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Abstract: Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales
(CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem
is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate
high antibiotic doses and can cause recalcitrant infections, potentially developing further antibiotic
resistance. Iron is a critical micronutrient for survival. We aimed to evaluate the utility of iron
chelators, alone and in combination with antibiotics, in managing persisters. We hypothesized that
iron chelators eradicate CRE persisters in vitro, when administered in combination with antibiotics.
Our screening revealed three clinical isolates with bacteria persisters that resuscitated upon antibiotic
removal. These isolates were treated with both meropenem and an iron chelator (deferoxamine
mesylate, deferiprone or dexrazoxane) over 24 h. Against our hypothesis, bacteria persisters survived
and resuscitated upon withdrawing both the antibiotic and iron chelator. Pursuing our aim, we
next hypothesized that iron chelation is feasible as a post-antibiotic treatment in managing and
suppressing persisters’ resuscitation. We exposed bacteria persisters to an iron chelator without
antibiotics. Flow cytometric assessments revealed that iron chelators are inconsistent in suppressing
persister resuscitation. Collectively, these results suggest that the iron chelation strategy may not be
useful as an antibiotic adjunct to target planktonic bacteria persisters.

Keywords: antibiotic persistence; carbapenem-resistant Escherichia coli; time-kill study; iron chelation

1. Introduction

Antibiotic resistance is a global health crisis. Escherichia coli (under the order of
Enterobacterales) is predicted to be the current top contributor to antibiotic resistance
worldwide [1]. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant
clinical challenge due to the limited effective treatment options. In Singapore, clinical CRE
has been trending among adult inpatients since 2010 [2–4]. As numerous antibiotics are
becoming ineffective, the World Health Organization is encouraging the search for novel
therapeutic options and treatment strategies against ESKAPE organisms. Encountering a
dying pipeline for the development of new antimicrobials, many attempts have been made
to re-purpose existing drugs that were intended to treat other diseases.

Iron plays critical roles in many physiological functions, such as energy production [5]
and regulating metabolism [6]. Hence, removing or chelating iron compromises microbial
survival. This could be a feasible anti-microbial solution to the drying antimicrobial
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developmental pipeline. Classic iron chelators, such as deferoxamine mesylate (DFO)
and deferiprone (DFP), are FDA-approved iron chelators that have used in clinics for
decades to treat anemia and iron-overload disorders [7,8]. Dexrazoxane (DXZ) is a licensed
drug that treats cardiomyopathy associated with doxorubicin, used to treat metastatic
breast cancer, by chelating iron [9,10]. Other novel effective iron chelator compounds,
such as 2,2-bipyridyl (commonly known as DIBI), are not currently approved for use
in clinics. Hence, the assessments of these iron chelators are less useful for immediate
translational applications.

Recent evidence demonstrates that a combination of both an iron chelator and antibi-
otics eradicates biofilms and potentiates the action of antibiotics [11–17]. Furthermore, iron
chelation was shown to alleviate inflammatory symptoms triggered by the immune system
upon exposure to bacteria [18–20]. In this study, we revisited the iron chelation strategy as
a therapeutic option.

Bacteria persisters are a small subpopulation of bacteria that are dormant, non-dividing
and survive antibiotic challenges. The emergence of bacterial persisters is a major concern
that contributes to the development of pan-drug-resistant bacterial infection, for which
no treatment is effective [21]. It is unknown if a combination of an iron chelator and an
antibiotic would have any effect against bacteria persisters.

Hence, the aim of this study is to evaluate the utility of iron chelators, both alone
and in combination with antibiotics used in eradicating and managing bacterial persisters.
Given the importance of iron for organism survival, we hypothesized that a combination of
both antibiotics and an iron chelator could eradicate persisters completely. Following our
primary aim, we will also proceed to evaluate the utility of iron chelation as a post-antibiotic
treatment option in managing and suppressing the resuscitation of persisters.

2. Materials and Methods
2.1. Bacteria

Nonclonal clinical strains of CR E. coli were previously collected as part of a nationwide
surveillance study from 2011 to 2012 and were obtained from the largest tertiary hospital
in Singapore (1700 beds). Genus identities were determined using Vitek 2 ID-GN cards
(bioMérieux, Inc., Hazelwood, MO, USA). CR E. coli strains were stored at −80 ◦C in
Cryobank (Thermo Scientific, Singapore) storage vials. Fresh isolates were sub-cultured
twice on 5% sheep blood agar plates (Thermo Scientific, Singapore) for 24 h at 35 ◦C before
each experiment.

2.2. Flow Cytometry
2.2.1. Fluorochromes Used for Flow Cytometry

Bacteria were labelled with 150 µM CFSE (Thermo Fisher Scientific, Singapore) prior to
antibiotic exposure. CFSE is a cell division marker that forms stable conjugates by binding
irreversibly to aliphatic amines [22]. Upon cell division, the CFSE fluorescence is halved,
enabling individual cell division events in the population to be identified [22]. This dye
has previously been shown to be non-toxic to bacteria, even at high concentrations [23,24].

To further differentiate between viable and non-viable bacteria, we employed a combi-
nation of propidium iodide (PI) and SYTO-62 dyes (Thermo Fisher Scientific, Singapore).
SYTO-62 labels the nucleic acid of all bacteria, while PI only enters and intercalates into the
DNA of non-viable cells with compromised membranes.

2.2.2. Flow Cytometric Data Acquisition and Data Analysis

A Cytoflex® flow cytometer (Beckman Coulter, Brea, CA, USA) with the basic 4 + 3 + 2
configuration was used in this study. Flow cytometric data were acquired using the
complementing CytExpert software (version 2.5). A flow rate of 50 to 150 events per second
was used to acquire the samples. A total of 10,000 SYTO-62POSTIVE events were acquired per
sample. Further details on flow cytometer configurations and sample acquisition settings
are detailed in the Supplementary Information.
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Acquired flow cytometric data were analysed using FlowJo software (version 10.6;
Treestar® FlowJo, LLC, Ashland, OR, USA). Compensation against spectral overlap was
also performed on the FlowJo software (version 10.6; Treestar® FlowJo, LLC, Ashland, OR,
USA) prior to data analyses. The gating strategy used for data analyses is shown in the
Supplementary Information.

2.3. Time-Kill Studies (TKS)
2.3.1. Time-Kill Assessments via Viable Plating

Time-kill studies (TKS) were performed on all 12 strains with antibiotics and respective
concentrations are listed in Table 1. Antibiotic concentrations were based on the maximal
clinically relevant unbound concentrations when maximum antibiotic doses were adminis-
tered (see individual references in Table 1). Procedures for the TKS are described in detail in
our previous studies [23]. Briefly, 15 mL of log-phase bacterial suspensions in Ca-MHB was
transferred to sterile flasks containing 1 mL of antibiotics (and an iron chelator) and placed
into an incubator maintained at 35 ◦C. The final inoculum concentration was approximately
5 log10 CFU/mL. At specific time intervals (0, 0.5, 1, 1.5, 2, 4, 24 h), samples were aliquoted
in duplicate from each flask. Viable counts were obtained by depositing serial 10-fold
dilutions of the reconstituted samples onto Mueller–Hinton agar (MHA) plates (Thermo
Scientific, Singapore). Plates were incubated at 35 ◦C for 16–20 h. The colonies that formed
were enumerated at 24 h. The lower limit of detection for the colony counts was determined
to be 2.6 log10 CFU/mL.

Table 1. List of drugs and respective concentrations used in this study.

Antibiotics
(Abbreviations) Company

Final
Concentration

(mg/L)
Reference

Amikacin TRC 1 65 Tod et al.,
1998 [25]

Ceftazidime–avibactam (CZA)
Ceftazidime TRC 1 21 Stein et al.,

2019 [26]Avibactam Pfizer 5.25

Deferiprone (DFP) 2 ChemScene 26.49 Bellanti et al.,
2014 [8]

Deferoxamine mesylate (DFO) 2 ChemScene 43.7 Ratha et al.,
2013 [7]

Dexrazoxane (DXZ) 2 ApexBio 36.5 Jirkovský et al.,
2018 [27]

Levofloxacin (LVX) Daiichi 8 Rebuck et al.,
2002 [28]

Meropenem (MEM) TRC 1 20 Tam et al.,
2005 [29]

Polymyxin B (PMB) TRC 1 2 Kwa et al.,
2008 [30]

Iron chelators and antibiotics were prepared in sterile ultrapure MilliQ water.1 TRC: Toronto Research Centre;
2 Concentrations of these iron chelators determined were established as peak plasma concentrations in
respective references.

2.3.2. Time-Kill Assessments Using Flow Cytometry

Bacteria cultures were grown overnight in Ca-MHB at 35 ◦C until log phase was
reached. The log-phase bacterial culture was then diluted in Ca-MHB to an inoculum of ap-
proximately 6.6 log10 CFU/mL. One milliliter of diluted bacterial culture was washed twice
with phosphate-buffered saline (PBS) before staining with 150µM CFSE in 0.02% (v/v) Tri-
ton X-100 (Sigma-Aldrich, Singapore) for 30 min in a shaking incubator at
30 ◦C [31]. Excess CFSE was then quenched with cold 10% (v/v) fetal bovine serum
(FBS) (Thermo Fisher Scientific, Singapore) in PBS, centrifuged at 3000 rpm at 4 ◦C for
30 min, and resuspended in Ca-MHB. Bacterial suspensions in Ca-MHB were then trans-
ferred to sterile flasks containing 16 mL of antibiotics with/without an iron chelator and
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placed into a shaking incubator maintained at 35 ◦C. The final inoculum was approximately
5 log10 CFU/mL.

At specific time intervals (0, 0.5, 1, 1.5, 2, 4, 24 h), 1 mL of samples were aliquoted from
each flask. CFSE-labelled bacteria were further stained with 20µM propidium iodide and
1 µM SYTO-62 for 15 min prior to flow cytometric assessments.

Stained bacteria were then assessed using a Cytoflex flow cytometer (Beckman Coulter,
Brea, CA, USA). A steady flow rate of approximately 150 events/s was acquired per sample.
A total of 10,000 SYTO-62POSITIVE events were collected for each sample. The acquired data
were analyzed on the FlowJo software version 10.6.1 (FlowJo, LLC, Ashland, OR, USA).
The gating strategy used to analyze data is presented in Supplementary Figure S4. Further
details can be found in the Supplementary Information.

2.4. Determining Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal
Concentrations (MBC)

Both MIC and MBC were performed on both the parent and resuscitated bacterial
strains. Standard broth dilution method was used to determine the MIC of meropenem for
the isolates. All assessments were performed following the CLSI guidelines.

3. Results
3.1. A Combination of Clinically Approved Iron Chelators and Meropenem Did Not Eradicate
Bacteria Persisters

Previously, our flow cytometric approach identified persisters in carbapenem-resistant
Acinetobacter baumannii clinical isolates upon exposure to both polymyxin B and rifampicin
simultaneously [23]. We screened 12 carbapenem-resistant Escherichia coli clinical isolates
using five different antibiotics. Amongst these sixty bacteria-to-antibiotic combinations,
three isolates (EC0210, EC0238, EC0381) were identified to have fulfilled our criteria as
manifesting as persisters when exposed to meropenem (Supplementary Figures S1–S3,
Supplementary Tables S1–S3). These clinical strains were isolated from various infected
sites, harboured different sets of resistant genes and had different serotypes (Supplementary
Table S2).

Having identified the drug-manifested persisters in the clinical isolates, we tested
our first hypothesis that a combination of both iron chelators and antibiotics can eradicate
persisters completely.

Combinations of both meropenem (MEM) and an iron chelator (deferiprone (DFP),
deferoxamine mesylate (DFO) or dexrazoxane (DXZ)) were simultaneously added to the
three isolates identified earlier (EC0210, EC0238, EC0381). Clinically achievable concen-
trations of the drugs were used (Table 1). Time kill studies were conducted, assessing the
bactericidal event over 24 h using viable plating and flow cytometric analyses (Figure 1A).
The iron levels in culture media were estimated to be 0.8 mg/L ([32]). Both DFO and DXZ
chelate iron were observed at a ratio of 1:1 (iron–iron chelator), whereas DFP chelates iron
was observed at a ratio of 1:1 (iron–iron chelator). Therefore, the concentrations of iron
chelators used in this study exceeded the iron levels within the culture media by more
than 10 times. Hence, the influence of metal ions in the culture media and the formation of
chelate complexes is negligible.

Colonies enumerated from viable plating revealed identical bactericidal effects for
meropenem+DFO and meropenem+DXZ combinations when compared to meropenem
alone in all three isolates (Figure 1B). On the other hand, all isolates treated with
meropenem+DFP combinations revealed slower killing dynamics compared to meropenem
alone, as shown by the higher bacterial counts obtained at the same timepoints (Figure 1B,
green arrows).
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Figure 1. A combination of meropenem (MEM) and deferiprone (DFP) revealed slower bactericidal
killing dynamics in comparison to other treatments. (A) Experimental design of the combination of
both meropenem and iron chelator to eradicate bacteria persisters. (B) Graphs showing colony, enu-
merated from viable plating for respective clinical isolates. Green arrow in each graph points to the re-
spective plot showing colonies enumerated from a treatment combination of meropenem+deferiprone
(MEM + DFP).
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As a bacteria cell divides, CFSE fluorescence is halved. Flow cytometric analyses
revealed diminishing CFSE fluorescence and increasing viable bacteria counts (SYTO-
62POSITIVEPINEGATIVE events) over time in the placebo controls. When exposed to
meropenem along or meropenem with an iron chelator, the isolates exhibited decreasing bac-
teria counts. These decreasing counts concurred with the decreasing colony counts from vi-
able plating that were revealed over time. A sub-population (identified as CFSEHIGHSYTO-
62POSITIVEPINEGATIVE phenotype) was observed at 24 h in both exposure to meropenem
alone and all meropenem–iron chelator combinations (Figure 2). This suggests that bacteria
persisters were not eradicated in the meropenem–iron chelator combination.
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Figure 2. A sub-population of bacteria survived meropenem and all combinations of meropenem
with an iron chelator. Representative flow cytometric plots demonstrating a small sub-population of
bacteria from the EC0381 strain that survived meropenem and all combinations of meropenem with
an iron chelator. Top panel shows overlaid histograms to demonstrate increasing or decreasing viable
bacteria (SYTO-62POSITIVEPINEGATIVE events) across treatments. Bottom panel shows staggered
histograms to visualize the shifts in fluorescence intensities over time. The dotted lines mark the
fluorescence intensity peak of histogram at 0 h. Colors of histograms correspond to the timepoints, as
stated in the legend.

To validate the flow cytometric observations of bacteria persisters surviving the 24 h
drug treatment, these bacteria survivors were resuscitated in fresh broth. For all strains,
bacteria could be resuscitated in all iron chelator–meropenem combinations, as indicated by
the turbidity of fresh broth (Table 2). The similar morphologies observed in the TSA blood
agar further validate the persisters’ resuscitation. Against our hypothesis, this evidence
collectively indicates that an iron chelator–antibiotic combination could not fully eradicate
bacterial persisters.
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Table 2. Bacteria colony enumeration and resuscitation after antibiotic and/or drug treatment.

Conditions EC0210 EC0238 EC0381

No antibiotic Log10 CFU/mL at 24 h 9.03 9.24 9.36

Meropenem (MEM) only
Log10 CFU/mL at 24 h 1.69 0 0

Resuscitate after removal
of MEM? Yes Yes Yes

MEM
+ Deferoxamine mesylate

(DFO)

Log10 CFU/mL at 24 h 1.69 0 0
Resuscitate after removal of

MEM + DFO? Yes Yes Yes

MEM
+ Deferiprone (DFP)

Log10 CFU/mL at 24 h 0.89 0.95 0.65
Resuscitate after removal of

MEM + DFP? Yes Yes Yes

MEM
+ Dexrazoxane (DXZ)

Log10 CFU/mL at 24 h 0 0 0
Resuscitate after removal of

MEM + DXZ? Yes Yes Yes

3.2. Iron Chelators Are Inconsistent in Suppressing Persister Resuscitation in All Strains

Following our aim, we proceeded to evaluate the utility of iron chelation as a post-
antibiotic treatment option in managing and suppressing the resuscitation of persisters.
Isolates were first treated with meropenem for 24 h. Exposure to meropenem led to identical
bactericidal events during our screening process. Meropenem was then removed rapidly
via multiple washing steps. Pelleted bacterial survivors were then treated with clinical
achievable concentrations of an iron chelator (DFO, DFP or DXZ), and were assessed by
flow cytometry during persister resuscitation (Figure 3A,B).

For all the bacterial strains (EC0210, EC0238 and EC0381), flow cytometric analyses
showed an immediate diminished CFSE fluorescence right after DFO or DXZ was added,
similar to the no-iron-chelator control. Representative data from clinical isolate EC0210 are
presented in Figure 3C. This indicates that the bacteria actively divide after the removal of
meropenem. Against our hypothesis, neither DFO nor DXZ suppresses resuscitation.

When bacteria persisters from both EC0238 and EC0381 isolates were exposed to DFP,
flow cytometric analyses revealed immediate diminishing CFSE fluorescence. However,
a momentary delay in bacterial growth was observed for the EC0210 isolate when DFP
was added after removing meropenem. This was indicated by the slower diminishing of
CFSE fluorescence after 24 h. However, DFP did not completely suppress the resuscitation
of the bacterial persister from the EC0210 strain (Figure 3C, black arrows; Table 3). This is
postulated to be due to the different virulence and resistance mechanisms in each isolate.
Collectively, this evidence demonstrates that iron chelators are incapable of consistently
suppressing persister resuscitation in all strains.

Table 3. Iron chelators were inconsistent in suppressing resuscitation.

Resuscitate at 48 h in the Presence of Iron Chelators?
EC0210 EC0238 EC0381

Deferoxamine
mesylate (DFO) Yes No Yes

Deferiprone (DFP) Yes No Yes
Dexrazoxane (DXZ) No Yes No
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Figure 3. Flow cytometric analyses reveal deferiprone (DFP) delays the resuscitation of bacterial
persisters in the EC0210 strain. (A) Experimental design for determining if iron chelation would
suppress the resuscitation of bacteria persisters. (B) Meropenem treatment reduces the number of
viable bacteria. Dotted lines refer to baseline at 0 h. (C) Flow cytometric analyses of persisters after
the removal of meropenem with or without addition of iron chelator for each condition. Black arrows
point to delayed resuscitation by DFP. Dotted lines refer to baseline at 48 h.

4. Discussion

Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobac-
terales (CRE) pose a significant clinical challenge due to the limited effective treatment
options. E. coli is the predicted to be the current top contributor to antibiotic resistance
worldwide [1]. The presence of CRE bacterial persisters exacerbates the AMR problem,
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which contributes to the development of the pan-drug-resistant CRE, for which no treat-
ment can be effective. The dying pipeline for the development of new antimicrobials
has resulted in attempts to re-purpose existing drugs intended for treating other diseases
as antimicrobials.

Iron is a micronutrient that stimulates bacterial growth, and is essential for diverse
biological functions, such as DNA replication/repair, gene expression regulation, redox
buffering (Fe-S clusters), oxygen hosts (porphyrins and heme) and glucose metabolism
(such as aconitases). In a bacterial infection, hosts limit the survival and proliferation
of microbial pathogens, using iron-binding proteins to hide iron away, while pathogens
develop devious strategies against hosts to scavenge iron. Iron chelation therapy has been
used to treat bacterial infections for many decades. However, the use of iron chelators
alone has failed miserably when they are used as antibiotics, with MICs of >512 µg/mL in
bacteria reference strains [33].

In recent years, iron chelation has repeatedly been demonstrated to be effective in
destabilizing biofilms and potentiating antibiotics’ actions in numerous organisms [11–17].
These new insights have rekindled interest in iron chelation strategies as a therapeutic
option against bacterial infections. Biofilms are responsible for over 60% of all bacterial
infections in developed countries [34]. Biofilms were calculated to harbor a high number
of bacteria persisters [35]. Hence, we expected that a similar antibiotic potentiation to
be observed in planktonic persisters, as biofilm-encased persisters are more tolerant of
antibiotics than planktonic persisters. Instead, our study demonstrated that the use of
iron chelators as adjuncts did not eradicate persisters, contradicting the effectiveness of
iron chelation in targeting biofilms. This strongly suggests that iron may play a different
planktonic role in persisters, as opposed to being encased in biofilms.

DFO has long been used as an iron chelator in clinics. Consistent with other stud-
ies, DFO was concluded to not be a suitable candidate as an antimicrobial—alone or in
combination with other drugs. Furthermore, DFO can also act as a siderophore for iron
uptake in other bacteria species. Similar to DFO, deferasirox is also widely used in clinics
for treating chronic iron overload diseases. However, we omitted the use of deferasirox due
to solubility issues. DXZ is a licensed drug that prevents cardiomyopathies associated with
anthracycline toxicities, typically doxorubicin [10]. DXZ is also a catalytic inhibitor of DNA
topoisomerase II [36]. Structurally, DXZ is a bisdioxopiperazine that readily enters cells and
is subsequently hydrolyzed as a chelator analogous to EDTA [37]. This chelating property
is proposed to be its mechanism of action in the prevention of anthracycline-induced,
iron-dependent, free-radical oxidative stress on the cardiac muscle [9]. To the best of our
knowledge, this is the first time DXZ is compared to bacteria isolates as an iron chelator.
Similar to the results regarding DFO, we conclude that DXZ is not a feasible candidate for
use as antibiotic adjunct.

In this study, the use of DFP with antibiotics led to a slower bactericidal trend, and the
use of DFP alone delayed bacterial persister resuscitation. DFP is a small molecule, with a
molecular weight of 139.2 g/mol. We reasoned that our observations were due to the small
DFP penetrating the bacteria and directly chelating intracellular iron. This contrasts the
results obtained for both DFO and DXZ, which are bigger molecules than DFP, and hence,
creating an iron-limiting environment that could compromise bacteria survival.

Iron is a double-edged sword. Iron is a critical micronutrient for survival and is
involved in processes such as bacterial growth and metabolism. However, excess iron
undergoes Fenton chemistry, generating reactive oxygen species (ROS) that radicalize
biomolecules in cells, resulting in bacterial cell death. Evidence suggests that antibiotic
exposure alters bacterial iron homeostasis and, subsequently, leads to large amounts of
ROS accumulating in bacteria [38–41]. The removal of iron reduces the amount of ROS that
is accumulated, and hence, reduces cell death. This may explain the phenomenon that DFP
delays the bactericidal event in all isolates. Due to the lack of a good fluorescent probe to
quantify intracellular bacterial iron using flow cytometry, it is difficult to assess the extent
of iron chelation by DFP in each single bacterium.
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However, our reasoning of Fenton-chemistry-induced bactericidal effects creates a
new paradox. This paradox asks if iron supplements should be given, instead of iron
chelators, as antibiotics adjuncts to treat bacterial infections. A seemingly plausible solution
to answer this paradox is, perhaps, a specific delivery to bacteria only, containing both iron
and antibiotics. This delivery system is similar to that of cefiderocol, which is deemed the
Trojan Horse. However, both oral and intravenous iron supplements have been shown to
have detrimental effects in infected hosts [42–44]. Furthermore, there are increasing reports
on resistance against cefiderocol in multiple ESKAPE bacteria species that are resistant
to carbapenems [45–49]. Hence, we express our curiosity regarding iron metabolism and
trafficking in bacteria persisters.

There are challenges in this study. As these bacteria persisters are present in very low
numbers, one technical challenge is accurately quantifying persisters. These drug-induced
persisters’ numbers are below the limit of detection (104) on our flow cytometer [23], which
is similar to the limit of detection reported using other flow cytometers [50–54]. The
increase in bacteria persisters under iron-limiting conditions may still be well below our
limit of detection. As discussed in our previous work [23], persisters cannot be enumerated
using traditional viable plating methods. This is further substantiated in this work, with
no colonies forming on MH agar at the 24 h timepoint, while bacteria persisters were
still observed by fluorescence microscopy. Therefore, it is not possible to conclude if
iron-limiting conditions increase the number of eliminating bacterial persisters using
conventional flow cytometry.

In conclusion, clinically approved iron chelators at clinically achievable concentrations
do not serve as good candidate antibiotic adjuncts to planktonically target bacteria persis-
ters. Our future studies will attempt to evaluate other candidates in our aim to eliminate
bacteria persisters.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12050972/s1, Figure S1: Bacteria persisters manifest in clini-
cal isolate EC0210 after meropenem exposure; Figure S2: Bacteria persisters manifest in clinical isolate
EC0238 after meropenem exposure; Figure S3: Bacteria persisters manifest in clinical isolate EC0238
after meropenem exposure; Figure S4: Gating strategy for flow cytometry to identify persisters;
Table S1: Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)
measured for each parent and resuscitated strains post-antibiotic treatment; Table S2: Resistance gene
and molecular information of the clinical isolates; Table S3: MICs of respective antibiotics screened
for clinical isolates identified to manifest with persisters; Table S4: Flow cytometry acquisition sum-
mary; Table S5: Acquisition settings on the Nikon Ti-Microscope. References [55,56] are cited in the
Supplementary Materials.
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