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Abstract: The only reliable factor that reduces the risk of colorectal carcinogenesis is physical
activity. However, the underlying mechanisms remain unclear. In this study, we examined the
effects of physical activity against gut microbiota, including mucosa-associated microbiota (MAM)
on azoxymethane-induced colorectal tumors in obese mice. We divided the subjects into four
groups: normal diet (ND), high-fat diet (HFD), ND + exercise (Ex), and HFD + Ex groups. The
Ex group performed treadmill exercise for 20 weeks. Thereafter, fecal and colonic mucus samples
were extracted for microbiota analysis. DNA was collected from feces and colonic mucosa, and
V3–V4 amplicon sequencing analysis of the 16SrRNA gene was performed using MiSeq. The HFD
group had significantly more colonic polyps than the ND group (ND 6.5 ± 1.3, HFD 11.4 ± 1.5,
p < 0.001), and the addition of Ex suppressed the number of colonic polyps in ND and HFD groups
(ND 6.5 ± 1.3, ND + Ex 2.8 ± 2.5, p < 0.05). The HFD group showed significantly lower concentrations
of succinic, acetic, butyric, and propionic acids (mg/g) in feces, compared with the ND group
(succinic acid HFD 0.59, ND 0.17; acetic acid HFD 0.63, ND 2.41; propionic acid HFD 0.10, ND 0.47;
and N-butyric acid HFD 0.31, ND 0.93). In the case of ND, succinic acid and butyric acid tended to
decrease with Ex (succinic acid ND 0.17, ND + Ex 0.12; N-butyric acid ND 0.93, ND + Ex 0.74 0.74).
Succinic acid, acetic acid, butyric acid, and propionic acid levels in feces were significantly lower in the
HFD group than in the ND group; in both feces and mucus samples, Butyricicoccus and Lactobacillus
levels were significantly lower in the HFD group. Akkermansia was significantly increased in ND + Ex
and HFD + Ex groups. Diet and exercise affected the number of colorectal tumors. Furthermore, diet
and exercise alter intestinal MAM, which may be involved in colorectal tumor development.

Keywords: colon cancer; gut microbiota; mucosa-associated microbiota; exercise; physical activity;
Akkermansia; Ruminococcaceae

1. Introduction

For the past 30 years, malignant tumors have been the leading cause of death. The
incidence and mortality rates of colorectal cancer are increasing. Colorectal cancer (CRC)
is the third most commonly diagnosed and deadly cancer worldwide [1]. As one of the
most important factors, excess dietary fat intake is intensively associated with increased
CRC risk [2]. However, the underlying mechanism between dietary fat intake and CRC
development is still largely unclear. Different from other cancer types, CRC directly
interacts with trillions of gut microorganisms during tumor development. The composition
of gut microbiota is influenced by multiple factors including diet, medication, and genetic
alteration, whereas an altered microbial profile can induce dysbiosis and CRC [3]. In
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particular, the gut microbiota is shown to be perturbed at a very early stage of colorectal
tumor formation [4] and becomes aggravated during disease progression [5].

In the development of colorectal adenomas and cancers, the involvement of the intesti-
nal microbiota and its metabolites has recently been reported [6–8]. Findings suggest that
certain microbial species promote tumorigenesis. Particularly, microorganisms such as Fu-
sobacterium nucleatum, Streptococcus bovis/gallolyticus, Escherichia coli, and Bacteroides fragilis
are abundant in patients with colorectal and adenocarcinomas. These microorganisms may
promote the development of colorectal cancer through their ability to adhere to colonic
cells, suppress tumor suppressor genes, activate oncogenes, and modulate genotoxicity. In
contrast, intestinal microbiota is present not only in the fecal lumen but also in the mucus
of the gastrointestinal tract and is referred to as mucosa-associated microbiota (MAM).
Interestingly, the microbiota present in the feces and mucus are different [9]. MAM is in
contact with the intestinal epithelium and may have a greater influence on colorectal tumors
than on the luminal microbiota [5–8]. As for the MAM of colorectal tumors, Pseudomonas,
Helicobacter, and Acinetobacter, which are classified in the genus Proteobacteria, have been
reported to increase, whereas Bacteria have decreased [10].

The WCRF/AICR cites physical activity as the only reliable factor that decreases the
risk of colon carcinogenesis [11]. Physical activity is a state that involves skeletal muscle
contraction and more energy expenditure than at rest. It can be divided into “activities
of daily living” and “exercises”, which are planned and deliberate, aiming to maintain or
improve physical fitness. Physical activity prevents colorectal cancer and adenomas, which
are precancerous lesions of the colon [12]. According to epidemiological studies and studies
using genetic data, increased physical activity may reduce the risk of breast and colorectal
cancer [13–16]. The association between high and low physical activity levels and the risk
of digestive cancers (risk ratio (RR) = 0.82, 95% confidence interval (95% CI): 0.79–0.85),
colon cancer (RR = 0.81, 95% CI: 0.76–0.87), rectal cancer (RR = 0.88, 95% CI: 0.80–0.98),
and colorectal cancer (RR = 0.77, 95% CI: 0.69–0.85) [17]. A large body of epidemiological
evidence indicates that people with higher levels of physical activity have a lower risk of
developing various cancers than those with lower levels of physical activity. Exercise may
reduce the risk of developing colorectal cancer because it prevents obesity and improves
gastrointestinal motility. In addition, exercise reduces inflammation and improves immune
function, which may reduce the development and progression of cancer. Factors that
influence the risk of colorectal cancer include being overweight or obese, physical activity,
fiber intake, whole grains, and consumption of red and processed meats. These factors alter
the structure and function of the gut microbiota and alter metabolic and immune pathways
involved in the development of colorectal cancer. It is also unclear whether changes in
the gut microbiota contribute to or are a consequence of the development of colorectal
cancer [18].

On the other hand, diet, especially a high-fat diet intake, and obesity have been
reported to be associated with colorectal cancer development. In particular, bile acids play
an important role in the pathogenesis of colorectal cancer [19]. Intestinal flora also plays
an important role in the development and progression of colorectal cancer. High-fat diets
affect the metabolism of bile acids, impairing the integrity of the intestinal barrier and
affecting intestinal bacteria. High-fat diets stimulate bile acid metabolism and facilitate
conversion to tumor-promoting deoxycholic acid by intestinal bacteria [20]. A high-fat
diet also alters the composition of intestinal bacteria, causing pathogenic bacteria (such as
Alistipes sp. Marseille-P5997, Alistipes sp. 5CPA GH6), causing an increase in the number of
pathogenic bacteria and a decrease in beneficial bacteria (e.g., Parabacteroides distasonis) [21].
High-fat diets also alter gut bacterial metabolites, causing elevated lysophosphatidic acid,
which promotes colon cancer cell growth, and impaired cell adhesion. Furthermore,
transplantation of feces from mice fed a high-fat diet into sterile mice induces accelerated
colon cell proliferation, impaired intestinal barrier function, and oncogene expression.
These studies suggest that a high-fat diet causes intestinal bacterial imbalance and metabolic
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abnormalities that promote the development of colorectal cancer. However, current research
is still limited, and further studies are needed.

This is the first paper to examine the effects of diet and exercise, both of which are
considered important in colorectal tumorigenesis, in terms of two intestinal microbiota, fecal
and mucosa-associated microbiota (MAM). Studies on the effects of exercise on colorectal
tumor suppression from the viewpoint of changes in MAM are nonexistent. We investigated
the relationship between exercise-induced changes in MAM and azoxymethane (AOM)-
induced colorectal tumors in high-fat diet (HFD)-induced obese mice.

2. Materials and Methods

The study was conducted in accordance with the Kawasaki Animal Regulations
(Approval No. 22-098). The Balb/c female mice were purchased at 4 weeks, with six to
eight animals per group. A 12 h light/dark cycle was maintained, with a room temperature
of 22 ± 1 ◦C, and humidity (55–60%), with ad libitum access to chow and sterilized water
under SPF conditions.

Colorectal tumors were used in the AOM-induced model [14,15]. AOM was adminis-
tered intraperitoneally at 10 mg/kg body weight weekly for a total of six times (6–11 weeks).
Colon tumor development was observed every 4 weeks via endoscopy (AVS endoscopy
system, OLYMPUS, Tokyo, Japan). Finally, the colon was dissected during autopsy at
28 weeks. We measured colon polyp size using the ruler at 5× magnification.

Mice were divided into four groups according to diet and exercise (Figure 1). The
diet was changed after acclimation for 1 week. The diets were a normal diet (ND) and a
high-fat diet (HFD 60®, total calories 5062 kcal/kg; calorie ratio (%): protein 18.2, fat 62.2,
and digestible carbohydrates 19.6). The exercise (Ex) consisted of treadmill exercise [16,17].
Running speed was 18 m/min, 30 min/day, and 5 days/week. Exercise was started at
6 weeks of age for 2 weeks and continued for 20 weeks from 8 to 26 weeks.
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Figure 1. Study design. Four groups: Normal diet (ND), High-fat diet (HFD), ND + Exercise (Ex),
and HFD + Ex. AOM: azoxymethane, ip: intraperitorial injection.

As for blood samples, we measured serum Cholesterol and plasma glucose at 28 weeks.
Blood was immediately collected from the heart just before sacrifice, and the separated serum
was frozen at −80 ◦C until analysis. The mice had fasted for nine hours before being sacrificed.

Total RNA was extracted from the colon (tumor area) using an RNase-Free DNase set
(QIAGEN, Venlo, NLD, The Netherlands) and reverse-transcribed using the SuperScriptTM

IV First-Strand Synthesis System (Thermo Fisher Scientific, Waltham, MA, USA) in accor-
dance with the manufacturer’s instructions.

RT-qPCR reactions were performed using a StepOnePlusTM Real-Time PCR Systems
(Thermo Fisher Scientific) with PowerUpTM SYBRTM Green Master Mix (Thermo fisher
Scientific). The primers used for the RT-qPCR experiments are provided in Table 1. Mouse
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actin-beta (Actb) expression was evaluated as an internal control. All reactions were
performed three times. The PCR conditions were as follows: after initial denaturing at
95 ◦C for 2 min, 40 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min, followed by a melting-curve
analysis (95 ◦C for 15 s, 60 ◦C for 1 min, 95 ◦C for 15 s).

Table 1. PCR primer sequences.

Target Gene Sequence Length
IL-6 FP CGGCCTTCCCTACTTCACAAGTCCG 66

RP CAGGTCTGTTGGGAGTGGTATCC
TNF-alpha FP CCACCATCAAGGACTCAAATGG 74

RP CCTTTGCAGAACTCAGGAATGGACATTCG
IL-15 FP CATCCATCTCGTGCTACTTGTG 112

RP GCCTCTGTTTTAGGGAGACCT
SPARC FP CCACACGTTTCTTTGAGACC 95

RP GATGTCCTGCTCCTTGATGC
Oncostain M FP GTGGCTGCTCCAACTCTTCC 81

RP AGAGTGATTCTGTGTTCCCCGT
Irisin FP GAGCCCAATAACAACAAGG 242

RP GAGGATAATAAGCCCGATG
Actb FP CACTGTCGAGTCGCGTCC 102

RP CGCAGCGATATCGTCATCCA

As for gut microbiota analysis, fecal and colonic mucus samples were analyzed.
Fecal samples were collected at 28 weeks (100 mg feces/mice in 1 mL inhibit EX buffer
[approximately 5–6 feces]) from each mouse and stored at −80 ◦C in 1 mL of EX buffer
[Q(IAGEN, Venlo, NLD, The Netherlands]). Colonic mucus was collected from each mouse
and stored at −80 ◦C. For colonic mucus, the colon was incised in the long axis, rinsed
lightly with PBS, and the lumen was scraped with a glass slide to collect mucus [18,19].
Bacterial DNA was extracted from the collected samples using the bead-crushing method
(QIAamp PowerFecal, QIAGEN), and QIIME was used to perform the V3–V4 amplicon
sequencing analysis of 16S rRNA genes at the genus level, identify microorganisms to the
genus level, and investigate bacterial composition and diversity. This advanced genomic
study was conducted at the Department of Bacteriology, Kyushu University. Taxonomic
and functional profiles were further analyzed in STAMP software v2.1.3.

As to fecal metabolome analysis, fecal samples were collected at 28 weeks and
analyzed for short-chain fatty acids and nonconjugated bile acids (pH-buffered postcolumn
conductivity detection method, TechnoSurga).

Bioinformatics analysis. Sequence data processing, including chimera check, opera-
tional taxonomic unit (OTU) definition, and taxonomy assignment, was performed using
QIIME version 1.8.0, USEARCH 6.1, and UCLUST 1.2.22. Open-reference OTU picking was
performed at the 97% sequence similarity level against the Greengenes Database, version
13.8. The phyloseq package of R software (version 4.2.2) was used to calculate the observed
species, Chao1, and Shannon indices. β-diversity was estimated using the UniFrac metric
to calculate the distances between the samples using QIIME version 1.9.1. It was visualized
through principal coordinate analysis using R software and statistically analyzed using
permutational multivariate analysis of variance using QIIME version 1.9.1.

Statistical Analysis

Values are presented as mean ± standard deviation or median and 25–75% range,
whichever was appropriate depending on whether the data were normally or non-normally
distributed. The category data were presented as counts with percentage and analyzed
using chi-square test. Continuous variables were tested using the Mann–Whitney U test
for comparison between the two groups and by using the Kruskal–Wallis test to compare
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the 4 groups. Statistical analyses were performed using SPSS (version 25 for Windows,
IBM Japan, Ltd., Tokyo, Japan). Statistical significance was set at a p value of <0.05.

3. Results
3.1. Mouse Body Weight Change by Diet and Exercise

HFD increased body weight more than recorded in the ND group (Figure 2). Exercise
(Ex) decreased the body weight in both the ND and HFD groups.
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group and the lowest in the normal diet plus exercise (ND + Ex) group.

3.2. AOM-Induced Colorectal Tumor Count

HFD increased the number of colorectal polyps more than ND (ND 6.5 ± 1.3,
HFD 11.4 ± 1.5, p < 0.001). Exercise suppressed the number of colonic polyps in both
the ND and HFD groups (ND 6.5 ± 1.3, ND + Ex 2.8 ± 2.5, p < 0.05) (HFD 11.4 ± 1.5,
HFD + Ex 5.2 ± 0.8, p < 0.01). The polyp suppression effect of exercise was greater with
the HFD (Figure 3A,B).
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3.3. Blood Glucose (BS) and Total Cholesterol Levels

HFD increased the BS and total cholesterol (TC) levels more than ND (BS, ND 105.8;
HFD 262.0; p < 0.05) (TC, ND 54.0; HFD 106.6; p < 0.05) (Figure 4A,B).
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in the HFD group than in the ND and decreased with the addition of Ex. The decrease associated
with Ex was particularly marked for the HFD.

3.4. Cytokine and Myokine Expression in Colonic Tumors

HFD demonstrated higher IL-6 and TNFα expression in colonic tumors than ND; HFD,
ND + Ex, and HFD + Ex showed higher GPR109A expression in colon tumors than ND.
ND + Ex revealed predominantly higher SPARC expression in colon tumors than seen in
ND (Figure 5A–F).

3.5. Short-Chain Fatty Acid (SFA) and Nonconjugated Bile Acids Analyses of Feces

Succinic acid, acetic acid, butyric acid, and propionic acid levels in feces were signifi-
cantly lower in the HFD group than in the ND group. Succinic acid and butyric acid levels
tended to decrease with Ex in the case of ND. In the case of HFD, exercise did not change
the amount of the organic acids in the feces. No significant changes were observed in the
fecal bile acid concentrations (Figure 6A–E). On the other hand, there were no significant
differences in nonconjugated bile acids (Supplemental Figure S1A–F).
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▼ HFD + HFD + Ex group.
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3.6. Changes in Fecal Microbiota

The bacterial species that showed significant differences among the four groups were
Akkermansia and Alistipes. In the case of ND (n = 6 per group), those exhibiting significant
differences between the two groups with and without exercise were Akkermansia, Candi-
datus Saccharimonas, Eubacterium, Staphylococcus, and Bacteroides, which were significantly
increased by exercise and significantly decreased by exercise. In the HFD group (n = 6 per
group), exercise remarkably increased Eubacterium and significantly decreased Romboutsia
(Figure 7A–E). (Supplemental Figure S2A,B).
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3.7. Changes in MAM

Bacteroides, Ligilactobacillus, and Clostridia were remarkably different among the four
groups. In the case of ND (n = 6 per group), those that showed significant differences be-
tween the two groups in the presence or absence of exercise were Ruminococcus, Akkermansia,
Staphylococcus, Lachospiraceae, Oscillospiraceae, and Peptococcaceae, and those that increased
significantly with exercise were Ruminococcus, Akkermansia, Staphylococcus, Lachospiraceae,
Oscillospiraceae, and Peptococcaceae, whereas a significant decrease was seen in Romboutsia.
In the case of HFD (n = 6 per group), exercise significantly increased Muribacuilaceae and
Akkermansia and significantly decreased Lachnospiraceae and Oscillospiraceae (Figure 8A–F)
(Supplemental Figure S3A,B).
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4. Discussion

In this study, we revealed the changes in MAM following exercise and its inhibitory
effect on obesity-induced colorectal tumors in mice. To the best of our knowledge, we
demonstrated for the first time that exercise-induced changes in feces and MAM in a col-
orectal tumor model. Additionally, we confirmed that exercise-induced changes in MAM
varied depending on the diet. Interestingly, in both fecal and mucus samples, exercise sig-
nificantly increased the abundance of Akkermansia and Ruminococcaceae. Conversely, we also
found that some species of bacteria were not common between fecal and mucus samples.

We observed exercise-induced changes in MAM in a mouse colon tumor model for
the first time. Exercise remarkably increased Akkermansia and Ruminococcaceae in mucus
samples, while suppressing colon tumorigenesis, which has been reported to impede
the thinning of the intestinal mucus layer caused by an HFD [22]. Furthermore, it has
been reported that the abundance of Akkermansia muciniphila is inversely correlated with
inflammatory biomarkers and is associated with a decreased risk of colorectal tumors [23],
and that Akkermansia and Lactobacillus increase during exercise and ND [24,25]. Therefore,
Akkermansia is expected to be a new probiotic [26] that induces regulatory T cells and
suppresses inflammatory cytokines in chronic intestinal inflammation [27,28]. However,
there are no reports showing its efficacy in suppressing colorectal tumors, and further
studies are required.

Studies on exercise programs for cancer suppression are limited; however, they have
been shown to depend on the duration, intensity, and type of exercise with respect to their
efficacy [29]. Acute exercise (within 3 weeks) has been shown to be more responsive to NK
cells, neutrophils, and macrophages. Conversely, long-term exercise training increases NK
cell activity; however, studies regarding other immune cell responses are inconsistent. An
8-week aerobic exercise suppresses FoxP3 + Tre cell accumulation in tumors and increases
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the CD8+/FoxP3+ ratio within tumors, thereby improving the efficiency of antitumor
immunity [30]. Exercise within 3 weeks has also shown (1) an increase in short-chain fatty
acids, (2) intestinal epithelial integrity, (3) an increase in mucin-degrading bacteria, and
(4) capacity for energy harvesting [31]. It has also been reported that an 8-week aerobic
exercise in APC transgenic mouse alters the intestinal microbiota and suppresses colon
tumorigenesis [32]. In this study, a unique feature of the exercise was that it was performed
for a prolonged period. This exercise model ameliorates metabolic abnormalities caused
by an HFD. The present study involved long-term aerobic exercise of some intensity for
20 weeks. Similar exercises improve metabolism [33,34].

Regarding exercise-induced changes in intestinal short-chain fatty acids, butyrate has
been reported to have anti-inflammatory and antitumor effects [35], and treadmill exercise
in mice has been shown to increase the concentration of short-chain fatty acids in the
colon [36]. Also, exercise increased n-butyrate concentrations in the rat cecum [23,37–39]. In
human studies, exercise increased fecal acetate, propionate, and butyrate in lean individuals
but not in obese ones [24,40]. Thus, exercise-induced short-chain fatty acid concentrations
are altered by diet and body size. In this study, we demonstrated that the effects of exercise
are altered by diet. However, in this study, the short-chain fatty acid analysis differed from
the fecal analysis. One reason for this could be that the fecal material in the cecum and
secreted outside the body may be different. We should analyze the different compositions
between feces and luminal feces in the future.

In this study, we found that different diets lead to different exercise-induced changes
in the gut microbiota. Diet is more important than exercise in affecting gut bacteria [16,39].
HFDs are known to increase colorectal tumors. These effects have been reported to be
due to the composition and metabolism of the intestinal microflora associated with bile
acids [40,41]. However, in this study, we observed a colorectal tumor-suppressive effect of
exercise regardless of diet. This may be due to the effect of exercise over a longer period of
time than described in previously reported exercise interventions or to different durations.
Because changes in intestinal bacteria due to exercise depend on the diet, examining the
diet and the effect of concomitant therapy to maximize the effect of exercise is necessary.

The characteristics of colonic MAM in colorectal tumors in HFD-induced obese mice
were investigated. The HFD group had significantly more colonic polyps than the ND
group. Some studies have suggested a role for gut mucosa-associated microbiota in the
development of obesity, but the mechanisms involved are poorly defined. Quinyun Mao,
et al. investigated the differences between the diversity of luminal and mucosa-associated
microbial communities in obese mice [41]. The study found differences in microbial compo-
sition at the phylum and genus level between the microbial flora from colonic contents and
that in colonic mucosa, although they had similar richness, evenness, and overall structure.
At the phylum level, the colonic contents showed a higher abundance of Bacteroidetes, while
colonic mucosa had a higher abundance of Firmicutes and Proteobacteria. At the genus
level, the butyrate-producing bacteria Lactobacillus were more abundant in colonic contents,
while the Gram-negative genera Helicobacter, Sphingomonas, and Desulfovibrio were rela-
tively abundant in the colonic mucosa. Furthermore, Xu, et al. investigated the impact
of the gut mucosa-associated microbiota on obesity, and related metabolic disorders have
been investigated in a porcine model of metabolic syndrome [42]. Association analysis
revealed that certain bacteria, such as Lactobacillus johnsonii in the duodenum; Actinobacillus
indolicus in the jejunum; Acinetobacter johnsonii in the ileum; Clostridium butyricum in the
cecum; Haemophilus parasuis in colon; and bacterium NLAEzlP808, Halomonas taeheungii,
and Shewanella sp. JNUH029 in the rectum, play crucial roles in adiposity. This study found
that the colonic feces of the HFD group had higher abundance of Romboutsia, Lactococcus,
and Faecallibaculum, as well as Lachnospiraceae. In contrast, the colonic mucosa had higher
abundance of Osillospiraceae and Lachnospiraceae. Additionally, exercise in the HFD group
led to a significant increase in Muribacuilaceae and Akkermansia and significantly decreased
Lachnospiraceae and Oscillospiraceae. This report describes the changes in the bacterial flora
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in feces and mucus due to exercise under HFD. However, further studies are needed to
confirm these findings.

The study found no evidence of changes in bile acid metabolism being associated with
colorectal polyps in this experimental model. However, previous studies have reported
a link between high-fat diets and bile acid metabolism relative to the risk of colorectal
tumors. The previous research reported that an HFD may increase the risk of developing
colorectal precancerous lesions and adenomatous polyps and exacerbate colorectal tumor
progression [43]. According to Li Liu et al., deacidified bile acids (DCA) can cause low-
grade inflammation in the intestine, disrupting the physical and functional barriers of the
mucosa and worsening the spasticity of intestinal tumors [19].

This study has some limitations. First, the sample size was small. Microbiome studies
have great variability, and a higher sample size is preferred. Secondarily, we did not
measure the amounts of the products of our target genes in the serum. Thus, we did not see
the differences between tissue and serum in this study. Additionally, although we observed
the changes in the fecal microbiota and the MAM, it is not clear whether they were the
cause or the effect. Further studies are needed to confirm these findings.

5. Conclusions

In this study, we investigated the effects of physical activity against gut microbiota,
including MAM, on AOM-induced colorectal tumors in mice. Diet and exercise affected
the number of colorectal tumors as well as the fecal microbiota and MAM. The HFD group
had significantly more colonic polyps than did the ND group, and the addition of Ex
suppressed the number of colonic polyps in the ND and HFD groups. In both feces and
mucus samples, Butyricicoccus and Lactobacillus levels were significantly lower in the HFD
group. Akkermansia was significantly increased in the ND + Ex and HFD + Ex groups.
Furthermore, diet and exercise alter intestinal MAM, which may be involved in colorectal
tumor development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12050957/s1, Supplemental Figure S1: Noncon-
jugated bile acid analysis in feces samples: (A) alpha-muricholic acid (MCA), (B) beta MCA, (C)
ωMCA, (D); hyodeoxycholic acid (HDCA), (E) oxo deoxycholic acid (DCA), and (F) lithocholic acid
(LCA). Supplemental Figure S2: Fecus bacteria species that have significant differences between ND
and HFD (A), and ND Ex and HFD Ex (B). Supplemental Figure S3: Colonic mucosal bacteria species
that have significant differences between ND and HFD (A), and ND Ex and HFD Ex (B).
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