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Abstract: This study investigated the profile of the autochthonous gut bacterial communities in adult
individuals of Sparus aurata and Dicentrarchus labrax reared in sea cages in five distantly located
aquaculture farms in Greece and determine the impact of geographic location on them in order to
detect the core gut microbiota of these commercially important fish species. Data analyses resulted in
no significant geographic impact in the gut microbial communities within the two host species, while
strong similarities between them were also present. Our survey revealed the existence of a core gut
microbiota within and between the two host species independent of diet and geographic location
consisting of the Delftia, Pseudomonas, Pelomonas, Propionibacterium, and Atopostipes genera.
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1. Introduction

Studies on fish gastrointestinal tract microbiota (GITM) are mostly focused on the isolation,
identification and evaluation of microorganisms in farmed species. The main target of such studies is
the possible use of these microorganisms as potential probiotics in order to promote fish growth and
health [1]. With the advent of next generation sequencing technologies, results have demonstrated
that fish GITM diversity shows higher complexity than originally considered [2]. Knowing the core
microbiota (sensu [3]) is pivotal in predicting and further investigating the provided microbial services
to the host [4], since these communities are important for the ecological understanding of the gut
habitat and the functions of its microbes [5]. The investigation of co-occurrence patterns, including core
and less frequent occurring microbes, has been shown to be extremely useful for depicting fundamental
and keystone microbial species across same types of habitats-host in spatial and temporal scales [6].
Such approaches have shown that correlations between microbes and latitude can exist even for the
human gut [7].

While dietary studies profiling the human gut microbiota pose certain limitations [8], sea cage
farmed fish species can be a good model system to investigate fish core GITM since these
populations are genetically homogeneous and consume a well-balanced diet that meets their nutritional
requirements throughout their life cycle, while populations of the same species are reared in similar
environmental conditions. For fish GITM, it has been suggested that these communities are not mere
reflections of their host’s habitat but are rather shaped by host-specific selective forces [9]. In this study,
we compared the GITM of Sparus aurata and Dicentrarchus labrax individuals originating from five
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distantly located aquaculture installations in Greece in order to reveal their core GITM, i.e., bacteria
that occur across all samples regardless of location and supplied diet.

2. Materials and Methods

Adult individuals of S. aurata and D. labrax, weighing on average 451 ± 86.4 and 481.3 ± 165.5
(Table S1), respectively, were collected from five commercial aquaculture farms distantly located from
each other in different areas in Greece (Figure S1). Fish were grown in sea cages and fed commercial
diets (Table S2), and raised under similar husbandry conditions (temperature, pH, salinity, feeding
frequency) throughout the rearing cycle. All samples were collected in September 2014 in order
to limit possible seasonal variations. Fish were sacrificed by emersion on ice water, packaged in
insulated boxes with melted ice (0 ◦C), and transferred to the laboratory within 6–24 h. Wet weight
was measured and gut tissues were obtained by aseptic dissection and the intestinal content was
squeezed out. The midgut from 4–6 individuals from each species (n = 2) originating from the same
cage in every location (n = 5) was excised with sterile scissors and rinsed with sterile particle free
seawater, as we targeted the resident gut microorganisms, i.e., epi and endobionts of the gut tissue
cells, and not the ones associated with the ingested food. Gut samples were kept at −80 ◦C until
further analysis. DNA was extracted directly from ca. 0.25 g gut tissue using the PowerMax Soil DNA
Isolation kit (MoBio, Carlsbad, CA, USA) according to manufacturer’s protocol. The concentrations of
extracted DNA (absorbance at 260nm) and purity (absorbance ratio 260/280) were measured using
NanoDrop (ThermoScientific, Waltham, MA, USA). We analyzed the 16S rDNA gene diversity of
gut bacteria from each individual sample, targeting the V3¬V4 region by using 454 pyrosequencing
with the primer pair S¬D-Bact¬0341¬b¬S¬17 and S¬D¬Bact¬0785¬a¬A¬21 [10]. Samples were
sequenced utilizing Roche 454 FLX titanium instruments and reagents after following manufacturer’s
guidelines at the MRDNA Ltd. (Shallowater, TX, USA) sequencing facilities. Pyrosequencing reads
were processed by the MOTHUR platform (Pat Schloss, University of Michigan, MI, USA; version
1.38) [11,12]. Only sequences with ≥250 bp and no ambiguous or no homopolymers ≥8 bp were
considered for further analysis. All remaining sequences were binned in operational taxonomic units
(OTUs) and were clustered using a 97% sequence similarity threshold. OTUs taxonomic classification
was determined by the SILVA Incremental Aligner (SINA) online alignment service for small (16S)
subunit ribosomal RNA [13], by setting minimum identity with query sequence 0.95 and by rejecting
sequences below identity 80%. The sequences that could not be classified into any known phylum
were assigned as “unclassified” from the SILVA database, release 130 [14].

Statistical analysis and graphical illustrations were performed using the PAlaeontological STudies
(PAST) software [15] and the R Studio platform [16]. Macroecological patterns were calculated based
on species area relationship (SAR) according to [17]. To evaluate host-specific dynamics, we applied
the “DOC method” [18] by calculating the correlation between the overlap and dissimilarity of all
OTUs for all the possible individual pairs from the five locations for each host species. To reveal
microbial associations within the gut environment the network approach of [19] was used based on
the ratio of positive to total correlations of the most dominant OTUs in individuals of S. aurata and
D. labrax. Raw sequence data from this study have been submitted to the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra/) with accession numbers SRR5161931 and SRR5803847, for S.
aurata and D. labrax, respectively.

3. Results and Discussion

In this study, we analyzed the midgut bacterial diversity of farmed Sparus aurata and Dicentrarchus
labrax individuals in order to determine members of the adult core microbiota of these commercially
important fish species. Taking into account that microbiota are important in health and disease,
revealing the core microbiota of a species would be important in order to explore how to achieve
a beneficial collaboration between host and microbiota (for a review see [5]). The analyzed fish
individuals had the following features: (a) common genetic origin, (b) very similar supplied commercial
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feed (Table S2), (c) origin from distant aquaculture farms (23–554 km between them), (d) similar age,
and (e) were sampled within days. These criteria allowed us to assess the core microbiota of these
animals by minimizing the effects of host genetics, nutritional state and environmental stressors
(e.g., salinity, temperature) variability. In this study, core OTUs refer to the ones found in each
individual midgut sample. The effect of the surrounding water was not studied since it is expected to
be insignificant for the GITM diversity as shown previously [20–23]. A single water sampling on the
same day of the midgut sampling of the investigated fish individuals, would not be so informative
due to the following two factors: 1) marine bacterioplankton is characterized by strong variation in
short (e.g., [24,25]) and longer [26–29] time scales, and 2) the life cycle of farmed S. aurata and D. labrax
spans over several months. To the best of our knowledge, this is the first study combining all the above
features for the gut bacterial communities of S. aurata and D. labrax. Floris et al. [30] investigated the
gut microbiota of S. aurata at two coastal lagoons in Sardinia, Italy, but their study was based on older
techniques with limited power to uncover the full extent of biodiversity. For D. labrax, there are a few
relevant studies but were mainly focused on candidate probiotic’s evaluation [31–34] and the effect of
alternative feed ingredients in gut microbiome [35].

Despite the low reads numbers in some samples (Table 1) rarefaction curves have reached a
plateau (Figure S2), indicating satisfactory coverage of the existing bacterial OTUs. The effect of
different aquaculture location on bacterial species richness was not important since OTUs richness
between locations did not vary significantly (Figure S3). Each species had a rather defined bacterial
community, with 10–21 OTUs accounting for ≥80% of the relative abundance per sample (Table 1).

All detected OTUs belonged to 11 different phyla (Figure S4), commonly occurring in fish
gut [36,37] with Proteobacteria, Firmicutes, Actinobacteria dominating (>78%) across all samples.
Bacteroidetes-related OTUs also occurred in all locations for both species but with lower contributions
(Figure S4). The rest of the phyla (Chloroflexi, Spirochaetae, Deinoccocus-Thermus, Cyanobacteria,
Saccharibacteria, Gemmatimonadetes, Actinobacteria) occurred sporadically in low abundances (≤1.5%).

Within Proteobacteria in S. aurata, Betaproteobacteria was the dominant class in four locations (Yaltra,
Chania, Chios, Igoumenitsa; Greece), while in Atalanti, Betaproteobacteria and Gammaproteobacteria
co-dominated, with 22.1% and 23.7%, respectively (Figure S4). Other than this, Gammaproteobacteria was
the second most abundant class of Proteobacteria, with Alphaproteobacteria always in low abundances
(Figure S4). On the contrary, in D. labrax, Gammaproteobacteria dominated in three locations (Chania,
Yaltra, Atalanti; Greece) followed by Betaproteobacteria and Alphaproteobacteria. In the rest of the
locations (Igoumenitsa and Chios; Greece), Betaproteobacteria was the dominant taxon. In general,
Alphaproteobacteria abundances in D. labrax were higher than in S. aurata (Figure S4). The most
abundant orders in all locations for both host species were the Micrococcales, Corynebacteriales,
Propionibacteriales, Bifidobacteriales, Flavobacteriales, Bacteroidales, Bacillales, Lactobacillales, Burkholderiales
and Pseudomonadales.

A small set of OTUs was found to occur in all individuals from all five locations (8 in S. aurata
and 10 in D. labrax), i.e., representing the core mid gut microbiota (sensu [3]) for each species
(Figure 1). Moreover, five of these OTUs (Figure 1) were shared between the two species. The closest
phylogenetic relatives for these OTUs were Delftia acidovorans (Burkholderiales), Pseudomonas panacis
(Pseudomonadales), Pelomonas puraquae (Burkholderiales), Propionibacterium acnes (Propionibacteriales) and
Atopostipes suicloacalis (Lactobacillales). (Table S3). The estimation of the shared OTUs doubling time
(based on the 16S rDNA gene copy number [38] ranged between 0.8 and 2.0 h-1 (Table S3), implying
that they represent bacteria which can grow fast in the fish GIT and thus, they are more likely to
outcompete other bacterial taxa.
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Table 1. Pyrosequencing results of the bacterial 16S rDNA gene diversity in the midgut of Sparus aurata and Dicentrarchus labrax individuals (N) from different
aquaculture sites in Greece. OTUs: operational taxonomic units; N: number of individual midgut samples analyzed.

Site
Reads OTUs No. of the Most Dominant OTUs

(Cumulative Relative Dominance ≥ 80%)
Most Abundant OTU, Dominance (%)

and Closest Relative (≥97%)

S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax

Chania 827 ± 512.4
N = 4

2395 ± 725.4
N = 5 11 ± 2.2 16 ± 8.7 10 (80.0) 17 (79.9) OTU0011 (22.7)

Micrococcus luteus
OTU0014 (17.2)

Paracocccus denitrificans

Igoumenitsa 2360 ± 1972.7
N = 5

1809 ± 571.3
N = 4 25 ± 28.3 27 ± 20.3 13 (81.0) 14 (80.0) OTU0004 (27.8)

Bacillus hisashii
OTU0001 (19.9)

Corynebacterium vitaeruminis

Chios 2407 ± 1771.0
N = 6

2148 ± 1785.2
N = 6 18 ± 11.4 17 ± 9.8 13 (79.5) 13 (80.9) OTU0004 (22.0)

Bacillus hisashii
OTU0001 (24.7)

Corynebacterium vitaeruminis

Yaltra 2656 ± 1529.0
N = 6

697 ± 367.3
N = 6 19 ± 12.2 11 ± 2.4 21 (80.0) 10 (79.9) OTU0002 (16.9)

Delftia acidovorans
OTU0025 (21.9)

Acinetobacter lwoffii

Atalanti 1574 ± 1005.9
N = 4

2533 ± 1052.7
N = 5 13 ± 6.1 14 ± 8.1 12 (80.1) 11 (80.0) OTU0005 (14.7)

Pseudomonas extremaustralis
OTU0002 (17.7)

Delftia acidovorans
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organotrophic but not fermentative [42]. Pseudomonas spp. have been isolated from several fish species and 
have been evaluated as potential probiotics in aquaculture industry [43–45]. Pelomonas sp. could be a 
resident GITM as it has been found in the gut of farmed fish [46]. Propionibacterium acnes is commonly found 
in fish [47–50,21] and snails [51] but its major importance for the human skin microbiome [52] renders it as 
an uncertain autochthonous gut symbiont for S. aurata and D. labrax. Atopostipes is a fermentative genus and 
to date it has been associated with fermented flesh of skate (Raja pulchra) [53] but also with the Atlantic 
salmon (Salmo salar) gut [49]. Thus, it is likely a bacterium with potential fermentative role in farmed S. 
aurata and D. labrax. 

S. aurata shared OTUs belonged to taxa (Burkholderiales, Pseudomonadales, Flavobacteriales, Actinobacteria) 
reported in wild, organic and conventionally reared S. aurata individuals [48] while the identified closest 
relatives of these OTUs have been previously retrieved from similar environments (Table S3). This further 
suggests that these bacteria could be members of S. aurata core bacterial community. 

The observed core bacterial community for both species consisted mostly from nonsporulating, 
mesophilic bacteria, with diverse types of respiration with some of them presenting important features in 
other animals. For example, Micrococcus luteus possesses anti-Vibrio activity in the freshwater fish 
Oreochromis niloticus; Pseudomonas panacis degrades cellulose in the gut of the bark beetles Dendroctonus 
armandi, while P. veronii has been reported to have metabolic pathways related to central carbohydrate 
metabolism, nutrients uptake and plant hormone auxin production in the grapevine, Vitis vinifera, root [54]. 

Figure 1. Flower diagram of the shared operational taxonomic units (OTU) between Sparus aurata and
Dicentrarchus labrax individuals from different aquaculture sites in Greece.

Delftia spp. have been previously retrieved from fish gut of healthy grouper [39], rainbow trout [40],
2012), and Atlantic salmon [41] individuals. The members of this genus are strictly aerobic and
chemo-organotrophic but not fermentative [42]. Pseudomonas spp. have been isolated from several fish
species and have been evaluated as potential probiotics in aquaculture industry [43–45]. Pelomonas sp. could
be a resident GITM as it has been found in the gut of farmed fish [46]. Propionibacterium acnes is commonly
found in fish [21,47–50] and snails [51] but its major importance for the human skin microbiome [52] renders
it as an uncertain autochthonous gut symbiont for S. aurata and D. labrax. Atopostipes is a fermentative
genus and to date it has been associated with fermented flesh of skate (Raja pulchra) [53] but also with
the Atlantic salmon (Salmo salar) gut [49]. Thus, it is likely a bacterium with potential fermentative role in
farmed S. aurata and D. labrax.

S. aurata shared OTUs belonged to taxa (Burkholderiales, Pseudomonadales, Flavobacteriales, Actinobacteria)
reported in wild, organic and conventionally reared S. aurata individuals [48] while the identified closest
relatives of these OTUs have been previously retrieved from similar environments (Table S3). This further
suggests that these bacteria could be members of S. aurata core bacterial community.

The observed core bacterial community for both species consisted mostly from nonsporulating,
mesophilic bacteria, with diverse types of respiration with some of them presenting important features
in other animals. For example, Micrococcus luteus possesses anti-Vibrio activity in the freshwater fish
Oreochromis niloticus; Pseudomonas panacis degrades cellulose in the gut of the bark beetles Dendroctonus
armandi, while P. veronii has been reported to have metabolic pathways related to central carbohydrate
metabolism, nutrients uptake and plant hormone auxin production in the grapevine, Vitis vinifera,
root [54]. Most of the rest core gut bacterial OTUs, in S. aurata and D. labrax were assigned to
similar orders such as Corynebacteriales, Pseudomonadales and Micrococcales, though in different species
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(Table S2). Most of them have been retrieved from similar isolation sources (e.g., stool, intestine,
manure) (Table S3). The number of OTUs occurring only in one location varied between 11–61 and
22–55 for S. aurata and D. labrax, respectively (Figure S4).

Geographic distance between the aquaculture farms did not show any correlation with the gut
bacterial community structure for both species (Figure S5) and nonmetric multidimensional scaling
(NMDS, Figure S6) based on the Bray–Curtis distance of presence/absence OTUs, showed no clear
geographic separation (ANOSIM using Euclidean distances p = 0.391, R = 9.3−5) of the gut bacterial
communities for both species as well. This implies, that the observed GITM structure for each of the
two fish species investigated in this study are not related to the vicinity of the aquaculture farms.

In the current study, the correlations between the overlap and dissimilarity of GITM communities
structure were positive for both fish species considered (r = 0.477 and 0.574 for p < 0.002 in S. aurata
and D. labrax, respectively) (Figure 2), suggesting high inter-individual variability in terms of OTUs
abundances even in the same location. Similar results have also been observed in fecal microbiota for
both S. aurata and D. labrax [55,56]. While in human gut microbiome, the inter-individual variability
is more easily understood due to parameters such as dietary patterns and personal interests [57,58],
here we concluded that inter-individual variability in the autochthonous gut bacteria of D. labrax
and S. aurata, is more likely related with individual genetic factors. The observed inter-individual
variability means that the gut microenvironment of these two host fish species promotes selective
pressure in the bacterial communities. However, while the overlap of these bacterial communities
increases, the same happens with dissimilarity, indicating host-independent parameters also shaping
gut bacterial community in human [18,59] and fish GITM [60,61].

The most prominent factors promoting the inter-individual microbiota variation have only recently
been taken into account and these are host genotype, gut colonization during the early developmental
stages, environmental effects on GITM acquisition, diet, diseases and respective medication [8].
One reason for the GITM inter-individual variability is that caged fish are fed mechanically, a way that
does not secure equal food consumption for each fish due to individual differences in their activity.
The extent of GITM individual variability is important to know for the following reasons: (a) it dictates
the number of replicate samples per species that need to be analyzed [58], (b) it helps distinguishing
between autochthonous (resident) bacteria which colonize the gut mucosa and the allochthonous
(transient) bacteria occurring mostly in the digesta [9,62]. The demonstrated individual host variability
could be the reason for the low number of shared OTUs in both allopatric populations studied here,
but larger datasets are required in order to fully unravel this issue.
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Figure 2. Dissimilarity vs. overlap correlation of all the possible sample pairs of the gut bacterial
operational taxonomic units between different Sparus aurata and Dicentrarchus labrax aquaculture sites
in Greece.

Although one-way analysis of variance (ANOVA) revealed no statistically significant differences
between gut bacterial communities for both species (p > 0.05), (Figure S3), the biological relations
of the bacterial communities were different. The ratio of positive to total (PT) correlations of the
most dominant OTUs of S. aurata and D. labrax individuals was significantly different (p < 0.05),
suggesting different biological relationships in the guts of the two species (Figure 3). The high ratio of
the positive to total (PT) correlations of the most dominant operational taxonomic units demonstrates
that the majority of the dominant bacteria have either cooperative interactions or, at least, they do not
participate in competitive nutrition. Such relationships in microbial populations are believed to be
beneficial to the host as they ensure high capacity of utilizing the complex array of available substrates
found in the gut [35,63,64].
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dominant operational taxonomic units (OTUs) in Sparus aurata and Dicentrarchus labrax individuals
from aquaculture sites in Greece. Vertical lines indicate standard error.

4. Conclusions

It is still unknown whether and how the gut microbial communities of fish can contribute nutrients
and energy to the host and maintain a balance with the fish’s metabolism and immune system. This study
presents evidence for core gut bacterial communities within the two examined host species (S. aurata and
D. labrax), and also a small set of OTUs that have been found in common between them, indicating that
some autochthonous gut bacterial representatives of the Delftia, Pseudomonas, Pelomonas, Propionibacterium
and Atopostipes genera can colonize different host species. Despite the inter-individual variability and the
distance of each farm location, there is no significant difference between the gut bacterial communities in
the two host species. The results also revealed these gut bacterial communities form different biological
relations between their members as revealed by their populations association networks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/6/3/92/s1,
Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study; Table S2.
Ingredients of the diets used at the time of sampling; Table S3. Bacterial 16S rDNA operational taxonomic units
(OTU) found in the midgut of commercially reared Sparus aurata and Dicentrarchus labrax individuals from
different aquaculture sites in Greece; Figure S1. Aquaculture sampling sites. I: Igoumenitsa, Y, Yaltra, A: Atalanti,
Ch: Chios, C: Chania; Figure S2. Rarefaction curves bacterial operational taxonomic units generated by16S rDNA
tag pyrosequencing from the midgut of Sparus aurata and Dicentrarchus labrax individuals originating from
different aquaculture farms in Greece; Figure S3. Box-plot of the bacterial operational taxonomic units found in
the midgut of Sparus aurata and Dicentrarchus labrax individuals originating from different aquaculture farms
in Greece; Figure S4. Taxonomy (phyla: top row; Proteobacteria sub-phyla: bottom row) of the found bacterial
operational taxonomic units found in the midgut of Sparus aurata and Dicentrarchus labrax individuals originating
from different aquaculture farms in Greece; Figure S5. Relationship of the shared operational taxonomic units
(OTUs) and the total number of OTUs with the distance between different Sparus aurata and Dicentrarchus labrax
aquaculture sites in Greece; Figure S6. Non-metric multidimensional scaling (NMDS) based on the gut bacterial
operational taxonomic units between Sparus aurata and Dicentrarchus labrax individuals from different aquaculture
sites in Greece. Red and blue lines include all S. aurata and D. labrax samples, respectively.
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