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Abstract: The interest about Staphylococcus aureus (S. aureus) and methicillin resistant S. aureus
(MRSA) in livestock, and domestic and wild animals has significantly increased. The spread of
different clonal complexes related to livestock animals, mainly CC398, and the recent description
of the new mecC gene, make it necessary to know more about the epidemiology and population
structure of this microorganism all over the world. Nowadays, there are several descriptions about
the presence of S. aureus and/or MRSA in different animal species (dogs, sheep, donkeys, bats, pigs,
and monkeys), and in food of animal origin in African countries. In this continent, there is a high
diversity of ethnicities, cultures or religions, as well as a high number of wild animal species and close
contact between humans and animals, which can have a relevant impact in the epidemiology of this
microorganism. This review shows that some clonal lineages associated with humans (CC1, CC15,
CC72, CC80, CC101, and CC152) and animals (CC398, CC130 and CC133) are present in this continent
in animal isolates, although the mecC gene has not been detected yet. However, available studies
are limited to a few countries, very often with incomplete information, and many more studies are
necessary to cover a larger number of African countries.
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1. Introduction

Staphylococcus aureus (S. aureus) is a microorganism that is present as a commensal on the skin,
the nose and mucous membranes of healthy humans and animals. However, it is also an opportunistic
pathogen that can cause multiple infectious diseases of diverse severity. The epidemiology of this
microorganism in animals has gained interest in the last years, not only because of their importance in
veterinary medicine due to the increment of infectious processes caused by this pathogen (especially
by methicillin-resistant S. aureus (MRSA) strains), but also because of the emergence of some clonal
lineages associated with animals and their increasingly evidenced zoonotic potential. This is the case of
the Sequence Type 398 (ST398), which has been identified as colonizer or infectious agent in pigs, cattle,
horses, and poultry, as well as in people in contact with these animals (farmers, veterinarians, and
slaughterhouse workers) [1–6]. Moreover, livestock associated (LA) MRSA infections have also been
detected in relatives of farmers and some cases of MRSA of Clonal Complex 398 (CC398) have been
identified in people without contact with animals [7]. These strains frequently exhibit multiresistance
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phenotypes. There are other clonal lineages (CC1, CC5, CC9, CC97, and CC130, among others) of
LA-MRSA that are emerging, and whose importance is increasing in the last years. It should be pointed
out that pets and wild animals can also act as reservoirs of MRSA strains, and play an important role
in the epidemiology of this microorganism [5,8–10]. Recently, there has been growing interest not only
in the study of MRSA strains but also of methicillin susceptible S. aureus (MSSA) strains, since these
strains play an essential role in the evolution of different genetic lineages.

The number of studies focused on the antibiotic resistance problem in the African Continent has
grown in last decade and they suggest that in this continent, as in other parts of the world, this problem
is increasing; however, its real extent is currently unknown since surveillance of drug resistance is only
carried out in a few countries [11]. The misuse of antibiotics due to poor control policies is promoting
this resistance development [12]. Despite limited resources, during the last years in many of these
countries, there are important efforts to establish good control measures to avoid this worrisome
situation [13].

The study of S. aureus prevalence, antimicrobial resistance and clonal lineages in humans, animals
and food in Africa has great relevance, taking into consideration the high diversity of ethnicities,
cultures and religions that determine the lifestyle of African people. Most studies about MSSA and
MRSA in the African continent are focused on human clinical isolates; nevertheless, the number of
reviews focused on this topic is very scarce [14–16]. As would be expected, a higher diversity of clonal
lineages is found among MSSA strains in comparison with MRSA strains, however, some clones (CC5
or CC8) have been found in methicillin resistant and susceptible strains [15]; a predominance of some
clonal lineages (CC8 (ST239 and ST612), CC5, CC30, CC80, and CC88) has been identified in MRSA
strains [15,16]. In many cases, CC88 is the dominant clonal lineage (24% to 83%) detected among
MRSA strains in humans, and it has been named the “African clone” [15].

In this review, the objective is to report the situation of S. aureus in animals and food in Africa.
The different African food habits highly influence the livestock industry of this continent. Moreover,
there is a huge density and a high number of wild animal species that can be an important reservoir of
this microorganism and of emerging antibiotic resistance mechanisms. These characteristics, and the
close contact among humans, livestock, and domestic and wild animals, can have a relevant impact on
the epidemiology of MSSA and MRSA. Therefore, it is essential to know what is happening, not only
in strains from humans, but also in those of animal and food origin.

2. S. aureus in Animals in Africa

2.1. S. aureus Prevalence in Animals

Studies focused on the presence, prevalence and/or molecular typing of MSSA and MRSA strains
from animals in Africa are rather limited and there is only information about certain countries (Table 1,
Figures 1 and 2) [17–38]. Until the moment when this review was performed, S. aureus strains had
been reported in sick and healthy animals in 12 countries and MRSA strains had been only identified
in seven of them (Côte d’Ivoire, Egypt, Nigeria, Senegal, South Africa, Sudan, and Tunisia). Most
studies in animals have been performed in recent years, indicating an increased awareness of the role
of animals in the evolution, epidemiology and dissemination of this microorganism.

The comparison of MSSA and MRSA prevalence data in the different studies carried out in the
African continent is difficult due to the different methodologies that have been employed. In some
studies, this prevalence is calculated taking into consideration the number of total samples, in others
the number of each species included and in others the number of staphylococcal strains isolated.
In Figures 1 and 2 the prevalence was estimated considering the total number of samples of each
species tested when these data were included in each publication. In this way, the MSSA prevalence
identified in the different countries was highly variable (from 3% to 58%) (Figure 1). Some clonal
lineages seem to be better adapted to some animal species, and S. aureus rate might be higher in these
animals. This could be the case, for example, of CC130 and CC133 lineages, which are highly associated
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with ruminants, as detected in studies performed on other continents [39,40]. On the African continent,
there might be other clonal lineages associated with certain animal species, but most of these clones
are still unknown. There is a specific subclade (ST1874, ST2058, and ST2071) that seems to be related to
monkeys according to one study carried out in sub-Saharan Africa [19]. Results shown in Table 1 can
be influenced by the methodology of sampling, and thus, the oro-pharyngeal S. aureus colonization
rate was higher (72%) than the rectal prevalence (8.7%) in lemurs [18]. Prevalence rates were also
very different depending on the animal analyzed, being 11% in lemurs and 50%–80% in chimpanzees
(vaginal samples in both cases). In addition, some studies were performed including healthy [34–36]
and/or sick animals [21] (Table 1).
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Figure 1. Animal species, clonal lineages and prevalence of MSSA identified in the Africa continent.
Prevalence (%) is calculated considering the total number of samples of each animal species included
in the different studies and is indicated when this estimation is possible with the data shown in each
publication. Moreover, in those cases, the number of samples studied is also indicated (%/number of
samples). Clonal complexes detected in more than one country are indicated as a triangle. The clonal
complexes were determined by e-BURST when sequence types were indicated in the study and were
presumptively assumed according to the spa-types when the sequences types were not indicated in
the study.
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Figure 2. Animal species, clonal lineages and prevalence of MRSA identified in the Africa continent.
Prevalence (%) is calculated considering the total number of samples of each animal species included
in the different studies and is indicated when this estimation is possible with the data shown in each
publication. Moreover, in those cases, the number of samples studied is also indicated (%/number of
samples). The clonal complexes were determined by e-BURST when sequence types were indicated in
the study and were presumptively assumed according to the spa-types when the sequences types were
not indicated in the study.
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Table 1. Distribution and clonal lineages of S. aureus detected in animals in the African continent.

Country Tested
Animals

Animals from
Which S. aureus

Was Detected

Detection
of MRSA

Animals
from Which
MRSA Was

Detected

Sampling
Date Healthy/Sick Samples Lineages of

MRSA Lineages of MSSA b Reference

Côte d’Ivoire

Domestic and
wild animals

Goats, cats,
dogs, sheep,

poultry, primates
yes Sheep 2010–2013 Healthy Nasal and

pharyngeal CC88

CC5, CC6, CC8, CC15,
CC121, CC152, ST567,

ST1472, ST2946,
among others

[17]

Primates Chimpanzees no - 2007–2012 Healthy

Mucosal,
feces, oral,

genital, fruit
wedges

- CC1, CC45, ST601,
ST1928, ST2603, ST2621 [18]

Primates Monkeys no - - Healthy Nasal and
fruit wedges -

CC1, CC9, CC45, ST601,
ST1782, ST1928, ST2023,
ST2058, ST2059, ST2072,

ST2603, ST2621

[19]

Democratic
Republic of

Congo

Domestic and
wild animals Civet, primates no - 2010–2013 Healthy Nasal and

pharyngeal - CC5, ST2473-ST2478,
among others [17]

Egypt

Dogs and cats Dogs yes Dogs - Healthy and
sick

Nasal, oral,
ear, wound

HA-MRSA
and

CA-MRSA
- [20]

Cattle, dogs,
buffaloes,
poultry

Cattle, dogs,
buffaloes, poultry yes No specified - Sick

Milk, wounds,
abscesses,
internal

organs, urine
and nasal

ND a - [21]

Gabon

Primates Gorillas,
chimpanzees no - 2011 Healthy and

sick
Nasal, oral,

vaginal, rectal - CC72, CC101 [22]

Primates Monkeys, gorillas,
chimpanzees no - - Healthy Nasal and

fruit wedges -

CC1, CC80,
ST1851-ST1854, ST1856,
ST1857, ST1872 ST1874,
ST1928, ST2022, ST2023,
ST2067, ST2071, ST2074

[19]

Domestic and
wild animals Sheep, primates no - 2010–2013 Healthy Nasal and

pharyngeal -

CC101, CC80, ST1838,
ST1851-ST1854, ST1857,
ST1872-ST1874, ST1925,
ST2022, ST2067, ST2071,
ST2074, ST2295, ST2296,
ST2721, among others

[17]
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Table 1. Cont.

Country Tested
Animals

Animals from
Which S. aureus

Was Detected

Detection
of MRSA

Animals
from Which
MRSA Was

Detected

Sampling
Date Healthy/Sick Samples Lineages of

MRSA Lineages of MSSA b Reference

Madagascar Primates Lemurs no - 2007–2012 Healthy

Mucosal,
feces, oral,

genital, fruit
wedges

- CC1, CC182, CC188,
ST2435, ST2436 [18]

Nigeria

Dogs, cats,
chickens, pigs,
horses, sheep,
cattle, goats

Dogs, cats,
chickens, pigs,
horses, sheep,
cattle, goats

- - - Healthy and
sick

Skin lesions,
nasal, cloacal,

milk
- - [23]

Bats Bats no - 2008–2010 Healthy Fecal - CC15, ST1725-ST1727,
ST2463-ST2467, ST2470 [24]

Camels, sheep,
cattle, goats

Camels, sheep,
cattle, goats yes

Camels,
sheep, cattle,

goats
2012 Healthy Nasal and

milk ND - [25]

Chickens Chickens no - - Healthy - - - [26]

Senegal Pigs Pigs yes Pigs 2009–2011 Healthy Nasal CC5, CC88
CC1, CC5, CC8, CC15,
CC72, CC97, CC121,

CC152
[27]

South Africa

Pigs, cattle,
goats,

chickens
Pigs yes Pigs - Healthy Nasal, mouth

wash, ear ND - [28]

Chimpanzees Chimpanzees no -
2007,
2010,
2011

Healthy Nasal and oral - CC15, CC6, CC30, CC80,
CC101 [29]

Cattle and
pigs Cattle and pigs yes Cattle and

pigs - Healthy Rump, flank,
brisket, neck ND - [30]

Sudan
Sheep Sheep no - 2007–2008 Sick Abscesses - ST1464 [31]
Sheep Sheep no - 2003–2005 Sick Pus samples - - [32]

Horse Horse yes Horse - Sick Lungs and
peritoneum ND - [33]
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Table 1. Cont.

Country Tested
Animals

Animals from
Which S. aureus

Was Detected

Detection
of MRSA

Animals
from Which
MRSA Was

Detected

Sampling
Date Healthy/Sick Samples Lineages of

MRSA Lineages of MSSA b Reference

Tunisia

Sheep Sheep yes Sheep 2010 Healthy Nasal CC80 CC8, CC130, CC522,
ST1476, ST2076 [34]

Donkeys Donkeys no - 2010 Healthy Nasal -
CC1, CC6, CC7, CC15,

CC22, CC72,
CC133, CC522

[35]

Cattle, goats,
dogs, cats

Cattle, goats,
dogs, cats no - 2010–2011 Healthy Nasal -

CC6, CC15, CC30, CC45,
CC130, CC133,
CC188, CC522

[36]

Uganda

Chimpanzees Chimpanzees no -
2007,
2010,
2011

Healthy Nasal and oral - CC15, CC6, CC30,
CC80, CC101 [29]

Primates Chimpanzees no - 2007–2012 Healthy

Mucosal,
feces, oral,

genital, fruit
wedges

- CC6, CC9, CC15, CC30,
CC80, CC152, CC188 [18]

Zambia

Zebra Zebra - - Sick Tissue - - [37]

Chimpanzees Chimpanzees no -
2007,
2010,
2011

Healthy Nasal and oral - CC15, CC6, CC30,
CC80, CC101 [29]

Dogs and cats Dogs no - 2012 Sick Skin, ear,
wound - CC398, CC5,

CC15, CC152 [38]

a ND, non-determined in the study. b The clonal complexes were determined by e-BURST when sequence types were indicated in the study and were presumptively assumed
according to the spa-types when the sequences types were not indicated in the study. Sequence Types instead of Clonal Complexes were indicated when they were not enclosed in any
Clonal Complexes.



Microorganisms 2016, 4, 12 7 of 19

In general, the MRSA colonization of animals detected in the African continent was very low
(from 0% to 3%) [20,25,27,34], except for one study carried out in Nigeria [25], in which a colonization
rate of 16.8% was observed in cattle samples (Figure 2). In countries on other continents, MRSA
prevalence in healthy pets is usually lower than 1%, being between 9% and 20% in animals admitted
to veterinary hospitals [41]. In one study performed in Egypt, MRSA isolates were identified in
2.9% of the analyzed dog samples and MRSA were not identified among the tested cat samples [20].
In livestock animals (especially in pigs), higher MRSA prevalence has been identified in European
countries (4%–80%) [42]. In other farm animals, such as poultry, cattle and horses, the detected rates
are normally lower than 13% [11,43,44]. On the African continent, MRSA has been found in variable
rates in different livestock animals (cattle, sheep, pigs, goats, horses and camels) (Figure 2).

2.2. Population Structure of MSSA in Animals

As can be seen in Table 1 and Figure 1, a high diversity of clonal lineages has been identified
among MSSA strains from animals in Africa. Twenty-three Clonal Complexes (CCs), 47 Sequence
Types (STs) (which are not enclosed in any CC), and a many different spa-types were identified among
these MSSA strains. Moreover, in these studies, numerous new STs [24,34–36,38] and spa-types [34,35]
were detected. The most frequently found clonal lineages were CC1 and CC15, which were detected
in the following countries: Côte d’Ivoire, Gabon, Madagascar, Nigeria, Senegal, Tunisia, Uganda
and/or Zambia (Table 1 and Figure 1). In addition to CC1 and CC15, other clonal lineages (CC5,
CC6, CC8, CC30, CC80, CC101, CC121, CC152, and CC188) were also identified in several African
countries (Figure 1). Alternatively, some CCs were only observed in animals in one country. This is the
case of CC398 in Zambia [38], CC130 and CC133 in Tunisia [34–36], and CC182 in Madagascar [18],
among others.

Regarding clonal lineages associated with animals, there is only one description of MSSA CC398
in Africa, detected in the skin sample of one dog [38]. No other descriptions of MSSA or MRSA CC398
have been performed in other pets, in livestock animals or in wild animals in Africa. However, this
clonal lineage has recently been identified in one MRSA clinical isolate in a hospital of Tunisia [45],
and in MRSA and MSSA isolates from food samples, also in Tunisia, as will be detailed later [46].
Remarkably, other livestock associated CCs of high relevance have also been found in animals in
Africa (Table 1 and Figure 1). MSSA CC130 strains were identified in Tunisia in sheep, goats, and one
cow [34,36]. Monitoring of this lineage is very important since the new gene mecC has been identified
mainly in CC130 strains in Europe [47,48]. However, this gene has not yet been found in any African
country. CC133 is frequently found in ruminants [49–51] and this clonal lineage was identified in
healthy donkeys in one study performed in Tunisia, and was the predominant CC found in 44% of
the recovered isolates [35].

Other clonal lineages (CC1, CC5, CC8, CC9, CC30, CC97, and CC121) detected in animals in
Africa have also been identified in livestock animals in other continents. CC1 has been previously
found in pigs, cattle, poultry and horses in other studies [52–54], and identified in pigs, donkeys
and non-human primates in Côte d’Ivoire, Gabon, Madagascar, Senegal, and Tunisia [17–19,27,35].
S. aureus strains belonging to CC5 are able to cause important infections in poultry [52]. Few studies
about the presence of S. aureus in poultry have been performed in the Africa continent. Thus, MSSA
strains have only been identified in poultry in Côte d’Ivoire, Egypt and Nigeria [17,21,23]. In one of
these studies, molecular typing was performed and CC152 (and not CC5) was identified [16]. Although
CC5 has not been found in poultry strains in Africa, this clone has been identified in MRSA and MSSA
strains from other animal species (pigs, civets, dogs and goats) [17,27,38]. In Asian countries (China,
Malaysia, and Thailand), the most common MRSA clone found in pigs is CC9 [55,56] and in Portugal
CC30 (in addition to CC398) [57]. These CCs were identified in MSSA strains from animal species,
except for pigs, in Côte d'Ivoire, Tunisia, Uganda, and/or Zambia [18,19,29,36]. However, it must be
taken into consideration that the presence of this microorganism in pigs has only been studied for
four works [23,27,28,30], and only in one of them the strains have been characterized [27]. In that



Microorganisms 2016, 4, 12 8 of 19

study, the CCs identified in MSSA strains from pigs were CC1, CC5, CC72, CC97, CC121, CC15, CC152
and CC8 [27]. Regarding CC8, CC97 and CC121, these clonal lineages have been identified on other
continents in cattle, horses, pigs, and rabbits [53,58–61].

2.3. Population Structure of MRSA in Animals

There are few studies in which MRSA strains have been identified in animals in Africa and only
in three of them there is information about the ST or the CC detected [17,27,34] (Table 1 and Figure 2).
The CCs identified were CC5 in pigs [27], CC80 in sheep [34] and CC88 in pigs and sheep [17,27].
CC5 and CC80 were also identified in MSSA strains in these and/or other studies [17,18,27,29,38].
Moreover, the three CCs found in MRSA of animals in Africa have been frequently detected among
human clinical MRSA isolates in this continent [16,17]. MRSA isolates with the mecC gene have not yet
been reported in Africa.

2.4. S. aureus Interspecies Transmission

MSSA and MRSA human-to-animal transmission has been suggested in some African studies [17,22,29].
Human related clonal lineages (CC15, CC72, CC80, CC101, and CC152) have been identified in MSSA
strains from non-human primates, goats, sheep, poultry and pets [17,29]. Moreover, MRSA CC88
strains with the same spa-type (t189) were identified in humans and sheep in Côte d’Ivoire. In that
study, samples were taken from domestic animals that lived in the same villages where the tested
humans lived [17]. Another human-to-animal case transmission was identified in a sanctuary in Africa
in which a veterinarian and a chimpanzee showed MSSA strains with the same spa-type t279 [29].
In addition, in the study of Nagel et al. [22], interspecies transmission of a widely spread human
associated S. aureus CC72 strain (spa-type t148) was observed; this strain was found as colonizer agent
in three gorillas and caused infection in one of them. Strains with the same spa-type were identified in
chimpanzees in contact with the infected gorilla. These strains presented only one different band in
Pulsed-Field Gel Electrophoresis (PFGE) compared with the strains obtained from gorillas [22].

On the other hand, in one study performed in Tunisia, nasal swabs of healthy people with different
levels of interaction with animals were analyzed, and animal associated clonal lineages (CC30 and
CC121) were found in some MSSA strains from people with frequent contact with animals [62]. In these
cases, animal-to-human transmission might have happened.

3. S. aureus in Food in Africa

There are a high number of African studies focused on the microbiological analyses of food
products (milk, meat, ready-to-eat, fish and eggs, among others). However, in most of them the main
objective was usually to analyze the presence of different pathogens (among them, S. aureus), and
to count CFU (Colony Forming Units) in order to determine the rate of contamination of the tested
food [63–68]. In other studies, milk samples of sick animals were analyzed with the objective of
detecting the presence of S. aureus as the mastitis-causing agent [69–77]. There were also a few papers
in which the presence of S. aureus and/or MRSA was studied in food products from healthy animals.
However, clonal lineages were determined only in a few of them [46,78].

3.1. MSSA Detection in Food Samples

MSSA strains have been identified in very diverse types of food in Africa in very different
percentages (Table 2) [79–106]. The rates detected in raw meat, meat products and cooked meat have
been from 3% to 81.8%. Cooked and uncooked samples were analyzed in one study carried out
in Libya [91], and the prevalence was higher in raw chicken (29.6%), than in cooked meat (3.12%).
In this case, it was demonstrated that the cooking process reduced the presence of this microorganism.
However, the highest prevalence (81.8%) in meat samples was detected in one study performed in
Cameroon in which cooked pork samples were analyzed [79]. In this case, human contamination
during processing of these foods could be the most probable explanation. Some explanations of why
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this microorganism is present in food samples are given in the different publications. The fact that
animals are kept in kitchens where food is prepared; direct contamination by the food handlers through
coughing and sneezing; storage of food at high temperature; and/or some processed foods, which
constitute a good culture medium for bacteria, are some of the possible reasons [88,97]. In addition,
in the case of raw meat samples the source of contamination could also originate in the animal.

There are some methods such as molecular typing or determination of Immune Evasion Cluster
(IEC) genes that could help us to know if the origin of S. aureus strains in meat samples might be
human or animal [107,108]. However, clonal lineages were only determined in two studies [46,78].
In one of them, CC8, CC22, and CC398 were identified among chicken, sheep, and veal samples [46].
As previously noted, this was the first study in which CC398 has been found in food samples in
the African continent [46]. In this study, twenty different spa-types were identified among MSSA
strains. One of these spa-types (t1166) has been associated with CC133, and was detected in one strain
isolated from a horse sample [46]. In another study carried out in Gabon, five MSSA strains were
obtained from chicken samples [78]; three of them presented the spa-type t002 and belonged to ST5
(CC5), one showed the spa-type t386 and belonged to the singleton ST2622, and the remaining one
had spa-type t591 and was non typeable by Multilocus Sequence Typing (MLST). Notably, the spa-type
t002 was also identified in humans in Gabon [78]. It is important to mention that in this study, food
samples were imported from industrialized countries (Brazil, Spain, USA, and Turkey), and it would
be interesting to know if these clonal lineages are frequent in those countries. Until now, there is very
scarce information about the spa-types t386 and t591. On the other hand, the spa-type t002 is widely
spread all over the world [108].

Regarding milk samples from healthy animals, S. aureus prevalence was between 6.3% and
100% (Table 2). Most of the studies included raw milk samples from cattle or camels [83,85,104],
although some of them also analyzed dairy products typical of the African continent, such as lben
or jben [94]. One study carried out in Uganda analyzed the presence of different microorganisms in
egg samples, and detected higher prevalence of S. aureus on the outer shell surfaces (18%) than inside
the eggs (4%) [105]. Other types of food that have been analyzed include the following: beans, corn
flour, doughnut, fish roll, salted fish, maize flour porridge, mangoes, meat pie, salad, pawpaw, and
cassava [82,92,97,99,101] (Table 2).

3.2. MRSA Detection in Food Samples

MRSA strains have been identified in meat, fish and milk samples from healthy animals in some
studies performed in Africa (Table 2) (Figure 3). However, most of these MRSA strains have been
identified by phenotypic methods, and the presence of the mecA gene was either not studied or not
detected in many of them. MRSA strains have been found in raw meat, in meat products, and in cooked
meat in Côte d’Ivoire, Nigeria, and Tunisia [26,46,80,98]. The presence of the mecA gene was analyzed
in two of these four studies [46,98], and in only one of them this gene was found [46]. Molecular typing
techniques were used in this last study [46], and two clonal lineages were identified (CC30 and CC398)
in the two MRSA strains isolated from raw chicken samples.

MRSA prevalence identified in meat samples in the African studies was in the range
0.8%–4.6% [26,46,80,98]. Interestingly, the highest percentage was identified in a unique study in
which MRSA strains were found in cooked meat samples [80]. Salted fish samples were analyzed
in Egypt and methicillin resistance was observed in 12 of the 95 S. aureus strains tested (12.6%) [82].
In five studies [25,85,89,94,100], the prevalence was calculated regarding the total S. aureus strains
isolated, and the obtained values were variable. In the study performed in South Africa, the prevalence
was 81.2%–93.2% in milk samples from communal farms and 5.7%–7% in those from commercial
farms [100]. The percentages obtained in the remaining studies were 60.3% in Ethiopia [85], 28.57%
in Nigeria [25], 15% in Morocco [94], and 7.8% in Kenya [89]. The presence of the mecA gene was
not studied in any of them, and data regarding the clonal lineages of these MRSA strains were also
not available.
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Table 2. Detection of S. aureus in food from healthy animals in the African continent.

Country Samples Number of
Samples Studied Date of Sampling Raw/Cooked Detection of

MRSA a
S. aureus

Prevalence b Reference

Cameroon Pork 11 - Cooked ND a 81.8% [79]

Côte d’Ivoire Beef, chickens, pork 240 2010 Cooked Yes 7.9% [80]

Democratic
Republic of Congo Beef - - Raw ND - [81]

Egypt

Sausage, hamburger 60 - Raw ND - [65]
Liver, meat 60 - Cooked ND - [63]

Fish (sardine, feseikh,
molouha) 60 - Cooked Yes - [82]

Milk 150 - Raw ND 41.2% [83]

Goat (milk and meat) 100 - Raw ND 58% milk 18%
goat meat [84]

Ethiopia Milk - 2011–2012 Raw yes 100% [85]
Meat samples 100 - Raw ND 21.2% [86]

Gabon Chicken 151 2011–2012 Raw no 3.3% [78]

Kenya
Milk - - Raw and cooked no - [87]

Milk, minced meat 96 - - yes - [88]
Milk - 2001–2002 Raw yes - [89]

Lesotho Cattle, pigs, sheep 237 - Raw ND 5% [90]

Libya Chicken burger 120 - Raw and cooked ND 29.6% raw
3.12% cooked [91]

Malawi Home cooked food 132 - Cooked ND

61% (63%
maize flour

porridge, 51%
fish, 75%

vegetables,
69% beans,
38% others)

[92]

Morocco
Turkey 96 2011–2012 Raw no - [93]

Milk, lben, jben - 2005–2006 Raw and cooked yes - [94]
Meat and beef offal 156 2002–2004 Raw ND 16% [95]

Namibia Milk 15 1995–1996 Cooked ND - [96]
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Table 2. Cont.

Country Samples Number of
Samples Studied Date of Sampling Raw/Cooked Detection of

MRSA a
S. aureus

Prevalence b Reference

Nigeria

Ready-to-eat food 168 - Raw and cooked ND

33.3% (57.1%
salad, 19.1%

meat pie, 14.3%
fish roll, 9.6%

doughnut)

[97]

Milk 510 2012 Raw yes 30.4% [25]
Suya, balangu, kilishi,

dambunnama, raw
beef

300 - Raw and cooked yes 9.7% [98]

Chicken 400 - Raw yes - [26]
Ready to eat food

(meat, fish, vegetable) 880 - Raw and cooked ND 62% [99]

Somalia Milk - - Raw and cooked no - [87]

South Africa

Milk 28 - Raw yes 100% [100]
Milk 156 1995–1996 Cooked ND - [96]

Poultry - - Raw ND 24.1% [64]
Street food vending
(beef, chicken, salad,

gravy)
132 - Raw and cooked ND 3% [101]

Sudan
Sausage 40 - Raw ND - [68]

Milk 320 - Raw ND 8.8% [102]
Milk 90 - Raw ND - [103]

Tanzania Milk 128 2003 Raw ND 6.3% [104]

Tunisia Chicken, horse, sheep,
veal 164 2010–2011 Raw yes 26.2% [46]

Uganda Eggs 171 - Raw ND 18% surface 4%
inside [105]

Zimbabwe Milk 140 2009–2010 Raw and cooked ND - [106]
a ND: non determined (methicillin resistance was not tested). b Prevalence is calculated considering the total number of samples included in the different studies when this estimation
is possible with the data shown in each publication.
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4. Other Important Characteristics of S. aureus from Animals and Food in Africa

4.1. Antimicrobial Resistance of S. aureus

In some of the papers included in this review, in addition to methicillin resistance, antimicrobial
resistance patterns to other agents were shown [17–22,24,25,28–31,34–36]. In general, MRSA
isolates presented resistance to other non beta-lactam agents in addition to methicillin resistance,
while MSSA isolates showed susceptibility to most of the antimicrobials tested. This situation
is similar in MRSA and MSSA isolates from humans, animals and food in other parts of the
world. In the studies in which MRSA isolates were obtained, resistance to tetracycline (5%–84%),
erythromycin (1.7%–100%), clindamycin (9%–97%), trimethoprim-sulfametoxazole (1.9%–78%),
tobramycin (0%–36%), ciprofloxacin (0%–42%) or vancomycin (9%–46%) were identified in different
percentages [17,20,21,25,28,30,34–36,80,82]. Remarkably, in Nigeria all MRSA isolates obtained
from camels, sheep and cattle showed resistance to mupirocin and fusidic acid and these
antimicrobials are not routinely used in veterinary medicine in this zone [25]. Regarding
MSSA isolates, in most of the studies, these isolates were susceptible to other non-beta-lactam
antimicrobials. Only some of these isolates showed resistance to penicillin, tetracycline, erythromycin
or clindamycin [17–19,22,24,25,29,31]. Nevertheless, in some cases, penicillin resistance was high
among MSSA isolates [36,46,62], as occurs in other parts of the world; in the case of remote African
regions, this phenotype is very rare, not only in animals but also in humans [29]. It must be taken
into consideration that there are many factors that could be influencing the phenotypes detected. For
example, it has been observed that MSSA isolates from chimpanzees in the wild were less resistant to
penicillin, than isolates from chimpanzees living in captivity [18].

4.2. Virulence Determinants

Africa is considered endemic for Panton-Valentine-Leukocidin (PVL)-positive MSSA
isolates [15,109]. Worryingly, this leukocidin has been identified in some MRSA from animals in
Côte d’Ivoire, Gabon, Democratic Republic of Congo, Senegal and Tunisia [17,27,34], and in MSSA
isolates in Côte d’Ivoire, Senegal and Tunisia [18,27,29,36]. In one study, PVL was significantly more
frequent in isolates from chimpanzees than from humans (28% vs. 10%) [19]. According to these
data, the possible role of animals as reservoir of this important virulence factor in this continent must
be considered.



Microorganisms 2016, 4, 12 13 of 19

Other relevant virulence genes such as tst, eta, etb or etd have also been identified in animal isolates
in Africa [18,23,27,34,35]. Moreover, the presence of genes encoding staphylococcal enterotoxins (SEs)
responsible for food poisoning was studied in some articles. Some of these genes, such as sea, seb,
sei, seh or seg, have been identified in isolates from different animal species in Africa [27,29,34,35].
Remarkably, these genes have also been found in isolates from food samples. In Egypt, SE genes were
identified in 20.7% of raw goat milk samples and 11.1% of meat samples [84]. In Nigeria, 269 strains
of 552 (48%) isolated from ready to eat food were enterotoxigenic, enterotoxin A being the most
commonly found toxin [99]. However, in another study performed in Kenya, enterotoxin C was the
most frequently produced type [88]; in this study, the highest percentage of enterotoxigenic strains was
detected among chicken samples [88]. However, in one study performed in raw camel milk samples
in Sudan, only three strains of 25 tested presented the enterotoxin C (the variant sec2) and the egc
cluster [102].

5. Conclusions

The number of articles about the antibiotic resistance problem in African countries, and in
particular about prevalence and clonal lineages of S. aureus strains in this continent, has increased
in recent years. However, the available information is limited to a few countries, and is generally
incomplete. Most of these studies are focused on clinical isolates, but there are some papers in which
strains from various animal species (non-human primates, cows, pigs, donkeys, sheep, pets, bats, and
camels) are analyzed. As in other parts of the world, animal MSSA strains present higher genetic
diversity than MRSA strains. Clonal lineages associated with animals have been identified in several
African countries, and the detection of MSSA CC398, CC130 and CC133 strains stand out. However,
there is very scarce information about potential reservoirs and ways of dissemination of these clones
in Africa. Relevantly, numerous new sequence types and spa-types have been identified in isolates of
animals on this continent. Until now, the new mecC gene has not been detected in African countries,
and further studies searching for its possible presence are required. On the other hand, there are several
studies in which MSSA and MRSA strains have been found in food samples from healthy animals.
However, in only two of them molecular typing of the S. aureus strains was performed. Therefore, the
data in this regard are still insufficient. It is essential to know more about the current situation in these
countries to assess the role of the food chain in the transmission of MRSA. Surveillance of MSSA and
MRSA in humans, animals (pets, livestock and wild animals), and food in Africa can be a powerful tool
for a better understanding of the epidemiology of this microorganism and for establishing appropriate
control measures.
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