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Abstract: Emerging and re-emerging infectious diseases are a significant public and animal health
threat. In some zoonosis, the early detection of virus spread in animals is a crucial early warning for
humans. The analyses of animal surveillance data are therefore of paramount importance for public
health authorities to identify the appropriate control measure and intervention strategies in case of
epidemics. The interaction among host, vectors, pathogen and environment require the analysis of
more complex and diverse data coming from different sources. There is a wide range of spatiotemporal
methods that can be applied as a surveillance tool for cluster detection, identification of risk areas
and risk factors and disease transmission pattern evaluation. However, despite the growing effort,
most of the recent integrated applications still lack of managing simultaneously different datasets
and at the same time making available an analytical tool for a complete epidemiological assessment.
In this paper, we present EpiExploreR, a user-friendly, flexible, R-Shiny web application. EpiExploreR
provides tools integrating common approaches to analyze spatiotemporal data on animal diseases
in Italy, including notified outbreaks, surveillance of vectors, animal movements data and remotely
sensed data. Data exploration and analysis results are displayed through an interactive map, tables
and graphs. EpiExploreR is addressed to scientists and researchers, including public and animal
health professionals wishing to test hypotheses and explore data on surveillance activities.

Keywords: R-software; Shiny; spatiotemporal analyses; zoonosis; vector borne diseases; SaTScan;
network analysis

1. Introduction

Emerging and re-emerging infectious diseases are a significant public and animal health threat,
and their early detection and immediate response are crucial for their control. The detection of an
outbreak or an increase of cases of a zoonotic disease (e.g., West Nile Fever, Brucellosis) in animals could
be the first signal for public health authorities to start the implementation of prevention programs [1–3].
The analyses of animal surveillance data might therefore be of paramount importance for public health
authorities to identify the appropriate control measure and intervention strategies in case of epidemics.
In the last years, public and veterinary health authorities and research organizations have heavily
invested in the implementation of surveillance plans and the development of systems with the aim of
collecting and providing knowledge, data and tools for basic analysis via the web [4–9]. Unfortunately,
emerging infectious diseases, especially vector-borne diseases, are more challenging to be predicted
and controlled, and require a strong multidisciplinary approach due to the interaction among host,
vectors, pathogen and environment. Their understanding needs the analysis of complex and diverse
data, often disconnected from each other and coming from different sources [10,11]. Especially the
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environmental component involves the use of data, which although widely available nowadays, are
unstructured and extremely large.

All this makes such data of limited use if not converted through proper data management and
analytical methods that can handle the heterogeneous datasets, transforming these into information
useful to decision and policy makers [12,13].

However, as new data and computational resources have become available, a wide range of spatial
and spatiotemporal methods have been developed for early outbreak detection, cluster detection,
identification of risk areas and risk factors and disease transmission pattern evaluation [14–17].
The application of these increasingly complex statistical methods is fortunately facilitated by the
growing development of the open-source community, among which the most widespread and popular
is certainly R [18], a programming language and free software environment for statistical computing
and graphics. Several R-packages (e.g., surveillance, sp, rSaTScan, network, tsna, igraph) [19–24] have
been made available to researchers, but their use still requires adequate programming and statistical
skills to write down codes and to perform the analysis effectively.

To overcome this lack in technical skills, desktop and web applications have been developed,
providing analysis tools ready to use for researchers and public and animal health professionals [25–30].
Among the others, Nöremark et al., proposed EpiContactTrace, an open source tool, implemented
in R-language, to perform contact tracing in real time during disease outbreaks [27]; Moraga et al.
developed a Shiny web application, named SpatialEpiApp, that integrates disease mapping and
spatiotemporal clusters detection using SaTScan software [26]. In addition, international health
organizations are moving in this direction and the European Centre for Disease Prevention and Control
(ECDC) for instance, in 2018, launches an interactive Shiny application named EpiSignalDetection, in
which the user can import external data and perform basic signal detection analyses.

However, despite the growing effort and the most recent integrated applications, a more extended
web platform managing different datasets, and which takes into consideration various analytical tools
for a complete epidemiological assessment of disease surveillance data, is still lacking.

In this paper, we present EpiExploreR, a user-friendly, flexible, R-Shiny web application.
EpiExploreR dashboard provides different tools integrating several common approaches used to
analyze spatial and spatiotemporal data on animal diseases in Italy, including notified outbreaks,
surveillance of vectors, animal movements or contacts data, and remotely sensed data. The dashboard
displays and summarizes results at one glance by interactive maps, graphs and tables following the
“what you see is what you analyze” scheme.

This paper is organized as follows: First, we describe the EpiExploreR app aims, its architecture
and data flow. Then we briefly introduce the statistical methods and software used in spatial and
spatiotemporal analysis. Three case studies are used to illustrate the different applied tools.

2. Materials and Methods

2.1. EpiExploreR Implementation and Development

EpiExploreR with its interactive, R-Shiny interface allows one to rapidly analyze and visualize
data on animal diseases in Italy. It is organized in main topics that can be summarized as follows:

• Accessing and exploring different sources of geo-referenced, nearly real-time data, including
notified outbreaks, surveillance of vectors, animal movements and remotely sensed data;

• Applying base methods for early outbreak detection (e.g., Farrington algorithm, spatiotemporal
cluster analysis and data correlation tools);

• Running and calibrating temperature-driven mosquito models;
• Performing network analysis useful in the identification of disease transmission patterns.
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Results of data exploration and analysis are displayed through an interactive map, tables and
graphs produced in the Map and Analysis section (accessed via the main navigation menu) and the
Descriptor section, which creates a customized pivot tables.

To make EpiExploreR available via the Web and allow concurrent usage, ShinyProxy (https:
//www.shinyproxy.io/) was used. ShinyProxy is the easiest way to deploy Shiny applications, it is open
source and makes use of Docker technology.

ShinyProxy guarantees: (1) a better development-test-production cycle for apps; (2) isolated
“workspace” for each session; (3) scalability in the case of requests for more computational resources
(through a Docker/container-based cluster). Figure 1 shows the system architecture. All software and
R-packages used to develop EpiExploreR application are listed in Table 1.
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Table 1. Software and R packages used to develop EpiExploreR.

Ref. Description Tool or Task

Software

R [18] Language and environment for statistical computing
and graphics. User interface

SaTScan [31] Software that analyzes spatial, temporal and space-time
data using scan statistics. SatScan

R-package

surveillance [20] Temporal and Spatiotemporal Modeling and Monitoring
of Epidemic Phenomena. EpiCurve

shiny [32] Web Application Framework for R. User interface

shinyjs [33]
Perform common useful JavaScript operations in Shiny
apps that will greatly improve the apps without having

to know any JavaScript.
User interface

shinydashboard [34] Create dashboard with Shiny. User interface
shinythemes [35] Themes for Shiny. User interface
shinyWidgets [36] Custom Inputs Widgets for Shiny. User interface

shinycssloaders [37] Add CSS Loading Animations to ‘Shiny’ Outputs. User interface
sp [21] Classes and Methods for Spatial Data. Multiple

rsatscan [22] Tools, Classes and Methods for Interfacing with SaTScan
Stand-Alone Software. SatScan

network [23] Tools to create and modify network objects. Ntw data in area Geo

tsna [19] Temporal SNA tools for continuous- and discrete-time
longitudinal networks.

Trace from seed and
TPath

visNetwork [38] It allows an interactive visualization of networks. Ntw data in area Geo
igraph [24] Routines for simple graphs and network analysis. Ntw data in area Geo

leaflet [39] Create and customize interactive maps using the ‘Leaflet’
JavaScript library and the ‘htmlwidgets’ package. User interface

raster [40] Reading, writing, manipulating, analyzing and
modeling of gridded spatial data. EpiVelocity

plotly [41] Create Interactive Web Graphics via ‘plotly.js’. Graphs

ggplot2 [42] Create Elegant Data Visualizations Using the Grammar
of Graphics. Graphs

rpivotTable [43] Build Powerful Pivot Tables and Dynamically Slice and
Dice your Data. Descriptor section

dplyr [44] A fast, consistent tool for working with data frame-like
objects, both in memory and out of memory. Multiple

emojifont [45] An implementation of using emoji and fontawesome for
using in both base and ‘ggplot2’ graphics. Ntw data in area Geo

RColorBrewer [46] Provides color schemes for maps. Map

DT [47]
Data objects in R can be rendered as HTML tables using

the JavaScript library ‘DataTables’ (typically via R
Markdown or Shiny).

Tables

rgdal [48] Bindings for the ‘Geospatial’ Data Abstraction Library. Multiple
bezier [49] Toolkit for Bezier Curves and Splines. Ntw data in area Geo

leaflet.extras [50] Extra Functionality for ‘leaflet’ Package. User interface
rgeos [51] Interface to Geometry Engine—Open Source (‘GEOS’). Multiple

mgcv [52] Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation. EpiCurve

v8 [53] An R interface to Google’s open source JavaScript engine. Multiple

xlsx [54] Read, Write, Format Excel 2007 and Excel
97/2000/XP/2003 Files.

Data
download/upload

RCurl [55] General Network (HTTP/FTP/...) Client Interface for R. Data
download/upload

htmlwidgets [56] A framework for creating HTML widgets. User interface
stats4 [18] Statistical Functions using S4 classes. Multiple

ggmap [57]
A collection of functions to visualize spatial data and

models on top of static maps from various online sources
(e.g., Google Maps and Stamen Maps).

Map
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2.2. Data Collection and Data Flow

EpiExploreR integrates complex and diverse public and restricted data, in a single environment,
including notified outbreaks, entomological surveillance, animal movements and remotely sensed
data coming from different sources.

The epidemiological information is retrieved by the National Information System for the
Notification and Management of Animal Diseases in Italy (SIMAN) [58], managed by the Italian
Ministry of Health. The details collected for each notified outbreak include the disease, province,
administrative unit, outbreak code, latitude and longitude of occurrence, the outbreak state (i.e., suspect,
extinct and confirmed), number of cases, susceptible, destroyed, slaughtered and dead animals, date of
occurrence and confirmation of the event and species. Entomological surveillance data include the
catch site code, latitude and longitude of the catch site, and the number of specimens identified.

Animal movements data are extracted from the Italian National Database for Animal Identification
and Registration (NDB) [59], managed by the Italian Ministry of Health. Each movement reports
the origin and destination holding code, the number of traded animals per species and the date of
the movement. In addition, the following attributes for each holding are considered: the holding
type (i.e., farm, slaughterhouse, staging point, market, assembly center, foreign country, etc.), the
holding production type (i.e., milk, meat, wool, reproduction, etc.) and the address and geographical
coordinates of the holding.

Remotely sensed data are gathered from LP DAAC [7]: MODIS Land Surface Temperature and
Emissivity (MOD11A2), Day/Night Land Surface Temperature (LSTD/LSTN) at 1 km spatial resolution
and 8 days temporal resolution.

A daily R-routine gathers and structures data provided from different data sources and sets
a default data time-window of the last five years; data are then returned into binary R-data to be
efficiently accessible in EpiExploreR.

Users can upload external data (outbreaks, vectors and animal movements or contacts data) using
Excel files with a predefined layout downloadable from the application. In addition, EpiExploreR
provides a tool for data downloading in Excel file format. Table 2 lists the downloadable data. The
system data flow is shown in Figure 1.

Table 2. EpiExploreR downloadable data.

App Analysis Tool/Task File Name Worksheet Name Data Description *

Outbreak detection/EpiCurve outbreak.data.xlsx Outbreaks Outbreak disease data

Vectors and related factors
/Vectors report ento.data.xlsx Ento Entomological data

Vectors and related factors
/Vectors report ento.data.xlsx Outbreaks Outbreak disease data

Vectors and related factors
/Vectors report ento.data.xlsx LST_RAW LST data (at 8 day

temporal resolution)

Vectors and related factors
/Vectors report ento.data.xlsx LST_Month LST data (monthly

temperature average)

MODIS LST and Mosquito
model/MODIS Land surface

temperature (LST)
LSTpoint.data.xlsx PointCoordinates Coordinates of the

user-defined point

MODIS LST and Mosquito
model/MODIS Land surface

temperature (LST)
LSTpoint.data.xlsx LST.Observed

TLS data for the set point
(8 days temporal
resolution values)
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Table 2. Cont.

App Analysis Tool/Task File Name Worksheet Name Data Description *

MODIS LST and Mosquito
model/MODIS Land surface

temperature (LST)
LSTpoint.data.xlsx LST.interpolation Interpolated daily

TLS values

MODIS LST and Mosquito
model/MODIS Land surface

temperature (LST)
LSTpoint.data.xlsx LST.NA TLS data missing

MODIS LST and Mosquito
model/MODIS Land surface

temperature (LST)
based model

MosquitoModel.xlsx MosquitoModel

Mosquito model results:
Larvae/Adults daily data

and related mean
temperature values

Network Analysis/Ntw data in
area Geo NodeCentralities.xlsx Nodes Centralities

Nodes data and related
centrality

measures values

Network Analysis/Ntw data in
area Geo NodeCentralities.xlsx Static edges Contacts data of the

static network

Network Analysis/Ntw data in
area Geo NodeCentralities.xlsx Nodes Nodes data of the static

network

Network Analysis/Trace from
seed Subntw.xlsx TraceFromSeed

Movements data related
to the specified seed in

back and forward in the
established timeframe

Network Analysis/Tpaths tpaths.Tables.xlsx Selection

Data related to the Tpath
analysis: start/end date,

species, (from/to)
slaughter/foreign state

movements
(included/excluded)

Network Analysis/Tpaths tpaths.Tables.xlsx Tpath edges table Tpath analysis results in
terms of edges involved

Network Analysis/tpaths tpaths.Tables.xlsx Tpath nodes table

Classification of nodes
included in the Tpath

analysis in terms of their
FRS values (origin area),
BRS values (destination

area) and DEG values for
bridge nodes (external to

the origin and
destination areas)

* Downloaded data are referred only to the space-temporally data defined by the user.

2.3. Spatiotemporal Methods and the Epiexplorer Dashboard Features

The EpiExploreR dashboard features are shown in Figure 2, where each task and consequently
each tool is linked to the data analysis objective. Although a full description of the provided tools
might be useful, for length constraint, only the principal ones are following in detail.
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2.3.1. Disease Mapping

An interactive map shows the distribution of outbreaks, vectors or animal movements data
(depending on the dataset chosen), in space and time, giving an idea of patterns, disease speed and risk
factors. The EpiVelocity tool is provided to estimate the speed of the infectious disease spread using the
simpler observed space–time ratio method. Velocity is calculated considering a distance determined by
the length of a drawn line on the map, and the time set through a grid with a user-defined resolution,
taking into account outbreaks involved in each pixel and their minimum time of occurrence. A time
slider is available to dynamically plot the outbreaks on the map.

2.3.2. Early Outbreak Detection (EOD) Methods

The Farrington algorithm is a robust method that can detect the emergence of rare disease
outbreaks. It is derived from the outbreak time series over the selected time period, taking into account
seasonality and trend of the pattern under study. For each time point (in our case, week) it uses a
Poisson generalized linear model (GLM) to predict the number of counts according to the procedure
by Farrington et al. [60]. The 95% quantile of this prediction represents the threshold value which the
observed distribution is compared to: if the observation is above the boundary, then a warning arises.
The upper bound is calculated considering two years back and a three week window. Results are
shown for the last 20 weeks in a graph together with the epidemic curve (on a weekly basis) and a
smoothed predicted line. Two implementations of the Farrington method are proposed, the classical
Farrington [60] and the Farrington Flexible method made by Noufaily et al. [61].

Cluster analysis detection has a long history [62,63] that attracted great interest, and various
techniques have been developed so far for evaluating whether the incidence of disease significantly
groups together [64–66]. The scan statistics methodology [67,68] has been implemented as a major
analytical tool for cluster detection in a spatial, temporal and space–time setting. A prospective
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space–time permutation model is applied to the outbreak cases in the selected time period. This model
requires only cases data, with information about the spatial location and time for each case, with no
information needed about controls or a background population at risk [64]. The prospective option
has been held for the early detection of disease outbreaks, since it regularly scans the current study
period for the alive cluster. Users can set the time window (ranging from seven to thirty days) and
spatial radius (ranging from five to fifty kilometers) to perform the analysis.

2.3.3. Temperature Driven Mosquito Modeling

The mosquito lifecycle is modeled considering two age compartments: an aquatic stage (eggs,
larvae, pupae), and a terrestrial stage (adult mosquitoes). The model, driven by temperature, is
performed considering the density-dependent population growth rates of mosquitoes (bounded by the
carrying capacity of the mosquito larvae), daily mean temperature (mean value of LSTD and LSTN),
and the daytime length at the geographical latitude of the set point (generated by clicking on the map
or typing geographic coordinates).

The birth rate for larvae, the transition rate from larvae to adults, the fraction of active mosquitoes
and the mortality rate for adults are all described in Rubel et al. [69]. Two distinct U-shape functions
for the larvae mortality rate are proposed according to Rubel et al., and Beck-Johnson et al. [70],
respectively. The user can evaluate model tuning using custom values for all parameters. The mean
daily temperature is derived from applying a smoothing spline procedure onto LST data (after 8 days,
missing values have been filled). The documentation about the implemented model is available in
the application.

2.3.4. Network Analysis in Livestock Mobility

Animal movement records are usually accepted as a key element for disease prevention and
control. The animal movements data are represented as a network, where the holdings of origin and
destination are nodes, and the movements of animals are edges. The edges have a direction from origin
to destination and a weight defined by the number of animals moved or the number of movements in
the timeframe. The topological network structure and the centrality measures of nodes can be used
to estimate the disease spread risk and vulnerability based on historical trade patterns. In case of an
outbreak, holdings with high centrality can be subjected to targeted in-field investigations and control
measures. For example, vaccinating super-spreading nodes may be a more efficient way to control
the disease spread than random vaccination [71–74]. Table 3 describes the static network connectivity
properties. An interactive graph of the network is provided to highlight the connected components
of the network. The documentation about the implemented network analysis tools is available in
the application.

Beside the network properties listed in Table 3, EpiExplorerR allows the user to verify if the
scale-free property is satisfied in the network under study. A scale-free network is characterized by
a heavy-tailed degree distribution (defined as the probability that any node is connected to k other
nodes), approximated by a power-law behavior of the form P(k) ~ kˆ-γ with 2< γ ≤3. This implies
an unexpected, statistical abundance of nodes with very large degrees (i.e., the so-called “hubs” or
“super-spreaders”). Pastor-Satorass and Vespignani [76] showed that in a scale-free network a large
number of individuals can get infected in a finite number of steps. It does not matter that the infected
node has a low degree value, it is sufficient that it is just a few links away from a hub.

Temporal path in a dynamic network (Tpath) is a sequence of nodes and edges, such that the
onset times of successive elements are greater or equal than those of the previous. The Tpath algorithm
performs a time-minimization (earliest arriving path) to find a set of nodes reachable on the forward
temporal path from the initial seed [19]. The Forward Reachable Set (FRS) and Backward Reachable Set
(BRS) measures, derived from the Tpath analysis, are the set of nodes that can be reachable or reached
from an initial seed [77]. These measures identify nodes having the potential, if infected, to infect
the greater number of other nodes (risk) or, on the contrary, to be reached from the greater number
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of nodes (vulnerability) in a dynamic network. The Tpath analysis is proposed to take into account
the dynamical nature of animal trade and two applications are provided: The first one to perform a
quickly and efficiently trace-back and trace-forward activities from a specified seed and timeframe
and the second one to perform the Tpath analysis between two or more selected areas involving more
nodes as origins and destinations of movements.

Table 3. Network properties implemented in EpiExploreR.

Name Description *

Network Properties at the Global Level

Size The number of nodes and edges.
Diameter The length of the longest path (in number of edges) between two nodes.

Average shortest path length Refers to the average of all the shortest distance (number of edges) between
each pair of reachable nodes in the network [75].

Density The number of edges in the network over all the possible edges that could
exist in the network.

Reciprocity Measures the mutual edge relation: the probability that if node i is
connected to node j, node j is also connected to node i.

Transitivity Measures that probability that adjacent nodes of a network are connected
(also known as clustering coefficient).

Network communities The networks often have different clusters or communities of nodes that are
more densely connected to each other than to the rest of the network.

Network Properties at Local Level (the Weighted Measures are Calculated Considering as Edge Weight
Alternatively the Number of Animals Moved or Number of Movements)

Degree
The number of adjacent edges to each node. It is considered as InDegree

and OutDegree: InDegree is a count of the number of incoming edges to the
node and OutDegree is the number of outgoing edges from the node.

Strength A weighted measure of degree that takes into account the number of edges
going from one node to another or the number of animals moved.

Closeness Measures how many steps are required to access every other node from
a given node.

Betweenness The number of shortest paths between nodes, passing through
a particular node.

Page rank Approximates the probability that any message will arrive to
a particular node.

Authority score A node has high authority when it is linked to many other nodes, in turn
linked to many other nodes.

* http://pablobarbera.com/big-data-upf/html/02b-networks-descriptive-analysis.html.

3. Results

EpiExploreR is available in two versions: public (https://pub.epiexplorer.izs.it/) and restricted
(accessible for internal users). Hereafter, we describe the main features of the application and illustrate
their utility through three case studies.

3.1. The Estimated Velocity of the BTV-1 Spreading in Central Italy During 2014

Estimating the speed of infectious disease spread is a critical task in epidemiology, and several
approaches were adopted in recent years [78,79]. Although sophisticated methods may be used
to estimate disease velocity, the simpler observed space–time ratio using the first date of outbreak
occurrence can be a useful insight into the formulation of hypotheses in the disease spread investigation.
Figure 3 shows the interactive map of the distribution of the bluetongue virus-1 (BTV-1) outbreak
in Central Italy in 2014 (color coding time of occurrence). The Outbreaks detection tool visualizes a
dynamic report (upper right panel in Figure 3) with the number of outbreaks, the involved species and
the subtypes of the virus falling inside the map active viewing. In addition, a graph visualizes the
timing of the outbreak (on a weekly basis) and the outbreaks type (farms or other localities).

http://pablobarbera.com/big-data-upf/html/02b-networks-descriptive-analysis.html
https://pub.epiexplorer.izs.it/
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Finally, Figure 5 shows the estimated velocity of the BTV-1 spreading across Central Italy during
2014. By the use of the EpiVelocity task, a grid layer is added on the map. The grid layer has a
user-defined spatial resolution of 0.4 decimal degrees, and it is colored on the basis of the minimum
occurrence time of outbreaks falling inside each pixel of the grid. Estimated velocity (space/time) along
each segment of the drawn line ranges from 0.48 km/day to 2.28 km/day (corresponding to 3.3 km/week
and 15.96 km/week), while the overall measured velocity is of 1.23 km/day (about 8.6 km/week), as
shown in Figure 5.
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Figure 5. The grid layer represents the minimum occurrence time of outbreaks falling inside each pixel
of the grid. Estimated velocity of the BTV-1 spreading in Central Italy in 2014. The overall and single
segment velocities are reported in the bottom right table.

3.2. West Nile Disease (WND) in Sardinia Region

Cases of West Nile Disease (WND) in Sardinia are reported since 2011, although it is considered
endemic since 2014 [80]. In 2018 an increase of WND cases was observed in comparison with the
previous four years (Figure 6). The epidemic curve indicates that the number of outbreaks ranged
from one to three per week in the disease favorable season until 2017, whilst during 2018 it reached
fourteen outbreaks per week. The Farrington algorithm identified the 2018 epidemic as an anomaly
(represented by the red line in Figure 6).
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Figure 6. Epidemic curve of 2014–2018 West Nile Disease (WND) outbreaks and Farrington threshold.
Farrington algorithm identifies the 2018 epidemic as an anomaly, for the whole favorable season.

A preliminary analysis of temperatures was performed to verify anomalies in 2018, possibly explaining
the increased number of cases, and it was observed that the mean of temperatures recorded in May and
June 2018 were, on average, about 4 ◦C lower than the overall average of the five years (Figure 7).Microorganisms 2019, 7, x FOR PEER REVIEW 13 of 24 
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evidence of how the 2018 temperature time series was particularly favorable to mosquito’s growth. 

 

Figure 7. The Pivot table, in the “descriptor” tab, represents the average of the day-time land surface
temperature per month and year in the last five years (data refers to the active map view). The table
shows that May (23.29 ◦C) and June (28.87 ◦C) temperatures were about four degrees lower than the
overall five years averages (26.82 ◦C and 33.10 ◦C respectively).
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Figure 8 reports the time series of adult mosquitos predicted, along with daily mean temperature
for a selected point on the map, using the Rubel. et al. model with default parameter values. The plot
shows how that the mosquito model predicted a higher number of adults during 2018. This is a clear
evidence of how the 2018 temperature time series was particularly favorable to mosquito’s growth.
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Figure 8. Time series of adult mosquitos (orange line), along with daily mean temperature (green) for
the selected point (red marker on the map) using the Rubel. et al. model. The map is that of the Italian
island of Sardinia.

Using the vector’s report it is possible to explore correlations between insects species, LST data,
outbreaks and simulated mosquito populations for a drawn spatial region on the map. Figure 9 shows
the correlation (as scatter-plot and double axes time series) between simulated adult mosquitoes and
WND outbreaks falling inside the region drawn on the map on a monthly basis. The results reinforce
the hypothesis of favorable temperature conditions for mosquitoes considering the WND outbreak
region during the year 2018.
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3.3. Alive Cluster Detection for Brucellosis Disease and Evaluation of Its Introduction or Spread in Italy
through Animal Movements Network Analysis

Searching for alive spatiotemporal disease clusters allows epidemiologists to formulate hypotheses,
test associations and find risk factors. By integrating detailed data of livestock displacements and
leveraging on the network science approach, it is possible to have a most complete framework to study
real epidemic outbreaks to identify where and when infection could move [81,82].

Using the SatScan tool for the identification of Brucellosis alive clusters in Italy in April 2019, two
significant clusters were detected in northern Sardinia (p-value < 0.05) with 29 outbreaks between
March and April 2019 (Figure 10).Microorganisms 2019, 7, x FOR PEER REVIEW 15 of 24 
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Figure 10. The SatScan tool results (as seven colored clusters on the map) obtained by setting 30 days
for the time window and a radius of 50 km in the parameter setting tab (on the right). The outbreak
layer has been hidden to make the smallest clusters visible. Cluster shape color is p-values coded from
red to yellow when p is less than 0.05, and from light to dark green when p is greater than or equal to
0.05. Clicking on a cluster on the map opens a popup, showing further details such as the time window,
the radius, p-value, the observed and expected number of outbreaks.

Network analysis tools applied to bovine and sheep movement data in the period 01/01/19–30/03/19
preceding the time of clusters detection and related to the identified area, shows that the majority
of outgoing movements were registered towards northern Italy, which is disease-free (Figure 11).
Moreover, the map and graph of Figure 11 show the absence of incoming direct connections between
the selected areas and the Campania and Calabria regions, Apulia and Sicily, where brucellosis is
endemic [81,82]. This probably links the cluster origin observed in Sardinia to a trade activity inside
the region, rather than a legal introduction from high prevalence Italian regions.
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Figure 11. The distribution of farms (nodes) involved in the network are mapped (left side of the
figure) using colors to differentiate nodes outside the selected area in three categories: reaching (light
blue dots), reached by (green dots) and both reaching and reached by (pink dots) the selected area
(clusters). Nodes inside the selected area are represented by dark blue points (blue and white markers
highlight nodes involved in trading, only inside the area). The report produced by ‘Ntw data in area
geo’ task includes a bar chart of the animals traded through time with the distinction of outgoing
(green), incoming (light blue) and inside (dark blue) the areas drawn on the map. Jointly looking at the
map and the graph remarks that most of the animals going to selected areas come from the Sardinia
region (light blue points on the map).

The topological properties of the network show that it has strong diffusive capacities in terms
of epidemic size and speed (Figure 12). The degree distribution of nodes, following a power law
distribution with exponent 2.95, implies the presence of super-spreaders nodes. In addition, the
average shortest path length value indicates the possibility for the disease of reaching any other farms
in the network from any seeding site with a sequence of around two steps [76].
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Figure 12. Topological properties of the static network are shown in table and graph form. In detail, the
table reports the network size, diameter, average shortest path length, density, reciprocity, transitivity
and the Giant Weak and Strong Connection Component percentage size, respectively. The graph reports
the Degree distribution of nodes.

Figure 13 shows a table listing centrality measures for each node of the selected network. The table
is linked to the map and the network graph so that the nodes with the highest degree centrality value
can be easily spatially and graphically identified. These nodes can be subjected to targeted in-field
investigations and control measures [70–72].
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Figure 13. Network local properties for each node (degree, indegree, outdegree, strength, instrength,
outstrength, closeness, betweenness, authority, PageRank) are listed in the table. The selected record in
the table is linked to the corresponding node (the yellow arrow) on the map and to the dynamic graph
of the network (color coding weakly connected components).
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Tpath analysis of the selected network data can be used to take into account the dynamical
nature of animal trade, and consequently the disease spread. Indeed, the time window of a possible
introduction of infection to the farms is relevant when determining contacts of interest. Animals
introduced after the possible window of introduction can be excluded as a source, and animals leaving
the farms before the possible introduction will not have the chance to spread the disease. Figure 14,
panel A, shows an example of trace forward starting from a seed node, within the identified cluster
region, and reaching northern Italy in a time window of possible infection introduction (from 01/12/2018
to 28/02/2019), while the geographical distribution of farms reached by the outgoing animal movements
through temporally valid paths from the selected areas is shown on the map in panel B.Microorganisms 2019, 7, x FOR PEER REVIEW 18 of 24 
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The Tpath tool can be used to evaluate all temporal valid paths (either direct or indirect) from 
an origin area to a destination area (spatially identified). Figure 15 shows the Tpath analysis setting 
a 10 km circular buffer around Piacenza (an example of the disease-free zone in northern Italy) as a 
destination area. Results show that this Piacenza area has been reached by several temporal valid 
pathways. However, these connections involved at least five intermediate steps and an elapsed time 
of 20 days. Intermediate points (so-called bridges) connecting Sardinia to Piacenza are all located in 
northern Italy, mostly on the western side. 

Figure 14. Panel A shows an example of the trace forward subnetwork linking a node in Sardinia to
northern Italy in the time window 01/12/2018–28/02/2019. The forward network representation adds
details about the timing of the edges, the number of animals moved and the type of farms involved
(coded through the marker’s color and icon, as detailed in the legend). Panel B shows country-wise
reached nodes through valid temporal paths from the Sardinia areas (red points transparency can be
set to get a density-like map).
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The Tpath tool can be used to evaluate all temporal valid paths (either direct or indirect) from
an origin area to a destination area (spatially identified). Figure 15 shows the Tpath analysis setting
a 10 km circular buffer around Piacenza (an example of the disease-free zone in northern Italy) as a
destination area. Results show that this Piacenza area has been reached by several temporal valid
pathways. However, these connections involved at least five intermediate steps and an elapsed time
of 20 days. Intermediate points (so-called bridges) connecting Sardinia to Piacenza are all located in
northern Italy, mostly on the western side.Microorganisms 2019, 7, x FOR PEER REVIEW 19 of 24 
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• Load data provided by national data sources: NDB and SIMAN (only for private version). 
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to Italy. 

Figure 15. Panel A shows the subnetwork originating in nodes belonging to the red circle area and
reaching nodes inside the yellow circle area through temporally valid paths. In panel B the subnetwork
found is summarized using direct straight-line connecting nodes, whose color reflects the arrival
time. Node size inside the origin area reflects the number of reached nodes inside the destination
area (similarly, node size inside the destination area reflects the number of nodes they are reached
by). The map also shows nodes (or bridges) crossed by the temporal paths (blue points), whose size
represents the degree value of the node. Panel C displays network characteristics, parameter settings
and the Tpaths tables. Tables are linked to the map and they list path properties, like origin and
destination farm code, the number of steps and the time of earliest arriving.

4. Discussion

For national health administrations, the availability of epidemiological georeferenced data, along
with potential disease or vector risk factors, contacts trace, genomic sequences, has drastically increased
in recent years. Public health administrations and research institutes are constantly focused on
the adoption of open-source software for the management, analysis and distribution of these data.
R software is certainly the most used, it is a free environment for statistical computing, flexible and
continuously supported by a large community of active developers and researchers. In this context,
“R-epi project” (https://sites.google.com/site/therepiproject/), is a pillar example of a website developed
to provide resources for the analysis of disease data using R.

In addition, the recent development of the shiny package made easier the development of
web applications from within R, and consequently a number of shiny apps for the epidemiology of
infectious diseases have been lately developed [25–30]. However, a more extended web platform
managing different datasets, and which takes into consideration proper analytical tools for a complete
epidemiological assessment of disease surveillance data, is still lacking.

EpiExploreR has been implemented using R and Shiny, and includes functions from different
R packages and statistical programs. The application is user friendly and is addressed to scientists,
researchers, including policy makers and public and animal health professionals wishing to
test hypotheses and explore data on disease surveillance activities, even if not statistically or
programming skilled.

https://sites.google.com/site/therepiproject/
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The system provides data and analysis features, and is mainly (but not only) designed to efficiently
manage, visualize and analyze the huge amount of diverse epidemiological data.

It is important to note that the loading data tool allows choosing among:

• Load example data to explore the complete set of features for training purposes;
• Load external data to perform the analysis using self-owned data (in both the public and private

versions);
• Load data provided by national data sources: NDB and SIMAN (only for private version).

The loading of MODIS LST data provided by LP-DAAC is carried out in each case and limited
to Italy.

What makes EpiExploreR advanced and original is the adoption of a “what you see is what you
analyze” scheme. The interaction between spatiotemporal data filters, analyses and exploration tools
allows the analysis to be refined, step by step, easily and iteratively, and respond to the needs on
different temporal and geographical scales or user-defined areas. Furthermore, the users can run
SatScan software to detect spatiotemporal clusters. Although applications with similar features have
been developed (e.g., SpatialEpiApp), these are mostly focused on one of the many factors related to
diseases, whilst EpiExplorer integrates several factors.

In some cases, the analysis can lead to cumbersome results (if a huge amount of data freezes the
browser) or to long waiting time. Aware of the idea that these aspects can be problematic for web
applications, we left, however, to the user the choice (e.g., the plot of a large network, is limited to
1000 edges by default, but the user can force its rendering).

Actually, the implemented methods are commonly used in health surveillance, but the application
can be easily extended in future versions. Several aspects will be improved, mainly to:

• Upload an additional dataset (e.g., genomic sequences and animal density data) and use the
appropriated spatiotemporal and mathematical models.

• Create custom epidemiological reports in HTML-format. Include tools to import and export
spatial data (e.g., shapefiles) reproducibility of the performed analyses.

These upgrades will ensure an increase in the flexibility of the system and greater reproducibility
of the performed analyzes.
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