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Abstract: Methylamine plays an important role in the global carbon and nitrogen budget; 

microorganisms that grow on reduced single carbon compounds, methylotrophs, serve as a 

major biological sink for methylamine in aerobic environments. Two non-orthologous, 

functionally degenerate routes for methylamine oxidation have been studied in 

methylotrophic Proteobacteria: Methylamine dehydrogenase and the N-methylglutamate 

pathway. Recent work suggests the N-methylglutamate (NMG) pathway may be more 

common in nature than the well-studied methylamine dehydrogenase (MaDH, encoded by 

the mau gene cluster). However, the distribution of these pathways across methylotrophs has 

never been analyzed. Furthermore, even though horizontal gene transfer (HGT) is commonly 

invoked as a means to transfer these pathways between strains, the physiological barriers to 

doing so have not been investigated. We found that the NMG pathway is both more abundant 

and more universally distributed across methylotrophic Proteobacteria compared to MaDH, 
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which displays a patchy distribution and has clearly been transmitted by HGT even amongst 

very closely related strains. This trend was especially prominent in well-characterized strains 

of the Methylobacterium extroquens species, which also display significant phenotypic 

variability during methylamine growth. Strains like Methylobacterium extorquens PA1 that 

only encode the NMG pathway grew on methylamine at least five-fold slower than strains 

like Methylobacterium extorquens AM1 that also possess the mau gene cluster. By 

mimicking a HGT event through the introduction of the M. extorquens AM1 mau gene 

cluster into the PA1 genome, the resulting strain instantaneously achieved a 4.5-fold increase 

in growth rate on methylamine and a 11-fold increase in fitness on methylamine, which even 

surpassed the fitness of M. extorquens AM1. In contrast, when three replicate populations of 

wild type M. extorquens PA1 were evolved on methylamine as the sole carbon and energy 

source for 150 generations neither fitness nor growth rate improved. These results suggest 

that the NMG pathway permits slow growth on methylamine and is widely distributed in 

methylotrophs; however, rapid growth on methylamine can be achieved quite readily 

through acquisition of the mau cluster by HGT. 

Keywords: Methylotrophy; Methylamine; Experimental Evolution; Methylobacterium; 

Horizontal Gene Transfer (HGT) 

 

1. Introduction 

The simplest methylated amine, mono-methylamine (CH3NH2; MA) is a toxic, inflammable organic 

compound that plays an important role in the carbon and nitrogen biogeochemical cycles [1–7] and 

contributes significantly to the biogenesis of greenhouse gases like methane [8,9]. MA is produced 

during the decarboxylation of organic matter [5,6], anaerobic degradation of proteins and  

osmolytes [10] and also as a by-product of several industries like fish processing [6] and pesticide 

production [6]. In aerobic environments, methylotrophic bacteria that grow on reduced single carbon 

(C1) compounds like methane and methanol [11–13] are one of the major sinks for MA [2,4,7]. Two 

functionally degenerate yet non-orthologous routes for MA oxidation have been characterized in 

methylotrophic Proteobacteria. One route is mediated by a single enzyme called methylamine 

dehydrogenase (MaDH) [11,13,14], whereas the alternate route is mediated by three distinct enzymes of 

the N-methylglutamate (NMG) pathway [15,16] (Figure 1A,B). The NMG pathway is also observed in 

various taxa of non-methylotrophic proteobacteria where it has been shown to facilitate the utilization 

of MA as a nitrogen source [7]. 
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Figure 1. (A) A schematic of methylamine metabolism using the methylamine 

dehydrogenase (encoded by the mau gene cluster) for methylamine oxidation (orange). 

During methylamine growth mediated by methylamine dehydrogenase, formate is the branch 

point of C1 metabolism and the tetrahydrofolate (H4F) dependent pathway is essential for C1 

assimilation. (B) A schematic of methylamine metabolism using the N-methylglutamate 

pathway for methylamine oxidation (blue). During methylamine growth mediated by the  

N-methylglutamate (NMG) pathway, formaldehyde is the branch point of C1 metabolism 

and the H4F dependent pathway is not used at all for C1 assimilation. 

More than two decades ago, cultivation and enrichment based studies of MA growth in methylotrophs 

honed in on the genetic and biochemical characterization of MaDH, an enzyme with a unique, chemically 

modified amino acid coenzyme [17–19] that was found in model organisms like Paracoccus 

denitrificans Pd122 [20] and Methylobacterium extorquens AM1 (referred to as AM1 here on) [14,17]. 

In AM1, MaDH and ancillary proteins (required for protein maturation and electron transport) are 

encoded by the mau gene cluster [14], which is present in a 10 kb genomic region that is flanked by two 

insertion sequence (IS) elements of the ISMex15 family [21]. MaDH is a periplasmic enzyme that 

oxidizes MA in a single-step to produce free formaldehyde and ammonia, with the resulting electrons 

being passed to the electron transport chain [11,18,19] (Figure 1A). Similar to its fate during methanol 

growth in AM1, free formaldehyde produced by MaDH is oxidized to formate by a series of 

tetrahydromethanopterin (H4MPT) dependent reactions in the cytoplasm [22]. Subsequently, a fraction 

of the formate generated is further oxidized to CO2 by a panel of formate dehydrogenases [23,24] and 
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the rest gets assimilated into various components of biomass via a tetrahydrofolate dependent (H4F) 

pathway [13,25], the serine cycle [11,26,27], and the ethyl-malonyl CoA pathway [28]. 

In contrast to previous findings, recent studies with Methyloversatilis universalis FAM5 [15], 

Methylobacterium extorquens PA1 (referred to as PA1 from here on) (16) and various other  

bacteria [29,30] have shown that these strains can grow on MA despite lacking the mau gene cluster. In 

these methylotrophs, MA oxidation is mediated by the NMG pathway that, unlike MaDH, requires three 

enzymatic steps and generates two amino acid derivatives as metabolic intermediates [31–34] 

(Supplementary Figure S1). Furthermore, the NMG pathway is cytoplasmic, requires an ATP, and 

generates either FADH2 or NADH [15,32,33] (Figure 1B). Finally, in PA1, it also has been shown that 

MA growth mediated by the NMG pathway reroutes C1 flux such that the H4F dependent C1 transfer 

pathway is no longer used for C1 assimilation [16]. Thus, beyond possible kinetic differences, distinct 

localization and cofactor coupling are also likely to influence the efficiency and yields of these two 

functionally degenerate MA oxidation pathways as well. 

Of late, metagenomic data is revealing that the mau gene cluster is significantly less abundant than 

genes of the NMG pathway in freshwater [7,35] as well as saline environments [4,36]. While the 

biochemistry and genetics of each functionally degenerate route for MA oxidation is well established at 

this point [11,13–17], to our knowledge no study has contrasted MA oxidation mediated by the MaDH 

route versus the NMG pathway to understand the physiological or adaptive constraints that govern the 

distribution of these MA oxidation modules in the environment. Based on the evidence that the mau 

gene cluster in AM1 is surrounded by IS elements, HGT has been speculated as a means of transmission 

of MaDH [21]. However, the evolutionary paradigm controlling the distribution of these two MA 

oxidation routes in extant methylotrophs has never been analyzed. Nor is it known whether the presence 

of a specific MA oxidation module influences growth in a predictable and consistent way. Well-studied 

strains of the Methylobacterium extorquens species serve as a tractable system in which to compare these 

two functionally degenerate routes for MA oxidation. Even though M. extorquens species are more than 99% 

identical at the 16s rRNA locus [37] and share a core methylotrophy-specific metabolic repertoire [38], stark 

genotypic differences have been observed on MA [16,38]. Whereas all M. extorquens strains possess the 

NMG pathway [21,37,38], AM1 and CM4 also contain MaDH [21] (Figure 1A,B). Furthermore, these 

genotypic differences are also known to influence MA growth: AM1 can grow on MA with rates that 

are five-fold higher than those observed for PA1 [16,38]. 

In this study, we used two complementary yet distinct approaches to contrast the evolution and 

physiology of these two alternate MA oxidation pathways in methylotrophs. First, examining the 

phylogeny and synteny of each pathway, we uncovered the patterns of evolutionary history of the NMG 

pathway and MaDH in sequenced methylotrophic Proteobacteria. While the NMG pathway is more 

abundant and universally distributed, especially in methylotrophic genera of the Alpha- and  

Beta-proteobacteria, the phylogeny of genes encoding MaDH was indicative of recent HGT within and 

across distant clades of the Proteobacteria. Next, we zoomed in and contrasted the role of evolution by 

mutation and natural selection versus evolution by HGT during MA growth in a well-characterized strain 

of the M. extroquens species. We sought to test in PA1 the relative ease of obtaining rapid growth on 

MA via acquisition of MaDH via HGT, versus by evolving improved function of the NMG pathway. By 

simply introducing the mau gene cluster on a plasmid to simulate the HGT events inferred to have 

occurred naturally in strains AM1 and CM4 [21], the MA fitness of the PA1 transconjugant was even 
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higher than AM1. In contrast, even after 150 generations of laboratory evolution on MA as the sole 

carbon and energy source, neither competitive fitness nor growth rate improved. These results provide a 

counter example to the typical pattern in metabolic engineering of poor growth immediately after 

introduction of a foreign metabolic module [39,40], as well as the common notion in microbial evolution 

that strains with lower fitness tend to adapt more rapidly [41,42]. Furthermore, we directly demonstrate 

that an HGT event can instantaneously overcome physiological constraints imposed by certain metabolic 

pathways and dramatically change the performance and fitness of an organism on a growth substrate. 

2. Experimental Section 

2.1. Chemicals and Media 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise noted. 

Escherichia coli were grown in Luria Bertani broth at 37 °C with the standard antibiotic concentrations. 

Standard growth conditions for M. extroquens PA1 and M. extorquens AM1 utilized a modified version 

of Hypho minimal medium consisting of: 100 mL phosphate salts solution (25.3 g of K2HPO4 plus 22.5 

g Na2HPO4 in 1 L deionized water), 100 mL sulfate salts solution (5 g of (NH4)2SO4 and 2 g of MgSO4·7 

H2O in 1 L deionized water), 799 mL of deionized water, and 1 mL of trace metal solution [43].  

Filter-sterilized carbon sources were added just prior to inoculation in liquid minimal media with a final 

concentration of 3.5 mM for sodium succinate and 20 mM for methylamine hydrochloride. 

2.2. Phylogenetic Analysis 

Amino acid similarity to mauA and mauB (which encode the small and large subunit of MaDH) from 

M. extorquens AM1 [14] and gmaS, mgsC and mgdC (which encode γ-glutamylmethylamide synthetase, 

and subunits of N-methylglutamate synthase and N-methylglutamate dehydrogenase respectively) from  

M. extorquens PA1 [16] were used to detect the presence of MaDH and/or the  

N-methylglutamate pathway, respectively, in sequenced methylotrophic Proteobacterial genomes 

deposited in NCBI. The criterion for detecting genes representing each of these MA oxidation pathways 

was based upon a sequence similarity and sequence coverage cutoff. The cutoff was determined based 

on either: (a) parameter values below which a significant, sharp rise in the e-value of the BLAST search 

results was observed (mauA and mauB) or (b) parameter values below which functionally distinct 

homologs were observed (gmaS, mgsC, mgdC). Sequence coverage of >96% and >85%, sequence 

identity of >54% and >43% (corresponding to an e-value of 4e-55 and 2e-51) was used as the criterion 

for detecting mauA and mauB like sequences, respectively, in the genomes of sequenced methylotrophs 

within the Proteobacteria. Sequence coverage of >96%, >96% and >87% and sequence identity of >40%, 

>81%, and >35% was used as the threshold for the detection of gmaS, mgsC and mgdC like sequences in 

the genomes of sequenced methylotrophs within the Proteobacteria. Sequence alignment was conducted 

using the MUSCLE alignment software [44] with a maximum of 127 iterations. ML (Maximum 

Likelihood) phylogenetic analysis was performed with the PhyML package built in Geneious  

version 5.4 [45] using the HKY85 substitution model [46] and the Dayhoff substitution model [47] for 

nucleotide and amino acid sequences, respectively, and employed 500 bootstrap resamplings. The 

proportion of invariable sites, gamma distribution parameters, and transition/transversion ratios (only 
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for nucleotide sequences) were estimated; four substitution rate categories were used, and the topology, 

branch length, as well as rate parameters were optimized. 

2.3. Experimental Evolution 

Three independent colonies of the ∆cel strain of M. extorquens PA1 lacking cellulose biosynthesis 

(CM2730) (Table 1) [48] were isolated from Hypho, succinate, agar (2% w/v) plates and were inoculated 

in 50 mL flasks with 10 mL of Hypho minimal media with 20 mM methylamine hydrochloride to initiate 

three replicate populations for experimental evolution. Flasks were incubated in a 30 °C shaking 

incubator at 225 rpm for 3.5 days after which a 32-fold dilution (for the first 11 transfers) and a 128-fold 

dilution (for the next 14 transfers) of the culture was transferred into fresh media. At regular intervals, 

populations were frozen at −80 °C with 10% DMSO. M. extorquens AM1 contamination was tested after 

every transfer by using mau specific primers for PCR amplification from the population lysate. Evolved 

clones were obtained as independent colonies on 7.5 mM sodium succinate, 20 mM MA, Hypho agar 

(2% w/v) plates. 

2.4. Fitness Assays 

Competitive fitness was measured by competing strains against a fluorescently labelled ancestor  

(M. extorquens PA1 ∆cel-∆hpt::Ptac-mCherry (CM3839) (Table 1) described elsewhere [49] using a 

modified version of a protocol described elsewhere [50,51]. Growth was initiated by transferring 10 μL 

freezer stock into 10 mL of Hypho medium with 3.5 mM succinate. Upon reaching stationary phase, a 

32-fold dilution of the cultures was transferred into fresh medium with 20 mM MA. At the end of the 

acclimation phase, CM3839 and the test strain or the mixed population were mixed in equal proportions 

by volume and this initial mix (T0) was transferred 1:32 into fresh media with the same growth conditions 

as the acclimation phase. 450 μL of the T0 mix was mixed with 10% DMSO and frozen at −80 °C.  

A 500 μL sample at the end of the growth phase (T1) was collected and the ratio of CM3839 and the test 

strain or the mixed population before and after the growth phase was ascertained using flow cytometry. 

Cells were diluted appropriately such that at a flow rate of 0.5 μL/s on the LSRFortesssa (BD, Franklin 

Lakes, NJ, USA) ~1000 events/s would be recorded. Fluorescent mCherry was excited at 561 nm and 

measured at 620/10 nm. The competitive fitness was calculated as 𝑊 =
log(

𝑅1∗𝑁

𝑅0
)

log(
(1−𝑅1)∗𝑁

(1−𝑅0)
)
 where R1 and R0 

represent the population fraction of the test strain before and after mixed growth, and N represents the 

fold increase in the population density. Competitive fitness assays were conducted in triplicate unless 

specified. Data are reported as the mean fitness ± 95% confidence interval of the mean fitness value. 
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Table 1. M. extorquens strains and plasmids generated in this study. 

Strains or Plasmid Description Reference 

Strains   

CM4 M. extorquens CM4 [52] 

DM4 M. extorquens DM4 [53] 

BJ001 M. extorquens BJ001 [54] 

CM2720 ∆cel M. extorquens AM1 [55] 

CM2730 ∆cel M. extorquens PA1 [56] 

CM3120 ∆katA::Ptac-mCherry in CM2720a [49] 

CM3839 ∆hpt::Ptac-mCherry in CM2730b [49] 

CM4408 E1 This study 

CM4409 E2 This study 

CM4410 E3 This study 

Plasmids   

pAYC139 
Plasmid (IncP, tra, TetR) with mau gene 

cluster from M. extorquens AM1 
[14] 

katA: catalase; hpt: hypoxanthine phosphoribosyltransferase. 

2.5. Growth Rate Measurement 

The growth rate of M. extorquens strains containing the mau cluster was measured in 48-well 

microtiter plates (CoStar-3548, Corning Life Sciences, Tewksbury, MA, USA), shaken at 650 rpm in an 

incubation tower (Liconic USA LTX44 with custom fabricated cassettes, Woburn, MA, USA) that was 

maintained in a room at 30 °C and 80% humidity, using an automated platform as described  

elsewhere [38]. Since the growth rate of M. extorquens strains containing of the N-methylglutamate 

pathway was slower than the detection limit of the automated growth measurement platform, it was 

measured in 50 mL flasks that were incubated in an orbital, incubator with a shaking speed of 225 rpm 

that was maintained at 30 °C. Growth from freezer stocks at −80 °C was initiated by transferring 10 μL 

freezer stock into 10 mL of Hypho medium with 3.5 mM succinate. Upon reaching stationary phase  

(2 days), cultures were transferred 1:16 into 9.4 mL fresh medium with 20 mM MA and allowed to reach 

saturation in this acclimation phase (3.5 days), and diluted 1:32 again into 9.4 mL fresh medium with  

20 mM MA for the measured (experimental) growth (3.5 days). A 50 μL aliquot of three replicate 

cultures, for each strain, was sampled every 8–10 h during the growth phase. Optical density of the 

culture was measured at 600 nm (OD600) using a spectrophotometer (Bio-Rad, Hercules, CA, USA). The 

dynamics and specific growth rate of cultures were calculated from the log-linear growth phase using 

CurveFitter [48,57]. Yield was measured as the maximum OD600 during the growth phase. Growth rate 

and yield reported for each strain and condition is the mean calculated from three biological replicates, 

unless otherwise noted. 
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3. Results 

3.1. The N-Methylglutamate Pathway for Methylamine Oxidation is More Widely Distributed in 

Methylotrophic Proteobacteria than Methylamine Dehydrogenase 

Sequence similarity to conserved genes of the NMG pathway and MaDH from M. extorquens species 

was used to determine the distribution for each of these MA oxidation pathways across sequenced 

methylotrophs within the Proteobacteria. The distribution of the NMG pathway and MaDH in 

methylotrophic Proteobacteria that contain either one or both routes for MA oxidation are shown in 

Figure 2. As indicated in Figure 2, the NMG pathway was found in approximately two times as many 

methylotrophic Proteobacteria compared to MaDH. The NMG pathway was particularly prevalent in 

members of the Rhizobiales family, where all of the 18 strains that possess genes for growth on MA 

have the NMG pathway and only 5 also encode the mau gene cluster. The NMG pathway was also more 

universally distributed; genes of this pathway were found in at least one sequenced member of all known 

methylotrophic genera in the Alpha- and Beta-proteobacteria except for the recently discovered 

methylotroph- Methylibium petroleiphilum- of the Burkholderiales family of the Betaproteobacteria [58]. 

3.2. Phylogenetic Analysis Indicates More HGT for MaDH than the NMG Pathway 

In order to determine whether the patchy distribution of MaDH across sequenced methylotrophic 

Proteobacteria indicates transfer by frequent HGT, we constructed maximum-likelihood (ML) amino 

acid phylogenies for key genes of each MA oxidation module. For the NMG pathway, we used gmaS, 

which encodes γ-glutamylmethylamide synthetase, the enzyme that catalyzes the first step of this MA 

oxidation pathway. The gmaS phylogeny (Figure 3) was mostly indicative of vertical inheritance, 

especially in strains belonging to the same species, but some notable instances of HGT were observed 

at higher levels of classification. For instance, gmaS sequences from strains of the Hyphomicrobium 

genera were found in a well-supported clade with strains of the Paracoccus genera rather than with other 

members of the Rhizobiales family. 

For MaDH, we examined the ML amino acid phylogenies of genes encoding the large (mauB) and 

small (mauA) subunit of MaDH [14]. Although we had anticipated concatenating these genes, we found 

that each subunit has a distinct phylogenetic history, both of which show discordance not just within 

closely related strains but among different classes of the Proteobacteria as well (Figure 4A, 4B). Overall, 

analyses indicated that although neither pathway has experienced a fully vertical mode of inheritance, 

the degree of HGT appears to be greater for MaDH. 
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Figure 2. Distribution of genes of the N-methylglutamate pathway (in blue) and the mau 

gene cluster encoding methylamine dehydrogenase (in orange) in the genome of sequenced 

methylotrophs of the Alpha—(green), Beta—(pink), and Gamma—(yellow) Proteobacteria 

that contain at least one pathway for methylamine oxidation. Or.: Order; Ge.: Genus; Sp.: 

species; MC: Methylocella; silves.: silvestris; HM: Hyphomicrobium; dn: denitrificans; 

nitrati.: nitrativorans; XB: Xanthobacter; auto.: autotrophicus; Mbact.: Methylobacterium; 

Mpi: Methylopila; Rhodo: Rhodobacterales; PC: Paracoccus; aminoph.: aminophilus; MP: 

Methylophilus; methylo.: methylotrophus; MV: Methylovorus; glucose.: glucosetrophus; 

MT: Methylotenera; MB: Methylobacillus; glycogen.: glycogenes; Rhc.: Rhodocyclales; 

Mve: Methyloversatilis; Thiotri.: Thiotricales; Methyloph.: Methylophaga; thiooxyd.: 

thiooxydans; aminisulf.: aminisulfidivorans. 
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Figure 3. A maximum likelihood phylogeny of the gmaS amino acid sequence (encoding the 

first enzyme of the N-methylglutamate pathway) from sequenced methylotrophs of the  

Alpha—(green), Beta—(pink), and Gamma—(yellow) Proteobacteria using the gmaS  

sequence from Oceanobacter kriegii as the outgroup. Numbers adjoining nodes represent  

bootstrap support. 
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Figure 4. (A) A maximum likelihood phylogeny of the mauB amino acid sequence 

(encoding the large subunit of methylamine dehydrogenase) from sequenced methylotrophs 

of the Alpha—(green), Beta—(pink), and Gamma—(yellow) Proteobacteria using the mauB 

sequence from Halomonas lutea as an outgroup. (B) A maximum likelihood phylogeny of 

the mauA amino acid sequence (encoding the small subunit of methylamine dehydrogenase) 

from sequenced methylotrophs of the Alpha—(green), Beta—(pink), and Gamma—(yellow) 

Proteobacteria using the mauA sequence from Halomonas lutea as an outgroup. Numbers 

adjoining nodes represent bootstrap support. 

3.3. Highly Distinct Modes of Inheritance within Methylobacterium for Two Methylamine  

Oxidation Pathways 

As the clade with the largest number of sequenced genomes, and also the most frequent occurrence 

of the NMG pathway, the Methylobacterium strains were examined in greater detail. In terms of the 

NMG pathway, phylogenetic analysis did not indicate any clear evidence of HGT when compared to the 

16S rRNA phylogeny of Methylobacterium strains (Figure 3, Supplementary Figure S2). Additionally, 

the chromosomal location of this pathway in each strain was nearly identical (Supplementary Table S1). 

In contrast, the mau gene cluster was in three distinct chromosomal locations in each of the three 

Methylobacterium strains that express MaDH (Supplementary Table S2). These data strongly suggest 

that the mau gene cluster was introduced into this genus through three independent HGT events. 

Similarly, the mauA and mauB (Figure 4A,B) amino acid phylogenies were largely discordant with 

the16S rRNA phylogeny for Paracoccus strains (Supplementary Figure S3), whereas the gmaS amino 

acid phylogeny corroborated the notion of vertical inheritance (Figure 3). 
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3.4. The Methylamine Fitness of M. extorquens Species Is Dependent on the Metabolic Module Used 

for Methylamine Oxidation 

Although all strains of M. extorquens possess the NMG pathway, they differ in whether or not they 

possess MaDH (Figure 5) and we tested whether this had a consistent effect upon growth on MA. 

Competition assays relative to a PA1 strain expressing the fluorescent protein mCherry at a neutral  

locus [49] were used to measure the MA fitness of five different M. extorquens strains and subsequently 

determine whether it correlated with the presence of MaDH. 

 

Figure 5. Methylamine fitness of M. extorquens species relative to AM1. Strains that use 

the N-methylglutamate pathway are depicted in blue and strains that use methylamine 

dehydrogenase (but also contain the N-methylglutamate pathway) are depicted in orange. 

Error bars depict the 95% confidence interval (C.I.) of the mean relative fitness determined 

by three replicate competition assays. ** p < 0.01 and * p < 0.05 for a significant difference in 

fitness on methylamine. 

The resulting fitness values indicated a simple pattern: the two strains encoding MaDH, AM1 and 

CM4, were 5 to 20-fold more fit than PA1, DM4, and BJ001, all of which only possess the NMG pathway 

(Figure 5). Thus, although there were small but significant differences between strains with the same 

pathway for MA utilization, the dominant factor influencing fitness on MA was whether they possessed 

the horizontally acquired MaDH. 

3.5. Experimental HGT of the mau Gene Cluster in M. extorquens PA1 Leads to an Instantaneous 

Increase in Fitness and Growth Rate on Methylamine 

Based on the evidence that there might have been three distinct HGT events of the mau gene cluster 

within the Methylobacterium clade, we sought to test if rapid growth on MA required substantial 

evolutionary refinement subsequent to HGT, or whether simply expressing MaDH could confer rapid 
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growth. We simulated the HGT events that are likely to have occurred naturally for AM1 and CM4 by 

transforming a low-copy plasmid (pAYC139) [14] containing the mau gene cluster, downstream of the 

Escherichia coli lac promoter (Plac), from AM1 into PA1. The MA growth rate of the pAYC139+ 

transconjugant (in the absence of any antibiotic selection) was 4.3-fold greater than PA1 (p < 0.01) and 

only 15% lower than AM1 (p < 0.01) (Figure 6, Supplementary Table S3). Despite slightly slower 

growth than AM1, the pAYC139+ transconjugant was 75% more fit in competition assays relative to 

AM1 (p < 0.01) (Figure 6). 

 

Figure 6. Methylamine growth rate and fitness of AM1 (light brown), PA1 (dark gray), and 

pAYC139+ PA1 expressing methylamine dehydrogenase (light gray) relative to AM1 (for 

growth rate) or mCherry AM1 (for fitness). Error bars each depict the 95% C.I. from three 

biological replicates. 

3.6. Laboratory-Based Evolution Did Not Lead to a Rapid Increase in Methylamine Fitness or Growth 

Rate for M. extorquens PA1 

Although introduction of MaDH instantly enabled fast growth of PA1 on MA, this did not indicate 

whether or not the NMG pathway could also rapidly evolve to improve MA growth in PA1 if selection 

were to reward doing so. To mimic this process in the laboratory, we initiated serial transfers of PA1 in 

media with MA as the sole carbon and energy source for 150 generations. Three replicate populations 

of PA1 were grown in minimal media with 20 mM MA with transfers every 3.5 days. Serial transfer 

regimes select primarily for mutants with enhanced growth rates [39,59]. Single isolates from each 

evolved population were obtained, and have been denoted as E1, E2, and E3, and fitness on MA was 

measured relative to the ancestor expressing the fluorescent protein mCherry (Figure 7A). 

In sharp contrast to previous instances of experimental evolution with poor-growing M. extorquens 

strains where growth improved within 100 generations [39,40,51], none of the evolved isolates were 

more fit than the ancestor and, to our surprise, E1 and E3 actually had significantly lower competitive 

fitness on MA (p = 0.01 and p < 0.01, respectively). To check whether the strains isolated were 

anomalous in their performance, we also performed the same competition with each of the evolved 
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populations (denoted as P1, P2, and P3) against the labeled ancestor. Two of the three populations were 

significantly less fit than the ancestor (P1 and P3; p < 0.01 in each case) and the fitness of one population 

was not significantly different from the ancestor (P2; p = 0.17) (Supplementary Figure S4). We also 

examined the growth rates and yield (assayed via max OD600) of two of the evolved isolates (Figure 7B, 

Supplementary Table S3) and neither of these traits changed significantly either (p > 0.2 for all tests). 

Altogether, these data indicate that fitness or growth rate of PA1 on MA did not increase despite  

150 generations of selection for fast growth. 

 

Figure 7. (A) MA fitness of Δcel M. extorquens PA1 (orange) and an evolved isolate from 

each population (E1: diamond, E2: square and E3: triangle) relative to mCherry labelled 

strains of Δcel M. extorquens PA1; (B) MA growth rate and yield (maximum OD600) of E2 

(orange stripes) and E3 (orange dots) relative to PA1 (solid orange). 

4. Discussion 

In this study, we uncovered the evolutionary history and the apparent adaptive constraints underlying 

the current distribution of MaDH and the NMG pathway, two functionally degenerate routes for MA 

oxidation, in methylotrophs. First, a systematic survey of these two pathways in sequenced 

methylotrophs belonging to the Proteobacteria indicated that the NMG pathway is more abundant and 

universally distributed across methylotrophic Proteobacteria, whereas the mau gene cluster that encodes 

MaDH and ancillary proteins [14] is observed in fewer strains and has a patchy distribution characteristic 

of transmission primarily by HGT (Figure 2). Even though the amino acid phylogeny of gmaS, encoding 

one of the three enzymes (GMAS) of the NMG pathway was not completely congruent with vertical 

descent, the amino acid phylogenies of the genes encoding the large (mauB) and small subunit (mauA) 

(Figure 3, Supplementary Figure S3) of MaDH indicated much more rampant HGT within and across 

different clades of the Proteobacteria. A marked distinction in the mode of transmission for these two 

MA oxidation pathways was evident within bacterial strains belonging to single genera. For strains 

within the Paracoccus (Supplementary Figure S3) and Methylobacterium (Supplementary Figure S2) 

clades, the gmaS phylogeny was congruent with the 16S rRNA phylogeny (Figure 3), but the mauA and 

mauB phylogenies were very discordant (Figure 4A,B). Furthermore, a complete lack of chromosomal 
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synteny around the mau gene cluster (Supplementary Table S2) between three closely related 

Methylobacterium strains was consistent with three unique HGT events into this single clade. 

Based on the observation that the distribution of these MA oxidation pathways can vary significantly 

across closely related strains, we tested whether this genotypic variation has a phenotypic influence on 

MA growth in well-characterized M. extorquens strains (Figure 2). The MA fitness of  

M. extorquens strains was quite variable: Strains like AM1 and CM4 that also encode MaDH had at least 

five fold or greater fitness on MA compared to strains like PA1, BJ001, and DM4 that only encode the 

NMG pathway (Figure 5). These phenotypic data strongly suggest that independent of genomic context, each 

of these two MA oxidation pathways has a dramatic influence on the MA growth rate of a bacterium. 

By mimicking HGT and introducing the mau gene cluster [14] encoding MaDH on a plasmid in PA1, 

we found that the MA fitness and growth rate of PA1 increased instantaneously and the resulting strain 

had higher fitness than AM1 (Figure 6). Reduced lag time and/or an increased survival in stationary 

phase are likely to have contributed to higher fitness of the pAYC139+ PA1 transconjugant despite 

slower MA growth rates when compared to AM1. Additionally, a non-native promoter enhancing the 

expression of the mau gene cluster on an extra chromosomal element may have influenced fitness as 

well. Overall, combined with finding multiple, independent acquisitions of the mau cluster in sequenced 

M. extorquens strains, these results suggest that it is very easy to incorporate MaDH-dependent use of 

MA without the need for substantial, subsequent evolutionary refinement. The facile transfer of MaDH 

also corroborates the broader concept of methylotrophy as being modular in terms of both physiology 

and evolution [12,13]. This outcome contrasts with previous studies in which two different metabolic 

modules were shown to require significant evolutionary refinement after HGT for optimal functional 

expression [39,40,49] in members of the M. extorquens species. In one example, replacement of the 

H4MPT-dependent formaldehyde oxidation pathway in AM1 with a non-orthologous route using a series 

of glutathione-dependent reactions decreased the growth rate on methanol three-fold [39,50] and recently 

it was also shown that transferring the dichloromethane oxidation module (dcmA) from M. extorquens 

DM4 only permitted modest to no growth on dichloromethane in other M. extorquens strains [49]. 

Given that introduction of MaDH led to rapid growth of PA1 on MA, we were surprised by how 

modest the selective response for improved use of the endogenous NMG pathway was. Most laboratory 

evolution experiments [39,40,42,51,60], including those with other M. extorquens strains [40,51,60], 

have shown that there tends to be rapid evolutionary adaptation when either the environment or the 

genotype slow down growth rates. Despite poor growth on MA initially, when replicate populations of 

PA1 were evolved on MA for over 150 generations, the competitive fitness and growth rates of the 

evolved isolates or populations did not improve. In contrast, a 40% improvement in growth rate was 

observed within just 72 generations of experimental evolution when the aforementioned engineered 

strain, in which the H4MPT-dependent pathway was replaced with a glutathione-dependent pathway, 

was evolved on methanol [39,50]. It is worth pointing out that even though no significant growth 

improvements were observed after 150 generations of evolution of PA1 on MA, it does not preclude the 

possibility that, over extended periods of time, one would not observe adaptive mutations leading to 

large jumps in fitness, as has been occasionally observed in other systems [59,61]. Regardless of the 

underlying physiology, this example of poor initial growth and low evolvability of the NMG pathway 

argues against the universality of the general evolutionary heuristic [41,42] that fitness gain for any given 

strain is negatively correlated with its initial fitness and primarily independent of the starting genotype. 
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Given the apparent ease of achieving fast MA growth upon acquiring MaDH, it is perhaps surprising 

that this metabolic module is less abundant in comparison to the NMG pathway in our analysis of 

sequenced genomes as well as metagenomic datasets from various natural ecosystems [4,7,35,36]. An 

ecological basis for the abundance of the NMG pathway, despite being the suboptimal route for MA 

utilization under laboratory growth conditions, remains to be understood. Furthermore, it is unclear what 

selective forces allow so many methylotrophs to maintain both of these degenerate MA utilization routes 

(Figure 2) in their genome. In conclusion, MaDH appears to be yet another excellent example of how HGT 

can play a major role in the evolutionary dynamics of microorganisms in nature by rapidly opening the 

door to new physiological possibilities that can overcome adaptive constraints posed by existing systems. 
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