% of
patients with HSV-1, EBV, and CMV co-detections, respectively, belonged to the Ct value
span group of 0 to 5.0. Although not impossible, reactivation of respective herpesvirus
for these patients is more difficult to assess. The detailed distribution of positive patients
based on absolute Ct value spans is presented in Figure 2.
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3.6.1. Temporal Delay between SARS-CoV-2 Infection and Herpesvirus Co-Detections

Furthermore, for the herpesvirus family, the delay time between the 1st day of
SARS-CoV-2 detection and the 1st day of herpesvirus co-detections was calculated for
each target. For the 1st day of SARS-CoV-2 detection, the date of the first positive labora-
tory test (time point zero), from either the upper or LRT sample, was used. Our results
show that, on average, it took 11 to 20 days after the first SARS-CoV-2 detection for the
herpesviruses tested to be detected in LRT samples (Figure 3). In addition, for the her-
pesviruses detected —CMV, HSV-1, and EBV—there were 70 (80.5%), 97 (72.9%), and 86
(50.3%) positive patients, respectively, with no detection of these herpesviruses in the initial
LRT samples.
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Figure 3. Visual presentation of time delay in days between first herpesvirus co-detection after
SARS-CoV-2 initial confirmation. Vertical black lines represent median values, boxes represent the
interquartile range, and dots represent the remaining quartile of results (12.5% on each side). Legend:
EBV, Epstein–Barr virus; HSV-2, herpes simplex virus 2; HSV-1, herpes simplex virus 1; VZV, varicella
zoster virus; CMV, cytomegalovirus.

3.6.2. Comparison of BAL and TA Samples for Detection of HSV-1, EBV, and CMV

Because the majority of available samples for this study were TA, further analysis was
performed to determine whether a detection difference for EBV, CMV, and HSV-1 could be
observed in comparison to BAL samples. For this analysis, 112 patients with both sample
types available were included. The time interval between the first available TA and BAL
averaged 10 days, with a minimum of 0 days for patients with TA and BAL available on
the same day and a maximum difference of 43 days. The detection of HSV-1 was consistent
in both sample types for all 52 patients. EBV was detected in BAL of 61 (100%) and in TA
of 59 (96.7%) patients. CMV was detected in BAL of 29 (100%) and in TA of 28 (96.6%)
patients. Based on our cohort, no significant difference was found in the performance of
HSV-1, EBV, or CMV molecular detection from BAL compared to TA.

3.6.3. Clinical and Laboratory Data Correlation Analysis for Herpesvirus
Co-Detection Type

The results of the maximum Ct value span comparison between patients with different
clinical outcomes for HSV-1, EBV, and CMV indicate that patients that survived exhibited
lower maximum Ct spans of HSV-1 and EBV. A borderline significant difference in the
maximum Ct value spans for HSV-1 and EBV was observed between the survivors and the
deceased. The calculated median to maximum Ct value span for HSV-1 for the deceased
was 19.6 (range 3.9–25.4) and for the survivors, 17.7 (range 3.3–21), p = 0.09. The calculated
median to maximum Ct value span for EBV for the deceased was 8.5 (range 2.7–21) and 7.4
(range 2.3–19), p = 0.09 for the survivors. There were no significant differences for CMV.

Next, the results of maximum Ct value span comparison between patients that received
immunosuppressive treatment and those that did not for HSV-1, EBV, and CMV indicate
that patients that received immunosuppressive treatment exhibited higher maximum Ct
spans for HSV-1 (treated: 20.1, range 17.3–23.8; untreated: 18.4, range 3.3–25.4; p = 0.1).
There were no significant differences for EBV and CMV.
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No significant differences in median to maximum Ct value spans were calculated for
HSV-1, EBV, or CMV between patients that received antiviral treatment and those that
did not.

There were no significant differences in the number of co-detected herpesviruses
(regardless of combination) for each paired group (survived: deceased, immunosuppressive
treatment: no immunosuppressive treatment, antiviral treatment: no antiviral treatment).

4. Discussion

To the best of our knowledge, this study is the largest and most comprehensive longi-
tudinal study on molecular detection of SARS-CoV-2 co-detection, with five herpesviruses
and three atypical bacteria in ICU patients. Moreover, with the comparison between dif-
ferent sample types and times from SARS-CoV-2 confirmation to co-detections, this study
offers insight into the importance of sample collection and the timeframe when to expect
possible co-detection when dealing with critically ill SARS-CoV-2-positive patients. Finally,
with the analysis of clinical data on disease outcome, administered immunosuppressive
and antiviral treatment, and Ct value spans, this study sheds some light on whether molec-
ular co-detection of herpesviruses in SARS-CoV-2 patients corresponds to reactivation or
latent detection.

Herpesvirus reactivation in SARS-CoV-2-infected individuals with asymptomatic and
mild cases of COVID-19 must be mentioned. During the SARS-CoV-2 pandemic, an increas-
ing number of studies reported human herpesvirus reactivation [4]. The pandemic itself
caused psychological stresses, psychological disorders including depression, anxiety and
stress that may have contributed to herpesvirus reactivation in COVID-19 patients [4–6].
Additionally, the proteins or transcripts of SARS-CoV-2 can induce herpesvirus reactiva-
tion directly, by alterations in the regulation of host factors that are involved in cellular
signaling pathways related to reactivation or by interactions with herpesvirus elements.
In addition, SARS-CoV-2 infection can alter the immune system of the patient, causing
the cytokine storm, which is especially important in severely ill COVID-19 patients that
we have investigated in our study, since immunosuppression caused by SARS-CoV-2 may
cause herpesvirus reactivation [4–6].

Studies of SARS-CoV-2-positive patients with herpesvirus coinfections have been
previously performed [4,26] and showed coinfections with HSV-1 in 11.1% to 50.8%
of cases [15,22,27–29], CMV in 15% to 41.4% [14–16,27–29], and EBV in 13.3% to
82% [15,16,19–21], as determined from blood samples. Substantial data are available from
studies focused on coinfections of SARS-CoV-2 patients with HSV-1 and CMV detected
from LRT samples by PCR. The results show a wide range of coinfections because HSV-1
and CMV were detected in 18.6% to 83.3% [4,5,13,17,18,22–25] and 7.8% to 42% [4,5,17,18]
of SARS-CoV-2-positive patients, respectively. On the other hand, to the best of our knowl-
edge, studies analyzing EBV detection in LRT samples of SARS-CoV-2 patients are scarce [4].
The results of our study, which also show a high percentage of ICU SARS-CoV-2 patients
with co-detection of HSV-1 and CMV, correspond to the previously available data, which is
unsurprising considering the high percentage of the population with latent herpesvirus
infections [4]. For co-detections with EBV, our results show 74.7% of cases, which is higher
than determined in a meta-analysis of similar studies showing a cumulative incidence of
EBV among SARS-CoV-2 patients of 45% [4]. A possible reason for the higher percentage
in our study is that co-detections were analyzed in multiple consecutive samples for each
individual patient (Table 1) with no Ct cutoff for a positive sample, providing more ana-
lytical information, and that disease severity varied among different studies, which can
also influence herpesvirus reactivations and consequently detection. Considering VZV,
there are very limited data on VZV co-detections in LRT samples of SARS-CoV-2-positive
patients [18,26]; mostly case reports of VZV reactivation after SARS-CoV-2 vaccination are
available [4,30]. To the best of our knowledge, there were no reports of co-detections of
HSV-2 in LRT samples of SARS-CoV-2-positive patients in previous studies [13,22], which
is in line with our study, which showed co-detection in only one patient.
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Several previous studies, also reporting concomitant herpesvirus infections regardless
of detection method [4,15–17], are in line with our results, which showed co-detections
with more than one herpesvirus in 60.7% of all patients (Table 3).

In addition, because the most common co-detections in our study were EBV, HSV-1,
and CMV, we calculated that on average, it takes 11 to 20 days after the first SARS-CoV-2
detection for these herpesviruses to be detected in LRT samples (Figure 3). Generally, the
most representative LRT sample for co-detection/infection and reactivation studies is BAL;
however, in our retrospective study, TA, BA, and SP samples were also included because
only a limited number of BAL samples were available. Due to this fact, we compared the
efficacy of herpesvirus detection in BAL versus TA. Our result showed consistent detection
of HSV-1, EBV, and CMV in TA compared to BAL in patients for which both types of
samples were available. These findings are further supported by a previous study, which
indicates that from a metagenomic perspective, TA sampling is an effective alternative to
more invasive mini-BAL testing for patients with pneumonia [31].

Furthermore, Ct value distribution analysis supports the indication for possible reacti-
vation of these herpesviruses because the Ct value difference among the patient samples
resulted in several log changes for individual targets (Figure 1). Further detailed distri-
bution of patients with co-detections of EBV, HSV-1, and CMV according to maximum
Ct value spans in individual patient samples showed that 96.2%, 81.9%, and 60.9% of
patients had a maximum Ct value span of more than 5.0 for HSV-1, EBV, and CMV, re-
spectively (Figure 2). The contribution of EBV reactivation to respiratory pathology is still
controversial [32,33], and HSV-1 and CMV can cause pneumonia in immunosuppressed
patients [33]. Regarding HSV-1, its causative role in lung involvement is not completely
understood, whether isolation from LRT samples is due to viral shedding from the upper
respiratory tract or real HSV-1 bronchopneumonitis [33–35]. We acknowledge that during
latent infection, viral DNA of EBV can be detected in B lymphocytes and epithelial cells of
the oropharynx, and DNA of CMV in leukocytes, and that DNA detection alone does not
necessarily represent active replication [32,33,36,37]; however, for groups of patients with
maximum Ct spans for HSV-1, EBV, and CMV of more than 5.0, active replication could be
suspected. In addition, our results showed a high percentage of positive patients—80.5%,
72.9%, and 50.3%—without detection of CMV, HSV-1, and EBV in the initial LRT samples,
respectively, which further indicates suspected active replication/reactivation of these
herpesviruses. Serology data also strongly support reactivation of these herpesviruses,
since the majority of patients with HSV-1, CMV or EBV detection in LRT samples already
had IgG antibodies.

Nevertheless, although the number of patients receiving antiviral therapy was rather
small, all patients positive for HSV-1, and almost all those for CMV and EBV, who were
selected for specific antiviral therapy belonged to groups with a higher maximum Ct span.

Considering LRT infections, we were also interested in concurrent infections with
C. pneumoniae, M. pneumoniae, and L. pneumophila/spp. There are previous studies of
L. pneumophila/spp. [7,18,38,39] and M. pneumoniae [8,10,11,18] coinfections in SARS CoV-2-
positive patients for whom there was no detection of tested bacteria, or the incidence
was less than 3%. In our study, L. pneumophila and M. pneumoniae were detected in LRT
samples in only one patient (Table 3). The L. pneumophila-positive patient also had a positive
urinary antigen test. Our results are in line with the findings of a meta-analysis in which
L. pneumophila was confirmed in only 0.4% of patients by PCR in respiratory samples or by
urinary antigen test [7] Coinfections of SARS CoV-2 with C. pneumoniae were previously
described [8,9]; however, data on LRT samples are scarce. There was no detection of
C. pneumoniae in our study. Altogether, our results concur with the previously available
data, suggesting that atypical bacteria coinfections in ICU SARS-CoV-2-positive patients
are rare.

Finally, taking all the laboratory data regarding HSV-1, CMV, and EBV together, no
statistically significant differences could be observed regarding available clinical data. How-
ever, when interpreting these results, one should keep in mind that this was a retrospective
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study and that only a small subset of the patients included received immunosuppressive
or antiviral therapy. There was no monitoring of viremia levels for CMV and EBV in our
study and no data on comorbidities were collected.

The further limitations of our study are differences in the number of samples per
patient and differences in collection times during disease progression because the decision
for sampling was made by clinicians based on each patient’s clinical presentation. It is
important to bear in mind that Ct values may be affected by the sample collection and its
quality, since multiple physicians collected the samples. On the other hand, the strengths of
our study were that we performed only one total nucleic acid isolation for each sample to
minimize the impact of multiple processing of the same sample. Moreover, all the samples
from an individual patient were analyzed in the same PCR run. We also included all
the data in our analyses regarding Ct values to provide as much analytical information
as possible.

5. Conclusions

In conclusion, in our cohort of severely ill COVID-19 patients treated at the ICU, HSV-1,
EBV, and CMV were very frequently detected in LRT samples (in 89.1% of patients), whereas
HSV-2, VZV, and atypical bacteria were found only rarely (in less than 1% of patients).
Most of the co-detections observed involved two pathogens in addition to SARS-CoV-2. On
average, herpesviruses were detected 11 to 20 days after the first SARS-CoV-2 confirmation.
Our results showed consistent detection of HSV-1, EBV, and CMV in TA compared to BAL
samples in patients for whom both sample types were available. Furthermore, our results
indicate that SARS-CoV-2 infection could be one of the risk factors for latent herpesvirus
reactivation in LRT of severely ill patients admitted to the ICU, especially for HSV-1, EBV,
and CMV, as shown by maximum Ct value spans supported by the serology data. To
further evaluate these laboratory results in a clinical context, prospective studies are needed
for better determination of the true impact of herpesviruses or atypical bacteria coinfections
on the prognosis and treatment of SARS-CoV-2-positive patients.
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Appendix A. Detailed Description of Methods

Appendix A.1. Total Nucleic Acid Isolation

Total nucleic acids (NA) were isolated from 200 µL of each sample using the MagNA
Pure 96 DNA and Viral NA Small Volume Kit (Roche Applied Science, Mannheim, Germany)
according to the manufacturer’s instructions in an automated MagNA Pure 96 (Roche Ap-
plied Science, Mannheim, Germany) instrument, with the elution volume set to 50 µL. The
purified NA were used immediately or stored at −20 ◦C until further testing.

Appendix A.2. (rt)RT-PCR

A Janus G3 pipetting robot (Perkin Elmer, Waltham, MA, USA) was used for automatic
dispensing of each master mix and samples for an individual run of rtRT-PCR or RT-PCR
as suitable per pathogen.

Reverse transcription, amplification, and detection for SARS-CoV-2 were performed
in a QuantStudio™ 5 System (Applied Biosystems, Waltham, MA, USA). A LightCycler
480 instrument (Roche Applied Science, Mannheim, Germany) was used for RT-PCR for
detection of members of the Herpesviridae family and atypical bacteria detection.

Appendix A.3. SARS-CoV-2 rtRT-PCR

For detection of SARS-CoV-2, multiplex rtRT-PCR was performed using a Lightmix®

Kit SARS-CoV-2 E+N UBC kit (Roche Applied Science, Mannheim, Germany). The master
mix was composed of 2.5 µL 1 × TaqMan®FastVirus 1-Step Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA), 0.25 µL Lightmix® Kit SARS-CoV-2 E+N UBC (Roche
Applied Science, Mannheim, Germany), 4.75 µL ddH2O (Promega, Madison, WI, USA),
and 5.0 µL total NA. Cycling conditions for rtRT-PCR were set as follows: 5 min at 50 ◦C,
20 s at 95 ◦C, and 45 cycles of 3 s at 95 ◦C and 30 s at 60 ◦C.

Appendix A.4. VZV, EBV, CMV, HSV-1, and HSV-2 RT-PCR

Commercially available RT-PCR kits (GeneProof a. s., Brno, Czech Republic) were
used to perform RT-PCR for selected members of the Herpesviridae family. The GeneProof
Varicella-Zoster Virus (VZV) PCR Kit, GeneProof Epstein–Barr Virus (EBV) PCR Kit, and
GeneProof Cytomegalovirus (CMV) PCR Kit were used for singleplex detection of VZV,
EBV, and CMV, respectively. The Multiplex GeneProof Herpes Simplex Virus (HSV-1/2)
PCR Kit was used for the simultaneous detection and differentiation of HSV-1 and HSV-2.
Each reaction contained 7.5 µL of ready-to-use master mix and 2.5 µL of total nucleic acids.
RT-PCR cycling conditions were set as follows: 2 min at 37 ◦C, 10 min at 95 ◦C, and 45 cycles
of 5 s at 95 ◦C, 40 s at 60 ◦C, and 20 s at 72 ◦C.

Appendix A.5. Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella
pneumophila/spp. RT-PCR

Qualitative multiplex RT-PCR was performed to detect Chlamydia pneumoniae, My-
coplasma pneumoniae, and Legionella pneumophila/spp. Each amplification reaction contained
2.0 µL LightCycler® Multiplex DNA Master (Roche Applied Science, Mannheim, Ger-
many), 0.25 µL LightMix® Modular Chlamydia pneumoniae (TIB Molbiol, Berlin, Germany),
0.25 µL LightMix® Modular Mycoplasma pneumoniae (TIB Molbiol, Berlin, Germany), 0.25 µL
LightMix® Modular Legionella spp./pn. (TIB Molbiol, Berlin, Germany), 2.25 µL ddH2O
(Promega, Madison, WI, USA), and 5.0 µL total NA. The cycling conditions were as follows:
5 min at 95 ◦C, 45 cycles of 5 s at 95 ◦C, 15 s at 60 ◦C, and 15 s at 72 ◦C, and 30 s at 40 ◦C.
Melting curve analysis was performed to distinguish between Legionella spp. and Legionella
pneumophila. The temperature was first held at 95 ◦C for 30 s and then gradually increased
from 40 ◦C to 85 ◦C at a ramp rate of 1.5 ◦C/s.
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Appendix B.

Clinical Criteria for Evaluation of Severe Disorder of the Immune System

Clinical criteria that were used for determination of patients with severe disorder of
the immune system are presented in Table A1.

Table A1. Clinical criteria for determination of patients with severe disorder of the immune system.

* Cause of ID:
Acquired/Iatrogenic/Drug-Induced Congenital ID

HPSCT (<12 months)
GvHD XLA

HIV-infection < 200 CD4/mm3 IFN
Induction chemotherapy in pediatric leukemia IgE sy

Chemotherapy CVID
Solid organ transplantation CGD

Immunosuppressive medications * Wiskott–Aldrich syndrome
Legend: ID, immune disorder; HPSCT, hematopoietic stem cell transplantation; GvHD, graft-versus-host disease;
XLA, X-linked agammaglobulinemia; IFN, interferon receptor deficiency; IgE sy, hyper IgE syndrome; CVID,
common variable immunodeficiency; CGD, chronic granulomatous disease. * rituximab and other biologics that
act against B lymphocytes (anti-CD20, anti-CD38, anti-CD52, proteasome inhibitors, chimeric antigen receptor
(CAR) T-cell cell therapy directed against antigens on the surface of B lymphocytes); antimetabolites, alkylating
agents, methylprednisolone (or equivalent) ≥ 16 mg > 14 days.
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