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Abstract: In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine
has been the most successful biotechnological and biomedical approach. In recent times, vaccine
development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs)
and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV)
glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have
also shown that the interaction between EBOV GP with DCs and macrophages leads to massive
recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses.
Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and
DCs/macrophages as a novel immunological approach to induce both innate and acquired immune
responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its
potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes
to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for
diverse virus infection using EBOV GP.
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1. Introduction

1.1. Dendritic cell (DC)-targeting Vaccines

The development of the antiviral vaccine has been the most successful biotechnological and
biomedical approach against epidemic and pandemic viral infections [1]. Qualities of an ideal
vaccine include safety (even in an immunocompromised patient), high effectivity in inducing immune
responses [2], cost effectivity, and high stability and durability state [2]. There have been successful
productions of many antiviral vaccines using different strategies, including live attenuated vaccines
for yellow fever, smallpox, poliovirus, measles, mumps, rubella, adenovirus, varicella, and rotavirus;
inactivated vaccines for poliovirus, influenza virus, hepatitis A virus, Japanese encephalitis; and
virus-like particle (VLP) vaccines for hepatitis B and human papillomavirus (Table 1) [1,3]. In recent
years, the impact of the new advent of technology in gene delivery and expression, adjuvants,
the convergence of human monoclonal antibody isolation, structural biology, and high throughput
sequencing, among others, has greatly influenced biotechnological approach for the development of
new vaccines [4].
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Table 1. Vaccine development strategies for selected viral infections.

S/N Viral Infection
Vaccine
Development
Strategy

Route of
Administration Vaccine Status References

1 Yellow fever Attenuated virus Subcutaneous Available in circulation [5]

2 Influenza

Live attenuated
virus, inactivated
virus, recombinant
influenza vaccine,
VLP

Intramuscular,
intranasal,
intradermal,
subcutaneous

Available in circulation
VLP and DNA vaccine not
in circulation (needs
development of a novel
universal vaccine)

[6–8]

3. Poliovirus Live attenuated
vaccine Oral Available in circulation [9]

4.
Measles,
mumps and
rubella

Live attenuated
vaccine Subcutaneous Available in circulation [10]

5 Human
papilloma virus

VLP, inactivated
vaccine

Intramuscular,
oral

Monovalent, bivalent,
tetravalent, nonavalent
vaccines available in
circulation

[11,12]

6 Hepatitis B
virus

Live inactivated,
recombinant DNA Intramuscular

Available in circulation (it
gives short-term
protection; issue raised
concerning its safety)

[13–15]

7 Varicella
Weakened live
virus or attenuated
virus

Subcutaneous,
intramuscular Available in circulation [16]

8 Rotavirus Live attenuated,
VLP Oral, intranasal Available in circulation;

VLP not in circulation [17,18]

9 HIV VLP, DNA vaccine Subcutaneous,
intramuscular

Not in circulation
(development in progress) [19,20]

10 EBOV Live attenuated,
VLP Intramuscular

Available but not yet in
circulation (phase trial in
progress)

[21,22]

11 Lassa virus
VLP, live
attenuated virus,
DNA vaccine

Intradermal No available vaccine [23–25]

Note: EBOV, Ebola virus; VLP, virus-like particle; HIV, human immunodeficiency virus.

Despite the progress that has been recorded so far in vaccine development for viral infection,
limitations such as the narrow-spectrum effect of vaccine and low immune response call for a new
approach in the event of vaccines development [26]. Attention has thus been shifted to the abilities of
dendritic cells (DCs)/macrophages to induce potent immune responses [27], and their usage is in the
pipeline for the development of vaccines against cancer [28], adenovirus [29], and yellow fever [30],
among others. A DC-targeting vaccine approach depends on the ability of DCs to target specific
antigens by recognizing pathogen-associated molecular patterns (PAMPs) of the antigen, and further
stimulate innate, humoral, and corresponding cellular immune responses [31]. Hawiger et al. showed
that an antigen delivery system targeting the DEC-205, which is a DC-restricted endocytic receptor,
using monoclonal antibody of DC induced a high magnitude of T cell responses [32]. Zaneti et al. also
demonstrated recently that a DNA vaccine consisting of plasmid encoding single-chain Fv antibody
(ScFv) αDEC205 fused with dengue virus (DENV) envelope domain III (EDIII) induced a strong
anti-EDIII IgG titer and CD4+ capable of inhibiting DENV2 infection when intramuscularly injected
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into Balb/c mice followed by electroporation [33]. Table 2 shows a summary of other different strategies
that have been used to target DCs for the development of vaccines.

However, there are some limitations. For instance, Cheng et al. showed that the mechanism of
targeting DCs using recombinant adenovirus (rAd) vector vaccine is associated with toxicity related to
‘prior human gene therapy fatality’ [34]. Also, a study by Boudewijns et al. revealed the toxicity profile
associated with DC vaccination in stage III and stage IV melanoma patients. In this case, melanoma
patients were vaccinated with DCs loaded with antigens associated with the tumor. About 84% of
the patients had adverse events related to the treatment, including reaction at the injection site, and
symptoms such as flu, while about 3% of the patients experienced grade 3 toxicity [35]. However, some
of the adverse effects noted are considered to be normal clinical or immunological responses [35].

Hawiger et al. also showed that the T cell activated by DC-targeted antigen could not be
polarized to produce T helper cells. Hawiger et al. further demonstrated that T cells severely reduced
after seven days and were not responsive to systemic antigen challenge [32]. Almand et al. also
confirmed that the production of immature myeloid cells might cause dysfunction of DCs and can
lead to immunosuppression of T cells [36]. However, Apostolico et al. demonstrated the induction
of long-lived T cells against HIV using a DC-targeting approach with a heavy-chain αDEC205
(αDECHIVBr8) in the presence of TLR3 agonist [37].

Table 2. Development of vaccine using a dendritic cell (DC)-targeted approach in the selected viruses.

S/N. Vaccine Immune Responses
Induced

Vaccine
Development
Strategy

Route of
Administration

DC-Targeting
Substance

Protection
Percentage Ref

1 Cancer
vaccine

Cellular immune
response and
humoral responses

DNA vaccine Not applicable IFN-α Not
applicable [38,39]

DNA vaccine Subcutaneous Liposome and
melanoma 80–100% [39]

2 Yellow
fever

Innate immune
responses
(proinflammatory
cytokines interleukin
(IL)-12p40, IL-6, and
interferon-α),
adaptive immune
responses (T helper
cell (Th)1/Th2
cytokine profile and
antigen-specific CD8+

T cell)

Live attenuated
vaccine Subcutaneous Not

applicable [30]

3 Adenovirus Cytolytic T
lymphocyte cells

Recombinant
vaccine Not applicable

Recombinant
single-chain (sc)
mAb Fv
fragments

Not
applicable [29]

4 HIV IFN-γ, CD4+, and
CD8+ T cell

Recombinant
vaccinia virus
(DNA vaccine)

Intranasal

Recombinant
single-chain (sc)
mAb Fv
fragments (scFv)
HIV gagp41-scFv

100% [40]

5 Influenza
A

Cytotoxic CD8+T, cell
CD4+ Th1, IgG2a
antibodies

DNA vaccines Intradermal Xcl1-hemagglutinin
(HA) 100% [41]

DNA vaccine
Intravenous tail
injection and
electroporation

Xcl1-HA or
Xcl2-HA 90% [42]

6
West Nile
Virus
vaccine

Humoral and T-cell
responses

DNA vaccine
(immunodominant
vaccinia B8R
gene)

Intravenous
injection

Rabies
glycoprotein (GP)
fused to
protamine residue
(RVG-P)

80% [43]
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1.2. Dendritic Cells (DCs)/Macrophages and Immune Responses

DCs are antigen-presenting cells (APCs) capable of initiating and directing innate and adaptive
immune responses [44]. The intricate properties of DCs that account for their roles in the immune
system are: Unique mechanisms for antigen presentation, the ability to migrate to a particular site
in lymphoid organs for immune response stimulation, and their rapid differentiation or maturation
in response to a variety of stimuli ranging from Toll-like receptor (TLR) ligands to many other
non-microbial factors [45]. Briefly, after exposure to the foreign material, the DCs mature and migrate to
the lymphoid organ, where the DCs induce a cellular immune response (T cells) and humoral immune
responses (B cells) [46]. Targeting peptides to DCs can also induce an innate immune response by
activating natural killer cells and natural killer T cells [47]. DCs also function by producing protective
cytokines—like interleukin (IL)-12, IL-6 [48], and type I interferons [49], which influence distinct
steps in the adaptive immune response of lymphocytes—and the activation and expansion of innate
lymphocytes [45,49,50].

The presence of specialized surface receptors, known as pattern recognition receptors (PRRs),
on DCs facilitate the functions of DCs. These PRRs are named as follows: Toll-like receptors (TLRs),
NOD (Nucleotide-binding oligomerization domain)-like receptors (NLRs), C-lectin type receptors
(CLRs), RIG-1 like receptors (RLRs), and helicases recognize pathogens associated molecular patterns
(PAMPS) [51,52]. DCs play an essential role in conferring protection against pathogens and commensal
microorganisms [53].

The TLRs, known as ‘sensors that detect infection’, were the first discovered PRRs [54]. TLRs are
innate immune receptors with a full length of a membrane that can use pattern recognition processing
of ligands to detect a variety of molecules that insinuate tissue damage, and a wide range of human
pathogens including bacteria, viruses, protozoans, and nematodes [54,55]. The conserved pathogen
recognition features of TLRs have led to the stimulation of several immune cells, not excluding
proinflammatory cytokines, antimicrobial molecules, phagosomal maturation, and costimulatory
molecules [56]. There are thirteen (13) known TLRs that can recognize a wide range of microbial
pathogens, but differ in their specificity for microbial patterns. For instance, to recognize microbial cell
walls and membranes unique to pathogens, TLRs 1, 2, 4, 5, and 6 are much employed; TLR4 recognizes
lipopolysaccharides (LPS), while heterodimers of TLR2/1 and TLR2/6 recognize lipopeptides and TLR5
recognizes flagellin; TLR9 recognizes DNA unmethylated CpG motifs, various forms of RNA by TLRs
3, 7, 8 and 13; and TLR11 recognizes profilin and flagellin of Salmonella. Additionally, Fukuda et al.
demonstrated that TLR9 that has an affinity for bacterial DNA ligands plays a crucial role by activating
proinflammatory cytokines of macrophages, leading to the development of vascular inflammation and
atherogenesis [57], while Koblansky et al. reported that the previously uncharacterized TLR12 can
recognize Toxoplasma gondii profilin by plasmacytoid dendritic cells (pDCs) [58]. TLRs are localized
intracellularly. As already reviewed, TLRs 3, 4, 7, and 9 have their transmembrane domain localized
intracellularly [59]. Also, Raetz et al. reported that TLR11 and TLR12 are both intracellularly localized,
where they both bind with T. gondii and lead to the signaling of MyD88- and UNC93B1-dependent
signaling cascade [60].

Importantly, TLRs coordinate both the innate and adaptive immune responses [54,55,61]. Innate
immune responses are activated via recognition of microbial products by TLRs, leading to the stimulation
of proinflammatory cytokines maturation of DCs for antigen presentation. Also, the activation of
DCs via TLRs can increase the level of proinflammatory cytokines, chemokines, and co-stimulatory
molecules produced, thus modulating adaptive immune responses, including T regulatory cells [61].
More importantly, TLR4 can also recognize the EBOV glycoprotein (GP). Okumura et al. revealed
that the sensor for EBOV GP is the host TLR4, which leads to the production of proinflammatory
cytokines. Their study proved that EBOV GP could stimulate the expression NF-κB in vitro in a
TLR4-dependent manner [62]. Moreover, Lai et al. pretreated mice with TLR4 antagonist (ultrapure
lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS)) to inhibit the production
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of GP-induced cytokines [63]. Their study gave an in vivo evidence that the early stimulation of
proinflammatory cytokines during EBOV infection is via the TLR4 pathway.

The RLRs are also host PRRs which are involved in the regulation of innate immune responses
by recognizing the pathogen-specific 5′ di or triphosphate non-self RNA in bacteria and viruses,
consequently leading to the transcription of IFN-β [64,65]. They can also recognize bacterial mRNA
that is uncapped and is 5′ triphosphorylated in the cytosol [66]. He et al. demonstrated that EBOV
VP24 inhibits both IFN-induced antiviral responses and type III IFN-γ1 gene expression by inhibiting
the RIG-1 pathway responsible for the IRF3 activation [67], indicating the role played by RLRs during
EBOV infection. Whereas, NLRs which also regulate the innate immune responses by triggering
NF-κB signaling for expression of innate immune responses genes and hydrolyzing viral RNA using
activated RNase, do so by recognizing 2′, 5′ -oligoadenylate synthetase type 2 (OAS2) in bacteria and
viruses [65,68,69].

The primary role of DCs is to mediate cellular immune response (CD8+ T cells and CD4+ T cells)
and humoral immune responses (B cells) [70–72], which are of great importance in developing vaccines.
In the development of vaccines, DCs are targeted to elicit innate and acquired immune responses by
capturing antigens or foreign material at their initial location in the peripheral tissues, processing and
presenting antigens on major histocompatibility complex I and II (MHC I and II) [73]. DCs can also be
used as adjuvants for DNA vaccines to elicit immune responses [28,52,74,75].

Meanwhile, macrophages are myeloid progenitor immune cells that are characterized by avid
phagocytosis because they ingest and degrade dead cells, debris, and foreign material and orchestrate
inflammatory processes in the body tissues [44]. They originated from either embryonic development
or circulating monocytes [76] and are found all over the body in tissues by adhering to mucosal surfaces
and can also be further classified based on their microenvironment [77]. Macrophages serve as the
vital component of the innate immune system and also function as professional antigen-presenting
cells [78,79]. Besides their role as APCs for the stimulation of specific cellular and humoral immune
cells, macrophages also critically regulate the innate immune system by eliciting proinflammatory
cytokines and chemokines such as interleukin-6 (IL-6) and tumor necrotic factor (TNF), as well
as anti-inflammatory cytokines such as IL-10 [63]. Deficiency of macrophages in mice has been
demonstrated to significantly reduce the protection ability of opsonizing antibodies, suggesting its
crucial impact on the induction of immune response [80].

In the immune system, a relationship exists between DCs and macrophages. DCs stimulate
autoimmune responses to induce specific T cells, that consequently leads to the proliferation of
macrophages, which damages the tissue [79]. However, macrophages are involved in the homeostasis
of tissues and repair, which helps to prevent tissue damage [79]. The DCs and macrophages connect
innate immunity with adaptive immunity. DCs and macrophages are activated during infection for
protection by recognizing pathogen-associated molecular patterns (PAMPs) via their PRRs [81]. Upon
activation, the matured DCs migrate to the lymph nodes and display the processed peptides on their
MHC I or II to trigger T cytotoxic cells (CD8+) or T helper cells (CD4+), respectively [82].

1.3. EBOV Infection and Immune Responses

Ebola virus causes hemorrhagic viral infection by primarily infecting the macrophages and the
DCs upon contact with the mucous membrane, and replicate efficiently. Furthermore, the Ebola
virus can impede interferon production in DCs, macrophages, and monocytes by protein VP24 and
VP35 [83–85]. The EBOV glycoprotein (GP) enhances the entry of the Ebola virus to DCs/ macrophages
by the presence of C-type lectin-like receptors (CLRs) present on the DCs [86,87]. As described
elsewhere, EBOV can also evade the immune system by vitiating both the humoral and cellular
adaptive immunity [84]. Although the mechanisms by which EBOV mitigate the host humoral and
adaptive immune responses are poorly understood, the depletion of T-cells during EBOV infection has
been hypothetically implicated with the deficient signaling events needed during the induction and
maintaining the transition of T cells to memory cells and partial clearance of APCs [88]. Furthermore,
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Lubaki et al. demonstrated that the IFN-inhibiting domains (IIDs) in VP24 and VP35 also contribute to
the depletion of the immune system by inhibiting the T cell receptor binding and are also responsible
for deficient matured DC [89]. Lubaki et al. also recently revealed that the IIDs in VP24 and VP35 could
vitiate humoral immune responses by inhibiting the human B cells differentiation and activation [90].
Whereas, the association of EBOV GP with DCs facilitates the ability of the EBOV GP to modify immune
responses by modulating both innate and adaptive immune responses [82]. Interestingly, Groseth et al.
demonstrated that although EBOV GP is involved in EBOV infection, EBOV GP alone is not sufficient
to cause a lethal effect on the host [91].

The evasion of the immune system consequently affects the vascular system to cause coagulopathy,
leading to shock, failure of circulation, bleeding, and death. Other complications are defective
inflammations associated with mild secretion of IL-6 and TNFα and a very high level of secretion of
IL-1, IL-10 [92], and flawed immune responses such as enormous apoptosis of T cells and the inhibition
of the production of specific antibodies [84,93].

To further elucidate the relationship between EBOV GP and APCs, Lüdke et al. showed that a
subset of DCs reduced significantly among patients that had acute EBOV in Guinea, while the survivors
had activated CD16+ during recovery [94]. The study of Lüdke et al. further showed that EBOV
primarily infects DCs, and patients still require DCs to fight and clear EBOV infection. Also, using a
chimeric mouse characterized by a competent hematopoietic-immunity, the same authors demonstrated
that EBOV primarily infects CD11b+ DCs in both the lymphoid tissues and non-lymphoid tissues
which can lead to the depletion of CD8 and CD4 T cells [95]. Although there are reports that showed
that some of DCs subsets, including CD141+ DCs, are not prone to viral infection by RAB15, which is
expressed on CD141+ DCs and serves as a vesicle-trafficking protein [95,96], the population of DCs
that are primarily infected by EBOV is enough for the modulation of both the innate and adaptive
immune responses. Moreover, Silvin et al. showed that CD141+ DCs can still act as APCs for the
regulation of adaptive immune responses by depending on the viral antigen from bystander cells [96].

Studies have demonstrated that EBOV infection can trigger macrophages to induce innate
immune responses, such as inflammatory cytokines and chemokines (e.g., tumor necrosis factor, IL-6,
IL-1β, etc.) [97]. EBOV GP is involved in the stimulation of both innate and adaptive immune responses.
A study showed that immunization of mice with liposome-encapsulated irradiated Ebola virus induces
immune response against Ebola virus via Ebola GP [98]. More recently, a group of scientists proved
that Ebola GP can elicit an innate immune response, such as proinflammatory cytokines including IL-6,
TNF-α, and anti-inflammatory cytokines and IL-10 alone without adjuvant, which depends solely on
the internalization of the EBOV GP by macrophages [63]. They further elucidated that the efficacy
of the current vaccine for Ebola virus largely depends on the innate immune response induced by
EBOV GP through the toll-like receptor-4 (TLR4) pathway. Ayithan et al. also demonstrated that the
induction of chemokines by EBOV GP is via the TLR4 pathway [99]. The role played by EBOV GP in
the stimulation of immune response has thus been considered as a significant platform for generating
a vaccine for EBOV infection [100].

2. EBOV GP: Bane or Benefit

The synthesis of 676-residue transmembrane of EBOV Glycoprotein (GP) results from the
transcriptomic editing of the fourth of the eight (8) genes in the genome of EBOV [101,102]. The EBOV
GP is responsible for targeting cell and virus entry by mediating receptor binding and membrane
fusion [103]. GP is the only surface protein on EBOV, and it is cleaved by furin to produce
disulphide-linked GP1 and GP2 subunits [104]. The endosomal entry of EBOV is by GP1, while
the low pH membrane fusion is coordinated by GP2 using Neimann-Pick C1 protein (NPC1), and
thus implicated as major pathogenic determinants for infection [101] and the main target for the
development of a vaccine for Ebola virus [105].

As previously described, GP1 is a membrane surface protein that comprises three main subunits,
including the base, composed of β sheets and Cys53, that may be responsible for the intermolecular
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bridge with Cys609 of GP2 subunit. The second subunit of GP1 is the head, located between the
base and glycan cap. The glycan cap is the third subunit, characterized by the presence of N-linked
glycans [101,106]. The recent description of GP1 revealed that EBOV GP has three subdomains,
including the receptor-binding domain (RBD) (approximately 149-residue), mucin-like domain (MLD),
and the glycan cap (approximately 108-residue) [107,108] (Figure 1A). The MLD is also another highly
glycosylated domain on EBOV GP. Unlike the glycan cap, which has only N-linked glycans, MLD
has both N-linked glycans and O-linked glycans [108]. Lennemann et al. showed that the removal
of all the 15 N-glycosylation of EBOV GP using site-directed mutagenesis significantly increases the
pseudovirion transduction of EBOV in Vero cells. However, the removal of the N-glycosylation also
favors the recognition of the EBOV GP by antibodies, resulting in the production of neutralizing
antibodies [108].Microorganisms 2019, 7, x FOR PEER REVIEW 8 of 23 
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MLD is dispensable, and its absence contributes to more efficient cell entry of EBOV GP [115]. (B) 
Schematic diagram showing the incorporation of EBOV GP with a different pathogen antigen into 
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GP ΔMLD elicits more anti-EBOV GP antibody than EBOV GP VLP, with moderate stimulation of 
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wild type; however, EBOV GP wild-type stimulated NFκB than EBOV GP with deleted MLD [115]. 

Figure 1. A schematic structure of (A) EBOV GP, indicating GP1,2. GP1 comprised of RBD, glycan cap,
and MLD, while GP2 contains the HR1 and HR2. Y denotes the N-glycosylation sites. Receptors on
DCs have an affinity with the N-linked glycans on GP1, indicating that the binding sites of EBOV GP
with DCs are on the RBD, while the glycan cap contributes to its binding because of the presence of
N-glycosylation sites [109]. The receptors on DCs for GP1 include DC-SIGN [110], L-SIGN, LSECtin [111],
hMGLs [112,113], and NPC-1 [114]. Although N-glycosylation sites are present on the MLD, MLD is
dispensable, and its absence contributes to more efficient cell entry of EBOV GP [115]. (B) Schematic
diagram showing the incorporation of EBOV GP with a different pathogen antigen into VLPs [115].
(C) Schematic structure of vesicular stomatitis virus (VSV) with deleted glycoprotein and having EBOV
GP with different pathogen antigen in the deleted G domain of VSV [116]. (N, nucleoprotein; M, matrix
protein; L, RNA polymerase; G, glycoprotein; P, phosphoprotein)
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The MLD is found on the variable region of GP1 (C-terminal) and increases the permeability of
EBOV into the blood vessels, and also masks the cell from the innate immune response by obstructing
access to the epitope of GP [117,118]. MLD can also shield the cellular surface protein sterically,
causing cell damage, leakage of an explanted blood vessel, rounding and detachment of cell, and
loss of physiological functions [119–121]. A study showed that the MLD blocks access to the surface
MHC I and II, which leads to decrease in CD 8+ cells and consequently leads to cell rounding
(cytopathic effect), while the removal of MLD uncovers the epitope of GP to induce neutralizing
antibodies [120,122]. Another study also checked for the impact of EBOV GP without MLD (EBOV
GP ∆MLD) on the stimulation of anti-GP and neutralizing antibodies; this study revealed that EBOV
GP ∆MLD elicits more anti-EBOV GP antibody than EBOV GP VLP, with moderate stimulation of
neutralizing antibodies [107], indicating that MLD is dispensable for EBOV attachment. Our study
also showed that the removal of MLD from EBOV facilitates the cell entry efficiently more than the
wild type; however, EBOV GP wild-type stimulated NFκB than EBOV GP with deleted MLD [115].
Moreover, in the development of drugs for EBOV, EBOV GP is an important target to be considered.
A study showed that the inhibition of GP1 binding by toremifene (an antiviral drug against EBOV)
could lead to the premature release of GP2, and thus prevent fusion of the endosome membranes and
the virus [123].

On the other hand, GP2 contains the heptad repeated regions 1 and 2 (HR1 and HR2) and internal
fusion loop (FL) lacking a free N-terminus (511–556-residue), which display a hydrophobic fusion
peptide by utilizing an antiparallel β (Figure 1) [101]. During proteolytic cleavage and endosomal
binding of GP1, GP2 undergoes a conformational rearrangement which exposes FL for fusion [124].
Lee et al. recently presented the membrane-proximal external region (MPER) as the missing part
of GP2 that is connected to the transmembrane using NMR and EPR spectroscopy. They further
showed that MPER consist of ‘helix-turn-helix architecture.’ Lee et al. also revealed the role MPER
played by mutating the aromatic neighboring, and the results revealed that the MPER region interacts
with EBOV FL through aromatic residues and the mutation of these aromatic residues decreases the
fusion and viral entry of EBOV [124]. Although GP2 contains two N-glycosylation sites, Asn563 and
Asn618, Wang et al. demonstrated that EBOV GP expression does not depend on GP2. However,
their study highlights the functions of N-glycosylation sites on GP2, which includes regulation of GP
processing, oligomerization, demannosylation, conformation, and facilitation of the incorporation of
EBOV-like particles and pseudovirions of HIV type 1 (HIV-1) for the determination of viral transduction
efficiency [125].

Moreover, Lee et al. described a 364-residue of non-structural secreted glycoprotein (pre-sGP) that
contains the gene product of EBOV, which is also emitted during the transcriptional editing of the fourth
gene of EBOV [101,102] and results from the unedited mRNA [126]. Briefly, sGP is produced from the
post-translational cleavage of pre-sGP at the C-terminus by furin—a cellular protease. The proteolytic
cleavage produces ∆-peptide and sGP, and while we know little about the receptors and role played by
∆-peptide during EBOV infection, a study has demonstrated that ∆-peptide competes with the binding
of EBOV GP when interacting with the host permissive cells for EBOV [127]. On the other hand, sGP
forms homodimer by the linking of its monomers at residue Cys53 and Cys306 [128] and just like the
GP1, sGP is N-linked glycosylated [126]. Several studies have been done to highlight the role played
by sGP during EBOV infection and their effect on immune responses (see review [126]). Research
has also recently demonstrated the functions of sGP during the pathogenesis of EBOV. In their study,
Wahl-Jensen et al. showed that sGP could not induce production macrophages [129]. Also, Monath
et al. showed that the construction of rVSV∆G-ZEBOV-GP lacking sGP produces more neutralizing
antibodies against EBOV GP [130], because sGP can vitiate the neutralizing of EBOV GP by acting as a
decoy for the antibody responsible for the neutralization of EBOV GP [126,130–132].

The GP and sGP are identical in the N-terminal, with 295 amino acids, but are different at the
C-terminal. At the C-terminal, sGP has about 65 amino acids, while GP has 381 amino acids, including
the mucin-like domain [107,133–135]. The similarity in the N-terminal of GP and sGP has been
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suggested to be responsible for a term called antigenic subversion by sGP, which prevents an immune
response to GP by diverting it away. Mohan et al. demonstrated in mice immunized with GP1,2 and
sGP, that sGP competes efficiently for anti-GP1,2 antibodies by refocusing the host antibody response
to the membrane-bound, thus underscoring the robust immune response responsible for clearing
Ebola virus in the system [136]. Therefore, in developing VLPs for EBOV, the GP1,2 must be essential
components because of their ability to induce immune response, while sGP might not be included in
the EBOV VLP as it has low immunogenicity [129].

Nonetheless, EBOV GP has some right sides in mediating immunity. The EBOV GP can facilitate
the maturation of DCs and activates T cells, as well as B cells [89], and can also induce changes in
secondary target cells [105]. EBOV GP can upregulate the expression of costimulatory molecules in bone
marrow-derived macrophages (BMDM), suggesting its capability to enhance APC stimulatory capacity,
which is very important for the induction of potent antigen-specific adaptive immunity [63]. The recent
development of Ebola vaccine (rVSV-EBOV Vaccine) is solely dependent on the immunogenicity of
EBOV GP. The rVSV-EBOV vaccine was constructed using a recombinant form of vesicular stomatitis
virus expressing the EBOV-glycoprotein (GP) on the surface (rVSV/ZEBOV-GP) [137]. Agnandji et al.
conducted the phase 1 clinical trial of rVSV/ZEBOV-GP vaccine and reported that this vaccine
could induce stable neutralizing antibodies against EBOV GP with a very mild side effect, such as
fever [138]. The induction of the neutralizing antibodies is of no doubt associated with the targeting
of DCs/macrophages by EBOV GP. This claim is in line with the study done by Marzi et al., which
indicated the importance of antibodies for the protection against Ebola virus using a non-human
primate [139]. Aside from the utilization of Ebola GP with rVSV for the development of a vaccine
against Ebola virus, another study has shown that EBOV GP expressed on adenoviruses virus-like
particles (VLPs) also stimulates immune responses [140]. Takada et al. reviewed that the ability of
EBOV GP to induce both innate and adaptive immune responses, which could be via complement
antibody-dependent enhancement (ADE) (see extensive review in [141]). Therefore, in this review, we
will further describe the use of EBOV GP to induce immune response in the subsequent paragraphs.

3. The Interaction Between EBOV GP and DCs/Macrophages Can Induce Robust Innate and
Adaptive Immune Responses

During exposure of EBOV to the susceptible cell, the main first line of defense is the innate
immune response. The innate immune response is not specific, unlike the adaptive immune
response, and is active during the critical hour of infection before the recruitment of adaptive
immune responses. Phagocytic cells regulate innate immune responses by inducing inflammatory
cytokines, and recognizing conserved features among many pathogens called pathogen-associated
immunostimulants [142].

EBOV GP has also been investigated to induce inflammatory cytokines and chemokines, including
interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, interferon (IFN)-γ, IL-2, IL-5, IL-4, IL-12
p20, and IL-10, among others [97], through the Toll-like receptor (TLR)-4 pathway like many other
GPs [63]. DCs and macrophages express TLRs, which is essential in the activation of MyD88-dependent
and independent signaling pathways and consequently leads to the activation of transcription factor
interferon regulatory factor 3/7 (IRF3/7), nuclear factor κB (NF-κB), and activator protein-1 (AP-1) to
induce downstream genes [82].

Moreover, Lai et al. showed that immunization with EBOV GP without adjuvants can stimulate a
significantly high amount of innate immune response. Lai et al. (2017) [63] further established that
EBOV GP can induce a robust innate immune response even after 2 h of treatment, which was built
upon the findings of Henao-Restrepo et al. (2015), who revealed that the rVSV-EBOV GP vaccine
candidate induces innate immune response within six (6) days of immunization [143]. Furthermore,
in contrast to other pathogens with recognizable PAMPS by the PRRs on the monocytes, EBOV GP
causes the release of cytokine and chemokines in a manner leading to the recruitment of more DCs and
macrophages to the site of infection [82,86].



Microorganisms 2019, 7, 402 10 of 23

EBOV GP also plays an essential role in mediating the interaction between innate and adaptive
immune response. Although there are studies that have demonstrated that EBOV GP could impair the
ability of CD8+ to recognize peptide on the MHC Class I [120], analysis from a 2013–2016 outbreak on
the induction of CD8+ T cells revealed that about 40% of the populace examined stimulated CD8+ T
cells by EBOV GP [144]. A comprehensive study on the cellular immune response by EBOV infection
showed that CD8+ T cell is the predominantly induced T cell, but is relatively low [145]. However,
the usage of adjuvant with EBOV GP can produce CD8+ T cells that are enough to protect against lethal
Ebola virus challenge [146]. Generally, EBOV GP can trigger CD8+ T cell and CD4+ T cell by interacting
with the DCs and macrophages. Thus, EBOV GP can be used to recruit more T cells. Targeting antigens
towards DC-specific endocytic receptor, together with other relevant antibodies or ligands, can elicit
durable and robust T cell responses against viral pathogens [31].

4. EBOV GP’s Affinity for Dendritic Cells and Macrophages in Ebola Virus Infection: An Insight
for Vaccine Development

EBOV infects the macrophages and DCs by binding its GP with the CLRs on DCs/macrophages [86,87].
C-type lectins (CLRs) present on DCs interact with N- and O-linked glycans on GP1 (RBD, MLD, and
glycan cap) (Figure 1) to facilitate viral entry. Unlike HIV-1 GP, EBOV GP has a variety of receptors on
DCs and macrophages, making them an efficient and better stimulator of antigen-presenting cells. There
are four members of CLECs that have been identified as Ebola GP receptors, namely, CLEC4G/LSECtin,
dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), liver/lymph node-specific ICAM-3
grabbing non-integrin (L-SIGN), asialoglycoprotein receptor 1 (ASGPRI) and human macrophage
galactose- and acetylgalactosamine-specific C-type lectin (hMGL) [147,148]. CLECs are on the liver,
alveolar macrophages, and epithelial cells [117,149,150]. Besides, the expressions of Nieman-Pick C1
(NPC1), integrin αV, and Mer have been reported to be essential for the infection of macrophages by
EBOV GP. Although, some other receptors have also been previously reported for EBOV GP, including
TAM receptor tyrosine kinases (Axl and Tyro3), T cell immunoglobulin and mucin domain (TIM
proteins) [151], recent findings have demonstrated that TAM and TIM do not contribute to the EBOV
GP-driven transduction of macrophages [152]. We therefore describe the three (3) major receptors on
the DCs specific for EBOV GP below:

DC-SIGN: These are type II membrane protein and are expressed primarily on immature DCs [110].
DC-SIGN is involved in the initial mediation of immune responses by coordinating the DC interaction
with T-lymphocytes and endothelial cells [110]. Other viruses such as measles [153], HIV [154,155],
influenza virus [156], and HPV L1 [157] have specific receptors for DC-SIGN, which also help to
internalize the virus into the DC for processing. The virulence of different species of Ebola virus, ranging
from Reston Ebola Virus (REBOV) to Zaire Ebola Virus, depends on the differences in the N-glycan
composition of their glycoprotein [158,159]. Thus, the large proportion of the high mannose N-glycans
allows EBOV GP to interact with DC-SIGN and further leads to the induction of immune responses.
L-SIGN, a homolog of DC-SIGN expressed on the endothelial cells in the placental villi, lymph node
sinuses, and liver also has high mannose N-glycans for binding with EBOV GP. Development of an
efficient vaccine depends on the antigenic or virulent factor of the invading pathogen; thus, studies
for development of a DC-targeting vaccine can employ the modification of the N-glycans that target
DC-SIGN(R) [160].

LSECtin: LSECtin, which is also known as CLEC4G, also mediates EBOV GP–DCs interaction to
stimulate inflammatory responses. Liver and lymph nodes, sinusoidal endothelial cells express
LSECtin [161], and Domínguez-Soto has also reported the expression of LSECtin in DCs and
macrophages [162]. LSECtin also plays a vital role in the pathogenicity of the EBOV by serving
as a receptor for GP1 for EBOV internalization [105,156,158]. Zhao et al. demonstrated that LSECtin can
induce TNF-α and IL-6 production in DCs, suggesting that LSECtin can aid GP in inducing inflammatory
responses [109]. In contrast to DC-SIGN and other glycan-binding receptors, the antibody-induced
internalization by LSECtin on myeloid cells is not in clathrin-mediated endocytosis, but could aid
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the antigen capturing and presentation by DCs and macrophages [111,163]. Unlike most lectins,
LSECtin does not interact with many viruses, but has a strong affinity for EBOLA GP and not HIV-1
GP. Gramberg et al. (2008) also showed that LSECtin and DC-SIGN act differently in the ways they
capture pathogen, and even in the lectin biological functions [163].

hMGLs: Human macrophage galactose-type C-type lectins (hMGLs, CD301) are also
transmembrane II proteins and play a critical role in the pathogenesis of EBOV. They are expressed on
the DCs and macrophages and enhance adhesion of cells, internalization, and hematopoiesis [113].
The hMGLs have two homologs of MGL: MGL 1 (CD301a) and MGL 2 (CD301b) [112]; however,
MGL 1 and MGL 2 have an affinity for Lewis trisaccharide (Galβ1–4[Fucα1–3]GlcNAc) and
N-acetylgalactosamine, respectively [164]. hMGLs expressed on the monocyte-derived immature
dendritic cells (MDDCs) and macrophages function as an endocytic receptor for galactosylated GP
antigens [165]. In the affinity of hMGLs and EBOV GP, the highly glycosylated mucin-like-domain
must be present for efficient interaction [165]. Usami et al. demonstrated that EBOV GP2 interacts
with hMGLs of macrophages and DCs via the N-acetylgalactosamine for cell entry of the virus and to
initiate infection [166].

In all, the N-glycan moieties and N-acetylgalactosamine present on the EBOV GP1 are essential
features for the binding to the CLRs on the macrophages and DCs. Further modification of the binding
sites on EBOV GP can influence the binding efficiency of EBOV with lectin receptors and other cellular
factors to facilitate the activation of APCs.

Moreover, another possible receptor on DCs has been identified to have an affinity for EBOV
GP. This receptor is known to be a hydrophobic Neimann-Pick C1 (NPC-1) receptor-binding pocket.
Bornholdt et al. showed that EBOV GP could bind with the endosomal (NPC-1) receptor on DCs, initially
by interacting electrostatically with the NPC-1 by the hydrophilic crest on GP1, while hydrophobic
trough exposure on GP1 facilitates specific interactions due to their ability to migrate to lymph nodes
where they can interact with DCs [114]. Their results revealed that mutation of the GP1 to block the
hydrophilic and hydrophobic sites on the GP1 inhibit infectivity and binding of GP1 with NPC-1. They
also demonstrated that the observed interaction leads to the stimulation of monoclonal neutralizing
antibodies. This important finding is significant in developing a DC-targeting vaccine using EBOV GP.
The hydrophilic crest and the hydrophobic trough of EBOV GP1 can be used heterogeneously with
other viral protein to direct these peptides to DCs.

5. Ebola GP-Targeting DCs Can Facilitate Immune Responses for an Antiviral Vaccine Approach

An essential feature of antigenic agents is the ability to induce innate and adaptive immune
response, as well as humoral and cellular immune responses. It is interesting to find out that the
affinity of EBOV GP with DCs and macrophages can not only induce an adaptive immune response
by recruitment of DCs/macrophages and facilitation of the maturation of DCs /macrophages [63], but
can also induce innate immune responses which can serve as protection against other viruses. In the
development of Ebola virus vaccine, EBOV GP has been shown to play a significant role, as both the
VLP and vector-based approach depend so much of Ebola virus. [167]. Briefly, we will elucidate how
EBOV GP can be used to stimulate DCs and macrophages for vaccine production.

5.1. EBOV GP-Coated Virus-Like Particle Vaccine Approach (VLP)

EBOV GP can be incorporated into VLPs to enhance the stimulation of DCs and macrophages,
which, in turn, function in inducing adaptive immunity and interact with innate immune cells
(Figure 1B) [168]. The efficiency of VLPs is undoubtful as it has succeeded in the induction of immune
responses against several viruses, such as Rotavirus, among others [169]. Considering the high
immunological characteristics of EBOV GP, it was co-expressed with matrix protein (VP40) to produce
VLP. Warfield et al. showed that EBOV GP VLPs are immunogenic by facilitating the maturation of
macrophages and DCs to induce the secretion of IL-10, IL-6, tumor necrosis factor α, and macrophage
inflammatory protein (MIP)-1α [169]. This immunogenic property of EBOV GP VLP suggests that
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EBOV GP VLP is a promising tool for the development of a vaccine for Ebola. Moreover, EBOV GP is
relevant as a tool to develop a universal vaccine against other viruses due to its ability to induce innate
immune responses. There are ongoing clinical trials to test the efficiency of EBOV GP VLP vaccine
against EBOV [140]. A recent study showed that EBOV GP VLP (consisting of VP40, NP, and GP)
enhances the stimulation of DCs and macrophages [170]. Also, Venezuelan Equine Encephalitis (VEE),
virus-like replicon particles with the replacement of VEE virus structural genes by EBOV GP or NP,
has been demonstrated to have full protection against Ebola virus challenge [171]. Interestingly, our
recent study showed that the incorporation of EBOV GP into the HIV VLP induces a more effective
immune response against HIV-1 [115]. We showed that the presence of EBOV GP enhances the
ability of the HIV VLP to target MDMs and MDDCs. Also, we revealed that EBOV GP-pseudotyped
HIV VLP induces a significantly stronger humoral immune response than that of HIV VLP alone.
Furthermore, macrophages inflammatory cytokines (MIP-1α) is significantly induced in the spleen by
EBOV GP-pseudotyped HIV VLP more than HIV VLPs [115]. The heterogenic induction of immune
responses by EBOV GP suggests that the immunogenicity of EBOV GP is not only beneficial in the
development of a vaccine for EBOV, but can also be used to develop a vaccine for some other infectious
diseases. Also, Wong et al. incorporated HA of H5N1 into the VSV∆G-ZGP (a previously described
vaccine for EBOV) to form a bivalent vaccine, VSV∆G-HA-ZGP, which protects against both EBOV
and H5N1 lethal challenge [116]. In this study, the presence of EBOV GP targeted the peptides of
influenza HA to DCs/macrophages, which processed and presented the HA peptide, on MHC I or II
for the eliciting of T-cells specific for influenza H5. [116]. Also, Chahal et al. also demonstrated that
an adjuvant free dendrimer nanoparticle vaccine has broad protection against Ebola virus, influenza
H1N1, and Toxoplasma gondii [172]. The eliciting of immune responses by this vaccine depends on
dendrimer nanoparticle vaccine platform in which a dendrimer nanoparticle is encapsulated with
mRNA replicons to generate specific CD8+ T cell antibody responses.

5.2. EBOV GP and Vector-Based Vaccine

Different vector-based vaccines are also an effective platform for the development of a vaccine for
EBOV, ranging from vaccinia virus-based vaccines expressing ZEBOV GP, VP24, VP35, and VP40 [173],
adenovirus-based vaccines having ZEBOV GP (AdHu5-ZGP), and combination with ZEBOV NP,
SEBOV GP, and ICEBOV GP as a DNA vaccine [167] and Vesicular stomatitis virus (VSV)-based
candidate vaccines [167,174]. The use of recombinant VSV to develop a candidate vaccine induces a
strong humoral and cellular immune response and gives 100% protection in an animal model [167,174].
VSV used as an expressing vector for foreign proteins has a small amenable genome feature for genetic
manipulation; thus, it is suitable for vaccine development [174]. Furthermore, the efficacy of chimpanzee
adenovirus three vectored vaccine expressing EBOV GP has been demonstrated both in monovalent
and bivalent forms in clinical trials in the UK, Europe, the USA, Nigeria, and Mali [140,175,176]. Also,
in a clinical trial, a modified vaccinia Ankara vectored quadrivalent vaccine consisting of GPs of EBOV,
Sudan Ebola virus, and Marburg virus and NP from the Tai forest strain boosted the humoral and
cellular adaptive immune system, including neutralizing antibodies [170]. And recently, Zhu et al.
showed that recombinant human adenovirus-vectored vaccine (rAd5—vectored vaccine) encoding GP
is safe, with very high immunogenicity among adults in Sierra Leone and China with the requirement
of high dose [177]. The efficacy of VSV–EBOV has been demonstrated in cynomolgus macaques to
give 100% protection [21]. Also, human phase 1–3 trials have revealed the effectiveness of VSV–EBOV
GP in inducing an immune response against EBOV [100,117]. Thus, EBOV GP infused with a specific
viral antigenic protein can be incorporated into VSV as a vector-based vaccine (Figure 1C) to induce
stronger and more robust immune responses against the specific virus [116].
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6. Conclusions

Dendritic cell-targeted vaccines and EBOV GP-based vaccines are very potent, long-lasting,
durable, and safe vaccines [31]. Based on the ability of EBOV GP to induce the stimulation of DCs and
macrophages for the modulation of the cellular and humoral adaptive immune responses, EBOV GP
can be used for the development of a DC-targeting vaccine approach and used as a natural adjuvant to
elicit robust acquired immune responses. Since adjuvants are substances which can either be biological
(microbial products, saponins, cytokines, and liposomes), chemical (mineral salts, polymers, and
emulsions), or even particles (microparticles and nanoparticles) that can aid in the production of
robust and stronger immune responses when combined with a specific antigen more than using the
antigen alone [178], we propose that EBOV GP can also serve as natural adjuvant with no adverse
effects. As mentioned above, since EBOV GP can target different peptides to the DCs, it can thus aid in
the production of robust immune responses for specific antigens. Few pieces of research, as earlier
mentioned, support this claim. Therefore, further investigations are recommended for the usage of
EBOV GP as a substance to direct specific antigens to DCs for induction of stronger immune responses
than what the peptide can produce alone.

Likewise, since EBOV GP1,2 also play an essential role in the stimulation of innate immune
responses, this viral glycoprotein can be used to stimulate the induction of inflammatory cytokines.
Using the technology of EBOV GP VLP immunological basis, it is possible to incorporate EBOV GP
VLPs with other viral antigens to induce strong humoral and cellular adaptive immune responses
(Figure 2). Since studies have established the immunogenic properties of EBOV VLPs and successful
development of EBOV VLP vaccines and DCs-targeted vaccines, these immunological approaches can
be further researched to develop a vaccine for other viruses, including HIV, influenza, Zika viruses,
and other epidemic and pandemic viral infections. Also, EBOV GP can be fused with other viral
proteins and inserted in the deleted G domain of VSV as a vector-based vaccine to induce stronger
immune responses. Having shown the potentials of EBOV GP in inducing robust immune responses
by directing specific antigens of peptides to DCs, further studies are recommended using EBOV GP to
develop innate and adaptive immune responses to any desired pathogen. Furthermore, it is expedient
to investigate possible limitations and variations to this technology.
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