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Abstract: Extreme flooding is one of the major risk factors for human health, and it can significantly
influence the microbial communities and enhance the mobility of infectious disease agents within
the affected areas. The flood crisis in 2018 was one of the severe natural calamities recorded in
the southern state of India (Kerala) that significantly affected its economy and ecological habitat.
We utilized a combination of shotgun metagenomics and bioinformatics approaches to understand
the bacterial profile and the abundance of pathogenic and antibiotic-resistant bacteria in extremely
flooded areas of Kuttanad, Kerala (4–10 feet below sea level). Here we report the bacterial profiles
of flooded sites that are abundant with virulent and resistant bacteria. The flooded sites were
heavily contaminated with faecal contamination indicators such as Escherichia coli and Enterococcus
faecalis and multidrug-resistant strains of Pseudomonas aeruginosa, Salmonella typhi/typhimurium,
Klebsiella pneumoniae, Vibrio cholerae. The resistome of the flooded sites contains 103 known
resistant genes, of which 38% are plasmid-encoded, where most of them are known to be associated
with pathogenic bacteria. Our results reveal an overall picture of the bacterial profile and resistome
of sites following a devastating flood event, which might increase the levels of pathogens and its
associated risks.
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1. Introduction

Flooding is one of the most destructive natural disasters, resulting in significant damages to life and
infrastructure worldwide [1]. The devastating flooding in the southern state of India (Kerala) during
August 2018 was declared as a “calamity of severe nature”, leaving 23 million people affected [2,3].
This was the worst ever flood in the history of Kerala since the Great flood in 1924 [4]. During this
season, Kerala state received a cumulative rainfall of 2346.3 mm, 42% greater than the monsoon
average [5]. 35 out of 54 dams within the state were opened due to the heavy rainfall in its catchment
areas. The flood left 10,319 houses fully damaged, more than 0.1 million houses partially damaged,
destroyed 83,000 km of roads, including 10,000 km of major roads, and 60,000 hectares of crops
causing nearly $2.9 billion worth of damage [2,3]. Previous epidemiological evidence suggests that
floods are positively associated with increased risk of water-borne and vector-borne diseases such as
skin infection, typhoid fever, cholera, leptospirosis, hepatitis A, malaria, dengue fever, yellow fever
and West Nile fever [6,7]. The stagnant floodwater can also significantly affect the environmental
microbiome and spread of microbial pathogens [8].
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Furthermore, there are a number of previous reports available on the impact of the raw sewage
from domestic waste, livestock, hospitals [9], industries [10], agriculture lands, and wastewater
treatment plants [11] in the dissemination of pathogenic bacteria and antibiotic resistance genes in the
natural environment [12]. The untreated sewage and effluents from wastewater treatment plants [13]
discharged into lakes, rivers, [14] and sea made them as putative reservoirs for antibiotic-resistant
bacteria and genes [14–16]. During severe flooding, this contaminated water from rivers, sea, as well
as causing runoff from urban, clinical, agricultural and livestock conglomerates into the natural
environment. This facilitates the spreading of antibiotic-resistant bacteria and resistant genes among
the bacterial population [16] by Horizontal Gene Transfer (HGT) through plasmid, transposons, and
integrons [17].

Previous studies showed floods due to Hurricane Katrina in the US, 2005 [18], Chennai flood
in 2015 [19], Hurricane Harvey in Houston, 2017 [20], and Thailand flood in 2011 [21],
significantly influenced the bacterial profile of water and soil. Reports on these floods evidenced that
faecal contamination indicators like Escherichia coli, Enterobacter aerogenes and Enterococcus were widely
distributed in water and soil sediments. In addition, infectious disease-causing pathogens such as
Legionella pneumophila, Vibrio cholerae, Aeromonas hydrophila, Klebsiella pneumoniae, Clostridium perfringens,
Salmonella typhi, Streptococcus pyrogens and Shigella flexneri were also abundant at flooded sites [20].
Another important concern is the possible coexistence of multidrug-resistant pathogenic bacteria with
environmental bacteria, especially since the frequency of flooding could increase in the coming years due
to global climate change and expansion of coastal cities [22]. A previous study at Hurricane Harvey’s
flooded sites in Houston revealed the elevated levels of anthropogenic antibiotic-resistant markers
such as sul1 and intI1 [20]. There were attempts to understand flood associated microbial composition
alteration [8,18,20] and circulation of pathogenic and resistant bacteria, but its influence varies
significantly based on the geography and nature of flooded environments. Due to the unpredictable
nature of floods, there is usually an absence of pre-flood data, which also makes such studies more
challenging [23].

A better understanding of the impact of extreme flooding on the disruption of natural
environmental microbiome and dissemination of pathogenic and antibiotic-resistant bacteria still needs
detailed investigation. Kuttanad, an agricultural region in Kerala located in India’s lowest altitude of
4–10 feet below sea level, is particularly susceptible to flood damage due to its unique geography [24].
Here, we employed shotgun metagenomic and bioinformatics techniques to understand the bacterial
community profile and the resistome of flood-affected areas of Kuttanad, India. We found a wide
range of bacterial communities and a higher abundance of multidrug-resistant pathogenic species
in flood-affected areas. Our results will provide a better understanding of the bacterial profile of
extremely flooded settings and provide more evidence to support decision-making for the prevention
and control of flood-related disease outbreaks.

2. Results

2.1. Bacterial Profiles of Extremely Flooded Sites

In total, 178,527 16S rRNA reads were obtained from sediment samples collected from five different
sites that were severely affected by the flood in August 2018. Only less than half of the 16S rRNA reads
(48%) were able to taxonomically classify into known microorganisms, of which the majority (96%)
belongs to bacterial species. Among the annotated cases of bacterial species, Proteobacteria (45.4%)
was found to be the most abundant phylum followed by Firmicutes (23%), Actinobacteria (16.39%)
and Bacteriodetes (5.94%) (Figure 1, Table S1). Within the Proteobacteria phylum, the most abundant
classes were the species of Betaproteobacteria (14.54%) and Alphaproteobacteria (14.42%) followed by
Gammaproteobacteria (11%) and Deltaproteobacteria (4.73%). Within Firmicutes, the most abundant
species were from Bacilli (12.96%) followed by Clostridium (9.18%) class. Actinobacteria (16.39%) was
found to be the dominant class in the phylum Actinobacteria. The Bacteriodetes primarily consisted of
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Bacteriodia (4.15%) and Flavobacteria (1.27%). At the genus level, Streptomyces (6.03%) is the abundant
genera followed by Magnetospirillum (4.08%), Neisseria (3.15%) and Achromobacter (2.66%). The bacterial
community richness and diversity (chao1, Shannon indices) of flooded sites were found to be uniform
(Table S2).
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Figure 1. Bacterial taxonomic distribution of flooded sites. Sunburst plot showing the taxonomic
classification and relative abundance of bacterial species in flooded sites. The taxonomic phylum is
represented in the innermost ring, class in the middle, and genus are represented in the outermost ring
of the circle. Within each taxonomic classification, taxa are sorted according to its abundance. A red *
symbol represents the multidrug-resistant pathogenic bacteria present in flooded sites. See Table S1 for
the full list of bacterial taxa found in flooded sites.

In addition, we also found many virulence factors (VFs) in flooded sites that are distributed
among the bacterial pathogens such as Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii,
Klebsiella pneumoniae, Salmonella enterica, Vibrio cholerae, Enterococcus faecalis, and Staphylococcus aureus.
The functional classification of these VFs showed that they are involved in bacterial motility, cell
adherence, iron uptake, secretions and toxins (Table S3). These VFs are associated with pathogenic
mechanisms in clinically relevant bacteria.

2.2. Resistome of Flooded Sites

To test the prevalence of Antibiotic Resistance Genes (ARGs) in the flooded sites, resistome profiles
were reconstructed from the sediment samples collected from five different flooded sites. In total,
the resistome of flooded sites contains 103 unique genes that confer resistance to antibiotics over
12 different classes (Figure 2, Table S4). Relatively similar gene distribution was present with an
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average number of 46 ARGs in each flooded site. Among the major resistance classes, most of the
ARGs present in flooded sites confer resistance to aminoglycoside (19 genes), beta-lactams (29 genes),
tetracycline (29 genes), fluoroquinolone (31 genes), macrolide (24 genes) and phenicol (16 genes).
38% of the detected ARGs in flooded sites were multidrug-resistant, the most frequent being MexB,
MexF and MuxB. These genes are known to be encoded in plasmids and confer resistance against
beta-lactams, fluoroquinolones, macrolides and phenicols.
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Genes (ARGs) detected in flooded sites. ARGs in flooded sites were classified into 6 major drug
classes. The coloured edges represent the proportion of ARGs of different drug classes detected in
flooded sites. ARGs conferring resistance to aminocoumarin, sulfonamide, mupirocin, rifampicin,
triclosan, glycopeptide and diaminopyrimidine classes of antibiotics are represented as others category.
Red blocks indicate plasmid-encoded ARGs. A complete list of antibiotic resistance genes and their
characteristics are listed in Table S4.

Carbapenems, a subfamily of beta-lactam antibiotics, currently are the most effective
broad-spectrum antibiotics [25], for which 10 resistant genes (eg., mdsB, MexB, mexQ) were found in the
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flooded sites. Additionally, we also detected genes that confer resistance to synthetic antibiotics such
as sulfonamide (sul1, sul2 and sul4), fluoroquinolones (e.g., smeE, adeF, acrB) and penems (TEM-126
and TEM-102). Furthermore, most of these genes were predominantly reported in species such as
Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Shigella flexneri,
Vibrio cholerae, Enterococcus faecalis, and Staphylococcus aureus (Table S4). There are about 39 (38%)
resistant genes that are plasmid-encoded, which increase the chances of conjugative transfer than
non-ARG carrying plasmids.

2.3. Viability of Pathogenic and Resistant Bacteria in Flooded Sites

Based on the colour and morphology of bacterial colonies in selective media, we confirmed
the presence of faecal contamination indicators such as Enterococcus faecalis, Escherichia coli and
pathogenic bacterial species such as Staphylococcus aureus, Salmonella typhi/typhimurium, Pseudomonas
aeruginosa, Vibrio cholerae and Klebsiella pneumoniae. The abundance of these bacterial species was
calculated by colony-forming unit(CFU)/gram of dry weight. The faecal contamination indicating
bacteria such as Enterococcus faecalis (8.4 ± 0.5 × 103 CFU/gram of dry weight) and Escherichia coli
(3 ± 0.35 × 103 CFU/gram of dry weight) showed 2- to 6-fold higher abundance than comparable
settings [26] (Table S5). Staphylococcus aureus, an opportunistic pathogen, was the most abundant
bacteria (8.5 ± 3 × 105 CFU/gram of dry weight) followed by Salmonella typhi/typhimurium, Vibrio
cholerae, Klebsiella pneuomiae and Pseudomonas aeruginosa.

The 24 morphologically distinct colonies of these six pathogenic species identified in flooded
sites were subjected to further antimicrobial susceptibility analysis against four different antibiotics
such as ampicillin (100 µg/mL), chloramphenicol (25 µg/mL), kanamycin (50 µg/mL), and tetracycline
(10 µg/mL). These antibiotics belong to major classes such as beta-lactam, aminoglycoside, phenicol
and tetracycline, respectively. Among these 24 isolates, 7 isolates were multidrug-resistant, and species
identity was confirmed by 16S rRNA sequencing using universal primers. Interestingly, these isolates
belong to Pseudomonas aeruginosa, Salmonella typhi/typhimurium, Klebsiella pneumoniae and Vibrio cholerae
(Figure 3). Additionally, the faecal contamination indicator Escherichia coli showed resistance against
ampicillin, and Staphylococcus aureus was sensitive to all antibiotics tested.
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Figure 3. In vitro evaluation of antimicrobial resistance of pathogenic bacterial species isolated from
flooded sites (August 2018). The culture plates showing pathogenic bacteria (Klebsiella pneumoniae,
Pseudomonas aeruginosa, Salmonella typhi/typhimurium, Vibrio cholerae) streaked on selective/differential
agar media (HiCromeTM Klebsiella selective agar base, Cetrimide agar base, Wilson Blair agar with
brilliant green (w/BG), Thiosulphate-Citrate-Bile-Salt sucrose (TCBS) agar, respectively) containing
different antibiotics such as Amp: Ampicillin (100 µg/mL), Kan: Kanamycin (50 µg/mL), Chl:
Chloramphenicol (25 µg/mL), Tet: Tetracycline (10 µg/mL), and incubated at 37 ◦C for 1–3 days.
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3. Materials and Methods

3.1. Sample Collection

To investigate the bacterial profile of extremely flooded sites, we performed a detailed
metagenomic screening of sediment samples collected from Kuttanad, the lowest altitude in India
(4–10 feet below sea level) [24] which covers over 500 sq km (Figure 4). Soil/sediment samples
were collected from five sites of Kuttanad namely Nedumudi (9◦26′33.73” N, 76◦24′26.565” E),
Ramankary (9◦24′47.808′′ N, 76◦27′19.152” E), Thakazhy (9◦23′5.352′′ N, 76◦26′42.971” E), Pulinkunnu
(9◦26′55.464′′ N, 76◦26′47.76” E), Mankombu (9◦25′19.056” N, 76◦28′19.92” E) during the flood season
(August 2018). As sampling sites were public places, special permits were not required for sample
collection. Triplicate sediment samples were collected from each place in sterile 50 mL conical tubes
by using sterile steel scoops, and unique identifiers were given for each sample. Following sample
collection, 50 mL conical tubes were wrapped with parafilm and transported to the laboratory on ice
(4 ◦C). The pH for soil/sediment samples was measured with pH meter in a suspension of a 1:5 ratio of
soil to ultrapure water on the day of sampling. The sediment samples were stored in the deep freezer
at −80 ◦C and −20 ◦C for DNA extraction and cultured based analysis, respectively. Geographical
location, environmental indices and pH at the time of sampling were recorded (Table S6).

Microorganisms 2019, 7, x FOR PEER REVIEW 6 of 13 

 

To investigate the bacterial profile of extremely flooded sites, we performed a detailed 
metagenomic screening of sediment samples collected from Kuttanad, the lowest altitude in India (4–
10 feet below sea level) [24] which covers over 500 sq km (Figure 4). Soil/sediment samples were 
collected from five sites of Kuttanad namely Nedumudi (9°26′33.73” N, 76°24′26.565” E), Ramankary 
(9°24′47.808′’ N, 76°27′19.152” E), Thakazhy (9°23′5.352 N, 76°26′42.971” E), Pulinkunnu (9°26′55.464 
N”, 76°26′47.76” E), Mankombu (9°25′19.056” N, 76°28′19.92” E) during the flood season (August 
2018). As sampling sites were public places, special permits were not required for sample collection. 
Triplicate sediment samples were collected from each place in sterile 50 mL conical tubes by using 
sterile steel scoops, and unique identifiers were given for each sample. Following sample collection, 
50 mL conical tubes were wrapped with parafilm and transported to the laboratory on ice (4 °C). The 
pH for soil/sediment samples was measured with pH meter in a suspension of a 1:5 ratio of soil to 
ultrapure water on the day of sampling. The sediment samples were stored in the deep freezer at −80 
°C and −20 °C for DNA extraction and cultured based analysis, respectively. Geographical location, 
environmental indices and pH at the time of sampling were recorded (Table S6). 

 
Figure 4. Map showing flooded regions and sampling sites of state Kerala, India. The intensity of the 
red colour indicates the level of flood severity in fourteen districts of Kerala during August 2018. 
Triplicate samples were collected from each site during August 2018. 

3.2. DNA Extraction 

Metagenomic DNA from sediment samples was extracted using DNeasy® Power Soil® kit 
(Qiagen, Germany), and slight modifications were made in the metagenomic procedure such as the 
addition of ribonuclease A (RNase A; 1 µg/mL, Qiagen, Germany) along with solution C2 (inhibitor 
removal solution). 1 h incubation at 37°C, and two additional washes were performed with 70% 
ethanol [27]. The purity and concentration of the metagenomic DNA was measured using a 
multimode microplate reader (TecanSpark 10m, Tecan, Switzerland). The integrity of extracted DNA 
was confirmed by agarose gel electrophoresis by loading an equal amount of extracted DNA on 

Figure 4. Map showing flooded regions and sampling sites of state Kerala, India. The intensity of
the red colour indicates the level of flood severity in fourteen districts of Kerala during August 2018.
Triplicate samples were collected from each site during August 2018.

3.2. DNA Extraction

Metagenomic DNA from sediment samples was extracted using DNeasy® Power Soil® kit (Qiagen,
Germany), and slight modifications were made in the metagenomic procedure such as the addition
of ribonuclease A (RNase A; 1 µg/mL, Qiagen, Germany) along with solution C2 (inhibitor removal
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solution). 1 h incubation at 37 ◦C, and two additional washes were performed with 70% ethanol [27].
The purity and concentration of the metagenomic DNA was measured using a multimode microplate
reader (TecanSpark 10m, Tecan, Switzerland). The integrity of extracted DNA was confirmed by
agarose gel electrophoresis by loading an equal amount of extracted DNA on agarose gel along with

Microorganisms 2019, 7, x FOR PEER REVIEW 7 of 13 

 

was confirmed by agarose gel electrophoresis by loading an equal amount of extracted DNA on 
agarose gel along with ג            

HindIII digest marker (New England Biolabs, Ipswich, MA, USA) [28]. An equal amount of DNA 
isolated from triplicate samples of each site was pooled and used for shotgun metagenomic 
sequencing. 

3.3. Shotgun Metagenomic Sequencing and Analysis 

One microgram of high-quality metagenomic DNA was further used for shotgun metagenomic 
sequencing and libraries were prepared using the NEBNext Ultra DNA Library preparation kit 
following the manufacturer’s protocol. In brief, the DNA is subjected to a sequence of enzymatic steps 
for repairing the ends and tailing with dA-tail followed by ligation of adapter sequences. These 
adapter-ligated fragments were then cleaned up using Solid Phase Reversible Immobilization (SPRI) 
beads. The cleaned fragments were indexed using the polymerase chain reaction (PCR) cycle to 
generate final libraries for paired-end sequencing. 2 × 151 bp sequencing reads were generated on the 
Illumina HiSeq system, yielding about 3 GB of data per sample. 

The quality of paired-end sequences was assessed using FastQC v0.11.4 [29]. Reads with low 
quality (Q value 20 cutoff) and adapter sequences were trimmed and removed using FastX toolkit 
v.0.0.13.2 [30]. SortMeRNA [31] was applied to the filtered shotgun metagenome data to extract 16S 
rRNA sequences from filtered reads. For each 16S rRNA sequence, a BLASTx search was performed 
against the NCBI non-redundant protein database using DIAMOND v.0.9.24 [32]. Output data were 
analyzed with the MEtaGenome ANalyzer (MEGAN v5.7.1) [33], using the following settings: Min 
Score = 50, top Percent = 10, min Support = 1, min-complexity filter = 0. Comparative analysis for taxa 
in terms of percentage mean relative frequency was performed using Statistical Analysis of 
Metagenomic Profiles (STAMP; V2.1.3) [34], G-test (with Yates’) + Fisher’s was applied to compare 
bacterial communities pairwise (flooded and natural ecosystems) with p-value <0.05, confidence 
intervals of 95%, and extended error bars were plotted. Genus-level taxa abundances were used in 
STAMP [34] to generate principal component analyses (PCA). Alpha diversities were measured by 
the Shannon diversity index and chao1 index using Qiime2 [35] to analyze the diversity within the 
samples. 

Antibiotic resistance and virulence genes were identified by mapping the filtered reads against 
Comprehensive Antibiotic Resistance Database (CARD) [36], and the Virulence Factor Database 
(VFdb) [37] using DIAMOND v.0.9.24 (BLASTx, -e 1e-05). Only hits with sequence identity above 90% 
and an alignment length over 25 amino acids were kept [38,39]. The identified ARGs were further 
annotated according to the corresponding CARD database descriptions. The occurrence of ARGs in 
plasmids were determined using BLASTn [40] against 14,595 complete plasmid sequences from the 
NCBI RefSeq database (updated on 16 May 2019). Hits with >70% of query coverage and >70% 
identity were kept. 

Publicly available metagenomic datasets collected from local mangrove ecosystems that lie 
across the state of Kerala reported by Imchen et al. [41] was used for comparative analysis. The 
metagenomes with the following accession numbers were downloaded from the Sequence Read 
Archive (SRA) database: SRR2844600, SRR2844601, SRR2844602, SRR2844616. 

3.4. Abundance of Selected Pathogens 

The abundance of selected pathogenic bacteria was calculated by CFU. One gram of sediment 
sample was pooled from triplicate samples of five flooded sites and mixed with 9 mL sterile 
phosphate-buffered saline taken in test tubes. The solution was homogenized using a vortex machine, 
and the suspension was serially diluted up to 10-4 [42,43]. 100µL of diluted suspension from each 
dilution was spread on different selective media such as Eosin Methylene Blue agar (EMB Agar, 
HiMedia, India), Salmonella differential agar modified (HiMedia), HiCromeTM Klebsiella selective 
agar base (HiMedia), Mannitol salt agar (HiMedia), Thiosulphate-Citrate-Bile-Salt-sucrose agar 
(TCBS agar, HiMedia), Cetrimide agar base (HiMedia), Wilson-Blair agar with brilliant green (WB 
agar w/BG, HiMedia), and Enterococcus differential agar base (HiMedia), by using a sterilized glass 

HindIII digest marker (New England Biolabs, Ipswich, MA, USA) [28]. An equal amount of DNA
isolated from triplicate samples of each site was pooled and used for shotgun metagenomic sequencing.

3.3. Shotgun Metagenomic Sequencing and Analysis

One microgram of high-quality metagenomic DNA was further used for shotgun metagenomic
sequencing and libraries were prepared using the NEBNext Ultra DNA Library preparation kit
following the manufacturer’s protocol. In brief, the DNA is subjected to a sequence of enzymatic
steps for repairing the ends and tailing with dA-tail followed by ligation of adapter sequences.
These adapter-ligated fragments were then cleaned up using Solid Phase Reversible Immobilization
(SPRI) beads. The cleaned fragments were indexed using the polymerase chain reaction (PCR) cycle to
generate final libraries for paired-end sequencing. 2 × 151 bp sequencing reads were generated on the
Illumina HiSeq system, yielding about 3 GB of data per sample.

The quality of paired-end sequences was assessed using FastQC v0.11.4 [29]. Reads with low
quality (Q value 20 cutoff) and adapter sequences were trimmed and removed using FastX toolkit
v.0.0.13.2 [30]. SortMeRNA [31] was applied to the filtered shotgun metagenome data to extract 16S
rRNA sequences from filtered reads. For each 16S rRNA sequence, a BLASTx search was performed
against the NCBI non-redundant protein database using DIAMOND v.0.9.24 [32]. Output data
were analyzed with the MEtaGenome ANalyzer (MEGAN v5.7.1) [33], using the following settings:
Min Score = 50, top Percent = 10, min Support = 1, min-complexity filter = 0. Comparative analysis
for taxa in terms of percentage mean relative frequency was performed using Statistical Analysis of
Metagenomic Profiles (STAMP; V2.1.3) [34], G-test (with Yates’) + Fisher’s was applied to compare
bacterial communities pairwise (flooded and natural ecosystems) with p-value <0.05, confidence
intervals of 95%, and extended error bars were plotted. Genus-level taxa abundances were used in
STAMP [34] to generate principal component analyses (PCA). Alpha diversities were measured by the
Shannon diversity index and chao1 index using Qiime2 [35] to analyze the diversity within the samples.

Antibiotic resistance and virulence genes were identified by mapping the filtered reads against
Comprehensive Antibiotic Resistance Database (CARD) [36], and the Virulence Factor Database
(VFdb) [37] using DIAMOND v.0.9.24 (BLASTx, -e 1e-05). Only hits with sequence identity above 90%
and an alignment length over 25 amino acids were kept [38,39]. The identified ARGs were further
annotated according to the corresponding CARD database descriptions. The occurrence of ARGs
in plasmids were determined using BLASTn [40] against 14,595 complete plasmid sequences from
the NCBI RefSeq database (updated on 16 May 2019). Hits with >70% of query coverage and >70%
identity were kept.

Publicly available metagenomic datasets collected from local mangrove ecosystems that lie across
the state of Kerala reported by Imchen et al. [41] was used for comparative analysis. The metagenomes
with the following accession numbers were downloaded from the Sequence Read Archive (SRA)
database: SRR2844600, SRR2844601, SRR2844602, SRR2844616.

3.4. Abundance of Selected Pathogens

The abundance of selected pathogenic bacteria was calculated by CFU. One gram of sediment
sample was pooled from triplicate samples of five flooded sites and mixed with 9 mL sterile
phosphate-buffered saline taken in test tubes. The solution was homogenized using a vortex machine,
and the suspension was serially diluted up to 10-4 [42,43]. 100µL of diluted suspension from each
dilution was spread on different selective media such as Eosin Methylene Blue agar (EMB Agar,
HiMedia, India), Salmonella differential agar modified (HiMedia), HiCromeTM Klebsiella selective
agar base (HiMedia), Mannitol salt agar (HiMedia), Thiosulphate-Citrate-Bile-Salt-sucrose agar (TCBS
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agar, HiMedia), Cetrimide agar base (HiMedia), Wilson-Blair agar with brilliant green (WB agar w/BG,
HiMedia), and Enterococcus differential agar base (HiMedia), by using a sterilized glass spreader and
incubated at 37 ◦C for 1–3 days, depending upon the bacteria that were grown in the selective media.
Control plates were spread with only the phosphate-buffered saline and processed in parallel with soil
suspension as method blank. After the incubation period, the number of colonies from each plate was
counted, and CFU of wet soil was calculated by the following Equation (1):

CFU/gram = Number of colonies/(dilution plated × dilution factor) (1)

Colony-forming unit of soil bacteria is expressed in dry weight instead of one gram of wet soil.
Thus, one gram of sediment samples were pooled from flooded sites and then air-dried to determine
the percentage change. Percentage change is calculated by the following Equation (2):

[(wet weight − dry weight)/wet weight] * 100 = % change (2)

This percentage change value is used to convert CFU per gram wet soil to CFU per gram dry
soil. To minimize error, all these experiments were repeated thrice for the sediment samples collected
during the flood and the result is expressed in CFU/gram of dry weight (mean ± s.d).

3.5. Identification of Antibiotic-Resistant Bacterial Pathogens

Bacterial pathogens that grow abundantly and show characteristic colony morphology such as
(i) purple-magenta coloured or cream to white coloured colonies on HiCromeTM Klebsiella selective
agar base; (ii) yellowish-green colonies on Cetrimide agar base; (iii) black with sheen colonies on Wilson
Blair agar with BG; (iv) round yellow colonies on TCBS agar; (v) yellow or white colonies surrounded
by a yellow zone on Mannitol salt agar; and (vi) purple with black centre and green metallic sheen
colonies in EMB agar were used to check resistance against ampicillin (Sigma-Aldrich, St.louis, MO,
USA), chloramphenicol (Sigma-Aldrich), kanamycin (Sigma-Aldrich), and tetracycline (Sigma-Aldrich).
Pure colonies were picked from the selective media and incubated in 5 mL nutrient broth for 1–3
days at 37 ◦C for 200 rpm in Innova shaker (New BrunswickTM Innova® (40/40R)). After incubation, a
loop full of bacterial culture was streaked on respective selective media containing antibiotics such as
ampicillin sodium salt (100 µg/mL), chloramphenicol (25 µg/mL), kanamycin sulfate (50 µg/mL), and
tetracycline hydrochloride (10 µg/mL), respectively. The plates were incubated at 37 ◦C for 1–3 days
according to the bacteria that streaked on the media. The bacterial isolates, which show resistance to
more than one class of antibiotics, were considered as multidrug-resistant [44]. A loop full of nutrient
broth streaked on the antibiotic-containing media is used as a method blank and is processed parallel
with bacterial culture.

3.6. 16S rRNA Sequencing

Bacteria showing antibiotic resistance were picked from the selective media and incubated in
10 mL Luria Bertani (LB) broth for 12 h. After incubation, bacterial genomic DNA was isolated
using the Nucleospin® Microbial DNA Kit (Macherey Nagel, Duren, Germany) according to the
manufacturer’s protocol. The quality and concentration of genomic DNA was measured by using a
multimode microplate reader (Tecan Spark 10 m, Tecan, Switzerland) and high-quality genomic DNA
was used for 16S rRNA sequencing. 16S rRNA gene was amplified using a universal forward primer
(5′CAGGCCTAACACATGCAAGTC3′) and reverse primer (3′GGGCGGWGTGTACAAGGC5′) [45].
PCR was carried out in a 20 µL reaction volume which contained 1X PCR buffer (100mM Tris HCl,
pH-8.3; 500mM KCl), 0.2mM each dNTPs, 2.5mM MgCl2, 1 unit of AmpliTaq Gold DNA polymerase
enzyme (Applied Biosystems, Foster City, CA, USA), 0.1 mg/mL BSA, 4% DMSO, 5 pM of forward
and reverse primers, and template DNA in Gene Amp PCR System 9700, (Applied Biosystems, Foster
City, CA, USA). PCR conditions were: 1 cycle of 95 ◦C for 5 min followed by 35 cycles of 95 ◦C for
30 s, 65 ◦C for 40 s, 72 ◦C for 60 s and 72 ◦C for 7 min. The PCR product was checked on agarose gel
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electrophoresis by loading 5 µL of PCR product on to 1.2% (w/v) agarose gel and the gel was visualized
using UV transilluminator (Genei, India) and the image was captured using Gel documentation system
(Bio-Rad, Berkeley, CA, USA). Amplified products were re-purified by using ExoSap (Thermo Fisher
Scientific, Waltham, MA, USA) treatment. Sequencing PCR was carried out by using the Big Dye
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) in a thermal cycler
(Gene Amp PCR System 9700, Applied Biosystems) according to the manufacturer’s instructions [46].
The forward and reverse sequences obtained from Sanger sequencing were merged using Bioedit
v7.1 [47]. Further, the merged sequences were used for the identification of species using BLASTn
search against the reference data sets of NCBI.

3.7. Availability of Data

The raw metagenomic data reported in this paper have been deposited in the NCBI SRA database
with accession numbers SRR9620086, SRR9620087, SRR9620088, SRR9620089, and SRR9620090, as part
of BioProject PRJNA552210.

4. Discussion

Extreme flooding is one of the major risk factors for human health. It can significantly alter the
top layer soil microbiome of flooded sites, and enhance the mobility of infectious disease agents,
especially the water-borne pathogens such as Salmonella typhi, Vibrio cholerae, Leptospira sp. and its
resistant strains [48]. Shotgun metagenomics of sediment samples collected from extremely flooded
sites revealed the overall bacterial profile and resistome at these settings. However, a large portion
(52%) of the bacterial diversity of these flooded sites still remains unknown.

Due to the unpredictable nature of floods, there is no metagenomic data available from the studied
settings before flooding for understanding the exact influence of flood on the bacterial communities.
A comparison of flooded sites with publicly available metagenomic data [41] of the local mangrove
ecosystem showed a significant difference (p < 0.05) in bacterial communities between both settings
(Figure S1). Interestingly, the PCA analyses showed that bacterial community composition was similar
in different flooded sites and it significantly differs from the local mangrove ecosystems (Figure S2).
In addition, we also found that the number of ARGs present in flooded sites is three times higher
compared to the local mangrove ecosystems and only 27 ARGs (26%) were found to be common
between both sites (Figure S3). In order to check the viability and resistance of pathogenic bacteria
present in flooded sites, we performed a culture-based analysis using different selective and differential
agar media. Most of the microbes detected are environmental bacteria but faecal contamination
indicators and clinically relevant pathogens such as Vibrio cholerae, Klebsiella pneumoniae, Salmonella
typhi/typhimurium, etc., and its resistant strains were also abundant. The higher levels of bacterial
contamination and dissemination of resistant pathogenic bacteria at the flooded areas might cause
water-borne and vector-borne diseases [49] such as dysentery, cholera, typhoid fevers and other
gastrointestinal diseases.

As previously reported by Garner et al. a large number of resistant genes which show resistance
to multiple classes of antibiotics were observed in flooded sites in Colorado in 2013 [50]. A similar
proportion of multidrug-resistant genes were observed at the flooded sites and after further annotation,
we identified the efflux pump as the most common mechanism for antibiotic resistance. Further, we
found a high prevalence of resistant genes that are associated with clinically relevant bacterial pathogens
and their viability was confirmed by culture-based techniques. The coexistence of bacterial species of
different drug resistance levels could increase the chance of resistant genes being exchanged between
strains of pathogenic and non-pathogenic bacteria [51]. Up to 46% of the multidrug-resistant genes
identified were found to be plasmid-encoded, which increases the transfer potential of these genes [51,
52]. These genes are having a higher transfer potential, yet we could not precisely quantify the extent
to which lateral gene transfer can promote further gene mobility. These results indicate that flooded
sites are large reservoirs of antibiotic resistance genes.
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Yu et al. reported that elevated levels of faecal contamination indicators such as Escherichia coli and
Enterococcus species, and pathogenic bacteria such as Pseudomonas aeruginosa and Klebsiella pneumoniae
were abundantly present in the flood-affected areas of Houston [20]. Additionally, our results suggest
a higher abundance of Escherichia coli and Enterococcus species in heavily flooded sites of Kuttanad
which might be due to the overflow of sewage during the flood. The abundance of faecal indicating
bacteria could increase the risk of gastroenteritis, diarrheal diseases and skin infections [53–55].
The culture-based analysis clearly indicates the presence of multidrug-resistant Pseudomonas aeruginosa,
an opportunistic pathogen that comes under the critical priority list of WHO [56] and Klebsiella
pneumoniae, one of the biggest threats to human health [56]. Another study by Emerson et al. reported
that Pseudomonadaceae and Enterobacteriaceae are the most abundant taxa in flooded homes in Colorado,
USA [57]. Other important antibiotic-resistant pathogenic bacterial species such as Vibrio cholerae,
causative agent of cholera [58], and Salmonella typhi/typhimurium, responsible for gastroenteritis, were
present in heavily flood-affected areas of Kuttanad. In addition, similar bacterial species were reported
in water samples collected after the flood in Chennai, India [19]. Interestingly, the multidrug-resistant
pathogenic species such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi/typhimurium
and Vibrio cholerae were found in post-flood samples collected after six months of the flood event in
February 2019. This indicates the persistence of pathogenic and resistant bacterial species even after
the devastating flood. Furthermore, better time-resolved sampling is required to estimate pathogen
survival duration, the source of detected pathogens and resistant strains, and their evolution [20].

5. Conclusions

Our results indicate that the devastating flood that occurred in the southern state of India
might have influenced the bacterial composition of its watershed areas. The higher abundance
of multidrug-resistant pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella
typhi/typhimurium and Vibrio cholerae is alarming because it could make post-flood disease outbreaks
difficult to treat. Our study provides better insights into the pathogenic and resistance traits of bacterial
communities in flooded sites, which helps to plan better preventive measures against post-flood disease
outbreaks, which include preventive measures such as chlorination of floodwater, vaccination, and
good hygienic practices that can help avoid the spread of infectious diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/10/474/s1.
Figure S1: Distribution of 77 genera found at significantly different abundances in the metagenomics profiles of
flooded and local mangrove settings as identified by STAMP analysis; Figure S2: Principal component analysis
(PCA) based on relative abundance of bacterial taxa at genus level in local mangrove (blue) and flooded (orange)
sites using Welch’s t-test two sided (p < 0.05); Figure S3: Chord diagram showing the presence of Antibiotic
Resistance Genes (ARG) detected in flooded (green) and local mangrove (grey) settings; Table S1: Table showing
the relative abundance of bacterial communities in flood-affected areas across phylum, class and genus levels;
Table S2: Table showing the biodiversity indices of bacterial communities in flooded sites; Table S3: Functional
annotation of the virulence factors distributed in pathogenic species found in the flooded sites; Table S4: List
of ARGs found in flooded and local mangrove settings with its drug class, resistance mechanism, presence of
mobile genetic elements and resistomes; and Table S5: Table showing the colony forming unit (CFU) of faecal
contamination indicator bacteria and pathogenic bacteria in soil/sediment samples collected during flood (August
2018); Table S6: Table showing the geographical details of sampling sites and its environmental indices during the
flood (August 2018) in Kuttanad, Kerala, India.
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