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Abstract: Candida albicans is a commensal that inhabits the skin and mucous membranes of humans.
Because of the increasing immunocompromised population and the limited classes of antifungal
drugs available, C. albicans has emerged as an important opportunistic pathogen with high mortality
rates. During infection and therapy, C. albicans frequently encounters immune cells and antifungal
drugs, many of which exert their antimicrobial activity by inducing the production of reactive oxygen
species (ROS). Therefore, antioxidative capacity is important for the survival and pathogenesis of
C. albicans. In this study, we characterized the roles of the zinc finger transcription factor Sfp1 in the
oxidative stress response against C. albicans. A sfp1-deleted mutant was more resistant to oxidants
and macrophage killing than wild-type C. albicans and processed an active oxidative stress response
with the phosphorylation of the mitogen-activated protein kinase (MAPK) Hog1 and high CAP1
expression. Moreover, the sfp1-deleted mutant exhibited high expression levels of antioxidant genes
in response to oxidative stress, resulting in a higher total antioxidant capacity, glutathione content,
and glutathione peroxidase and superoxide dismutase enzyme activity than the wild-type C. albicans.
Finally, the sfp1-deleted mutant was resistant to macrophage killing and ROS-generating antifungal
drugs. Together, our findings provide a new understanding of the complex regulatory machinery in
the C. albicans oxidative stress response.
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1. Introduction

Candida albicans (C. albicans) is a member of the human microbiota that normally inhabits the
skin and mucosal surfaces of healthy individuals [1]. However, C. albicans is also an opportunistic
pathogen that causes a wide range of infections including life-threatening hematogenously disseminated
candidiasis, particularly in immunocompromised patients [1]. In addition to infections, C. albicans
drug resistance has also emerged as a serious problem in clinical settings [2].

During the infection process and clinical therapy, the ability of C. albicans to adapt and respond
to oxidative stress is critical for cell survival and virulence [3,4]. For example, C. albicans copes
with reactive oxygen species (ROS) generation during the respiratory burst in phagocytic cells such
as macrophages and neutrophils [3,5]. In addition, antifungal agents including amphotericin B,
miconazole, and caspofungin induce ROS formation against C. albicans [6–8]. Previous studies showed
that miconazole-mediated fungicidal activity against C. albicans was significantly inhibited by the
addition of antioxidant [7], and superoxide dismutase inhibitors enhanced the activity of miconazole
against C. albicans biofilm cells [9,10].
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To protect cells from oxidative stress, C. albicans has evolved various signaling components,
transcriptional regulatory factors, and antioxidant enzyme systems [11]. Antioxidant systems are
exemplified by the superoxide dismutases (Sods), catalase, and glutathione peroxidase. Sods convert
superoxide to the less toxic hydrogen peroxide, which is further detoxified to water and oxygen
by catalase and the glutathione system [12,13]. In cell signaling, hydrogen peroxide activates the
mitogen-activated protein kinase (MAPK) Hog1 by phosphorylation, and phosphorylated Hog1
promotes cell adaptation to oxidative stress [14]. However, transcription factor(s) and target genes
downstream of the Hog1 pathway that respond to oxidative stress remain unknown. Moreover,
independent of the Hog1-mediated pathway, the transcription factor Cap1 plays a key role in the
regulation of oxidative stress response genes. Importantly, components of antioxidative systems are
also associated with C. albicans pathogenesis and drug resistance. Mutant strains defective in the genes
encoding Hog1, Cap1, Sods, catalase, and glutathione-related enzymes are hypersensitive to phagocyte
killing and reduce C. albicans virulence in animal models of infection [15–20]. Finally, a recent study
indicated that overproduction of catalase protects C. albicans against ROS-generating antifungals [21],
indicating that the antioxidative capacity of C. albicans is also involved in drug resistance.

In C. albicans, Sfp1 is a transcription factor that negatively regulates the expression of adhesion-
and biofilm-related genes and functions downstream of the Rhb1-target of rapamycin (TOR) signaling
pathway [22]. In this study, we explored other functions of Sfp1 using DNA microarray analysis
and molecular genetic approaches. We found that Sfp1 is also involved in the oxidative stress
response in C. albicans. The deletion of C. albicans SFP1 (sfp1∆/sfp1∆) increased the expression of
antioxidant genes and antioxidant enzyme activity compared to those in wild-type strains. Moreover,
the sfp1∆/sfp1∆ mutant promoted a higher level of CAP1 gene expression and Hog1 phosphorylation.
Finally, the sfp1∆/sfp1∆ mutant exhibited resistance to macrophage killing and antifungals with reduced
ROS accumulation.

2. Materials and Methods

2.1. Strains and Growth Conditions

The C. albicans strains used in this study are listed in Table S1. Cells were routinely grown in
YPD medium (2% glucose, 1% yeast extract, and 2% peptone) and synthetic complete (SC) medium
(0.67% yeast nitrogen base [YNB] with ammonium sulfate, 2.0% glucose, and 0.079% complete
supplement mixture). Plates were prepared with 1.5% agar. For each experiment, one colony
was inoculated into YPD medium and grown at 30 ◦C overnight. This culture was harvested by
centrifugation and washed with sterile double-distilled water (ddH2O). Cells were then subcultured in
SC medium with an initial optical density at 600 nm (OD600) of ~0.5 and further grown at 30 ◦C to the
exponential phase. The reagents used in this study were purchased from Sigma-Aldrich (St. Louis,
MO, USA), unless indicated otherwise. For DNA microarray analysis, cells were inoculated into
YPD medium at 30 ◦C overnight, subcultured in SC medium, and grown to the exponential phase
(OD600 = 1). Two independent experiments were performed for each sample.

2.2. DNA Microarray Analysis

DNA microarray analysis was performed as previously described [23] with some modifications.
Briefly, probes for 6202 genes were designed based on the C_albicans_SC5314_version_A21-s02-
m09-r08_orf_coding FASTA file (Agilent Technologies, Santa Clara, CA, USA). To normalize the raw
signal values, quantile normalization was used to identify differentially expressed genes. Changes in
gene expression with a fold change ≥1.5 and P-value <0.05 in the sfp1∆/sfp1∆ mutant compared to the
wild type strain were considered significantly different. Microarray data were deposited in the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE127184.

http://www.ncbi.nlm.nih.gov/geo
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2.3. Reverse Transcription (RT) Real-Time Quantitative PCR (qPCR)

Total RNA extraction, cDNA synthesis by reverse transcription and real-time qPCR were performed
as previously described [23]. The primers used in this study are listed in Table S2. The PMA1 transcript
was used as an internal control for the RNA input [24]. The relative fold change in the expression of
each gene was calculated using the 2−∆∆CT method [25].

2.4. Extraction and Quantification of Total Protein

Cells were grown in SC medium with or without hydrogen peroxide (H2O2) or menadione for
2 h, washed with phosphate buffered saline (PBS), and mixed with ice-cold protein extraction buffer
as indicated for each assay described below. The cell suspensions were further mixed with 0.3 g
acid-washed glass beads, disrupted by vortexing for 30 s, and immediately placed on ice for 30 s.
This process was repeated eight times. Soluble proteins were collected by centrifugation (13,000× g)
at 4 ◦C and quantified using a Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA) based on the
Bradford method.

2.5. Determination of Total Antioxidant Capacity

Total antioxidant capacity was measured using the Antioxidant Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA) according to the manufacturer’s instructions. This assay relies on the ability of
cellular antioxidants to inhibit the oxidation of ABTS (2,2′-azino-di-[3-ethylbenzthiazoline sulfonate]).
Protein extraction was performed as described above using an extraction buffer containing 5 mM
potassium phosphate (pH 7.4), 0.9% sodium chloride, and 0.1% glucose. Briefly, 10 µL of proteins was
mixed with 150 µL ABTS, followed by the addition of 40 µL H2O2 and 10 µL metmyoglobin to initiate
the reaction. After incubation at room temperature for 5 min, the absorbance at 750 nm was measured
spectrophotometrically. The total antioxidant capacity to prevent ABTS oxidation was compared with
that of Trolox, a water-soluble tocopherol analogue. The total antioxidant capacity was expressed as
molar Trolox equivalents.

2.6. Cell Susceptibility to Oxidants and Measurement of Intracellular ROS

Cell susceptibility to oxidants was examined by spot assay and propidium iodide (PI) staining
as previously described [26]. In the spot assay, one colony was inoculated into YPD medium and
grown at 30 ◦C overnight. Cells were collected by centrifugation, washed, and resuspended in sterile
ddH2O. Cells were 10-fold serially diluted (3 × 107 to 3 × 103 cells/mL) and 5 µL of each sample was
spotted onto SC or YPD agar plates containing H2O2 or menadione. The plates were incubated at
30 ◦C for 4–5 days and photographed every day. For PI staining, cells were treated with H2O2 or
menadione for 2 h, harvested by centrifugation, washed with PBS, and resuspended in a PI staining
solution (4 µg/mL PI in PBS). PI-positive cells were measured using an Accuri C6 flow cytometer
(BD Biosciences, San Jose, CA, USA).

Intracellular ROS were detected using cell permeable 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) as previously described [27]. Briefly, cells were treated with or without H2O2 and
menadione for 2 h. The cells were subsequently harvested, washed with PBS, resuspended in PBS
containing 20 µg/mL H2DCFDA, and incubated at 30 ◦C for 30 min. The fluorescence intensity was
measured using an Accuri C6 flow cytometer (BD Biosciences).

2.7. Examination of Cell Morphology by Scanning Electron Microscopy (SEM)

To examine cell morphology, 6 × 107 cells were grown on polystyrene coverslips (Thermanox
plastic coverslip 174950, Thermo Scientific) that were placed in each well of a 24-well microplate
containing 1 mL SC medium with or without 30 mM H2O2. After incubation at 30 ◦C for 2 h,
the coverslip was washed with PBS and fixed with 3.7% formaldehyde for 40 min. The coverslip was
subsequently washed with PBS and treated with 1% osmium tetroxide for 15 min. After fixation,
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the samples were dehydrated using serial ethanol solutions as previously described [22] and dried
overnight in a 60 ◦C oven. Finally, the samples were examined and micrographs were collected using
SEM S-4700, Type II (Hitachi, Minato-ku, Japan).

2.8. Measurement of Sod and Catalase Enzyme Activity

The Sod activity was measured using a Superoxide Dismutase (SOD) Activity Colorimetric Assay
Kit (BioVision, Milpitas, CA) according to the manufacturer’s instructions. Protein extraction was
performed as described above in an extraction buffer containing 0.1 M Tris/HCl (pH 7.4), 0.5% Triton
X-100, 5 mM β-mercaptoethanol, and 0.1 mg/mL phenylmethylsulfonyl fluoride. Proteins (2 µg in
250 µL solution) were mixed with 200 µL WST Solution and 20 µL SOD Enzyme Solution (BioVision)
and incubated at 37 ◦C for 20 min. The absorbance at 450 nm was measured spectrophotometrically.
The relative enzyme activity of Sod was calculated by the activity in the sfp1∆/sfp1∆ mutant divided by
that in the wild-type strain.

Catalase enzyme activity was determined using a spectrophotometric method as previously
described [28]. Briefly, 10 µg of protein was mixed with potassium phosphate buffer (75 mM, pH 7.0)
and 10 mM H2O2 to a volume of 1 mL. The rate of H2O2 disappearance was detected by measuring the
absorbance at 240 nm every 30 sec for a total of 2 min. One unit of catalase activity was defined as the
amount of catalase required to degrade 1 µmole H2O2 per min.

2.9. Measurement of Total Glutathione, Oxidized-Glutathione (GSSG), and Reduced-Glutathione
(GSH) Content

Total glutathione and GSH content was quantified using the 5,5′-dithiobis-2- nitrobenzoic acid
(DTNB)-based enzymatic recycling method [29]. To measure the total glutathione content, a protein
extraction buffer (0.1 M potassium phosphate [pH 7.5], 5 mM ethylenediaminetetraacetic acid [EDTA],
0.5% metaphosphoric acid, 0.6% sulfosalicylic acid, and 0.1% Triton-X 100) was used. Twenty
micrograms of protein was incubated with 60 µL DTNB, 60 µL glutathione reductase and 60 µL
NADPH for 2 min, and the absorbance at 412 nm was measured.

To measure the GSSG content, cells (in 100 µL protein extraction buffer) were mixed with
2 µL 2-vinylpyridine (2-VP). After the cells were disrupted, their supernatants were collected by
centrifugation and incubated at room temperature for 1 h, allowing 2-VP to conjugate with GSH.
Then, 6 µL triethanolamine was added to neutralize 2-VP, and the mixture was adjusted to pH 6~7.
Finally, 20 µg of 2-VP treated proteins were incubated with 60 µL DTNB, 60 µL glutathione reductase,
and 60 µL NADPH for 2 min, and the absorbance at 412 nm was measured. The GSH content was
determined using the following formula: [GSH] = [total glutathione] − 2 × [GSSG]

2.10. Measurement of Glutathione Peroxidase Enzyme Activity

The glutathione peroxidase activity was determined using the glutathione reductase
enzyme-coupling method as previously described [30] with some modifications. Proteins were
extracted in an extraction buffer containing 50 mM potassium phosphate buffer (pH 7.2) with 5 mM
EDTA. Briefly, 50 µL of protein was mixed with 10 µL NADPH (40 mM), 10 µL glutathione reductase
(10 U/mL), and 10 µL glutathione (5 mM). Then, the mixture was added to 20 µL cumene hydroperoxide
(0.25 mM) to initiate the reaction. The rate of NADPH oxidation was monitored by measuring the
absorbance at 340 nm at a 1-min interval for 5 min. One unit of glutathione peroxidase activity was
defined as the amount of enzyme that produced 1 µmol of GSSG/min.

2.11. Western Blotting

Western blotting was conducted as previously described [31]. The anti-phospho-p38 (Thr180/Tyr182)
monoclonal antibody #9211 (Cell Signaling Technology, Danvers, MA, USA) and the rabbit polyclonal
anti-β-actin antibody (GeneTex, Irvine, CA, USA) were used to detect Hog1 phosphorylation and Act1,
respectively. The horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (GeneTex) was used
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as the secondary antibody. The blots were visualized using a Western Lightning Plus-ECL Enhanced
Chemiluminescence Substrate kit (PerkinElmer) and an ImageQuant LAS 4000 Biomolecular Imager
(GE Healthcare Life Science, Marlborough, PA, USA).

2.12. Macrophage Killing and Phagocytosis Assay

The RAW264.7 mouse macrophage cell line was incubated with Dulbecco’s modified Eagle
medium (DMEM) plus 10% fetal bovine serum (FBS) at 37 ◦C with 5% CO2. In the macrophage killing
assay, C. albicans cells were cocultured with 106 RAW264.7 cells for 16 h at a multiplicity of infection
(MOI) of 1:10. One milliliter of sterile ddH2O was added to promote macrophage lysis, C. albicans cells
were collected by scraping from the bottom of each well and then spotted onto YPD agar plates, and
colony-forming units (CFUs) were counted after incubation at 30 ◦C for 24 h.

In the phagocytosis assay, C. albicans cells were stained with 0.68 mg/mL fluorescein isothiocyanate
(FITC) for 40 min and then cocultured with 2 × 106 cells of macrophages for 20 min at an MOI of 1.
Then, 5 µg/mL calcofluor white was added to stain the nonphagocytosed C. albicans cells. The rate of
phagocytosis was assessed using a fluorescence microscope (AIX0, Zeiss). Data were obtained from
three independent experiments by analyzing at least 300 macrophages per well.

2.13. Statistical Analysis

Student’s t-test was used to assess the statistical significance of differences in the wild-type strain
versus the sfp1∆/sfp1∆ mutant. Statistical significance was indicated with a P-value <0.05.

3. Results

3.1. Sfp1 is Involved in the C. albicans Response to Oxidative Stress

In our previous study, C. albicans Sfp1 was involved in cell adhesion and biofilm formation [22].
To reveal other functions of Sfp1, we used whole-genome DNA microarray to compare gene expression
patterns between the sfp1-deleted (sfp1∆/sfp1∆) and wild-type strains. Among the 6,202 C. albicans
genes that were evaluated, 2,365 genes exhibited a significant change in expression (P < 0.05) that was
≥1.5-fold. Based on C. albicans genome annotation (http://www.candidagenome.org), these genes are
involved in a wide variety of biological processes (Figure S1). Interestingly, a subset of genes involved
in the oxidative stress response was upregulated in the sfp1∆/sfp1∆ mutant compared to their expression
in the wild-type strain (Table 1), including GCS1 and GPX2, which encode gamma-glutamylcysteine
synthetase and glutathione peroxidase, respectively. Moreover, the sfp1∆/sfp1∆ mutant also showed
higher expression levels of genes encoding the components of oxidative stress signaling and regulation,
including SSK1 and CAP1. Ssk1 is a response regulator of two-component system and functions
upstream of the Hog1 mitogen-activated protein kinase (MAPK) to adapt cells to oxidative stress [32].
Cap1 is a transcription regulator that controls antioxidant gene expression [33,34].

Table 1. Relative expression of oxidative stress response genes in the sfp1-deleted vs wild-type strains.
(P < 0.05).

ORF Gene Function Relative fold change
(sfp1∆/∆: WT)

Transcription factor
orf19.1623 CAP1 bZIP transcription factor, responding to oxidative stress 1.58

Hog MAPK pathway
orf19.5031 SSK1 Response regulator 2.01

Glutathione system
orf19.5059 GCS1 Gamma-glutamylcysteine synthetase 2.32

orf19.85 GPX2 Glutathione peroxidase 2.27
orf19.6947 GTT11 Glutathione S-transferase 1.65

http://www.candidagenome.org
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Table 1. Cont.

ORF Gene Function Relative fold change
(sfp1∆/∆: WT)

Glutathione system
orf19.359 GTT12 Glutathione S-transferase 1.70
orf19.356 GTT13 Glutathione S-transferase 1.71

orf19.6478 YCF1 Glutathione S-conjugate transporter 1.79
orf19.5673 OPT7 Glutathione transmembrane transporter 4.04
orf19.6402 CYS3 Cystathionine gamma-lyase 2.18
orf19.5811 MET1 Uroporphyrin-3 C-methyltransferase 3.59

Thioredoxin system
orf19.5180 PRX1 Thioredoxin peroxidase 3.43

Oxidoreductase
orf19.113 CIP1 Oxidoreductase, induced by oxidative stress 2.11
orf19.125 EBP1 NADPH oxidoreductase 2.26

orf19.3131 OYE32 NAD(P)H oxidoreductase 1.88
orf19.1048 IFD6 Aldo-keto reductase 2.04

Others

orf19.5843 SRR1 Two-component system response regulator involving in
multiple stress responses 3.84

orf19.7293 MPS1 Monopolar spindle protein 2.13
orf19.4772 SHO1 Adaptor protein 1.87
orf19.2028 MXR1 Methionine sulfoxide reductase 1.83

To further investigate the functions of Sfp1 in the oxidative stress response, we determined the
total antioxidative capacity of C. albicans. In Figure 1, the sfp1∆/sfp1∆ mutant showed an increase in
antioxidative capacity compared to that in the wild-type and SFP1-reintegrated strains. Moreover,
the total antioxidative capacity was largely enhanced in the sfp1∆/sfp1∆ mutant with hydrogen
peroxide (H2O2)-induced oxidative stress. Therefore, the combined results of the DNA microarray
and total antioxidant capacity assay suggested that C. albicans Sfp1 negatively regulates the oxidative
stress response.
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Figure 1. Total antioxidant capacity of C. albicans. The cells were treated with or without 1 mM 
hydrogen peroxide for 2 h. Total antioxidant capacity was measured and expressed as molar Trolox 
equivalents. WT: wild-type strain; sfp1Δ/sfp1Δ: sfp1-deleted mutant; sfp1Δ::SFP1/sfp1Δ::SFP1: SFP1-
reintegrated strain. The results are presented as the mean ± standard deviation (SD) of three 
independent experiments. * P < 0.05. 

3.2. Sfp1 is Related to Cellular Susceptibility to Menadione/Superoxide 

Figure 1. Total antioxidant capacity of C. albicans. The cells were treated with or without 1 mM hydrogen
peroxide for 2 h. Total antioxidant capacity was measured and expressed as molar Trolox equivalents.
WT: wild-type strain; sfp1∆/sfp1∆: sfp1-deleted mutant; sfp1∆::SFP1/sfp1∆::SFP1: SFP1-reintegrated
strain. The results are presented as the mean± standard deviation (SD) of three independent experiments.
* P < 0.05.

3.2. Sfp1 is Related to Cellular Susceptibility to Menadione/Superoxide

Superoxide is a primary ROS generated by phagocytes and several antifungals. To further
understand the functions of Sfp1 in the oxidative stress response, we also determined the cellular
response to the superoxide generator menadione. In a cell susceptibility assay, the sfp1∆/sfp1∆ mutant
was more resistant to menadione than the wild-type and SFP1-reintegrated strains (Figure 2A).
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Moreover, cell viability upon menadione treatment was also assessed through PI staining using flow
cytometry. As shown in Figure 2B, the number of PI-positive cells was much lower in the sfp1∆/sfp1∆
mutant than in the wild-type and SFP1-reintegrated strains.

To further understand the correlation between Sfp1 and the cellular response to menadione-induced
oxidative stress, intracellular ROS accumulation was detected. The cells were treated with sublethal
doses of menadione and stained with the ROS indicator H2DCFDA. Intracellular ROS accumulation
was then measured using flow cytometry. As shown in Figure 2C, the mean fluorescence intensity of the
sfp1∆/sfp1∆ mutant was approximately 30-fold lower than those of the wild-type and SFP1-reintegrated
cells. Together, these results indicate that the sfp1∆/sfp1∆ mutant is more resistant to menadione-induced
oxidative stress and possesses a significantly lower intracellular ROS content upon the induction of
superoxide than the other two tested strains.
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Figure 2. Susceptibility of C. albicans to menadione and menadione-induced intracellular ROS
generation. (A) The cells were ten-fold serially diluted and spotted onto YPD agar plates with or
without 290 µM menadione. The agar plates were incubated at 30 ◦C for 3–4 days. Representative
images of three independent experiments with identical results are shown. (B) Cells were treated with
870 µM menadione for 2 h, stained with 4 µg/mL of PI, and analyzed using a flow cytometer. The dead
cells are expressed as PI-positive cells. (C) Cells were treated with 290 µM menadione for 2 h and
stained with 20 µg/mL H2DCFDA. The mean fluorescence intensity of 10,000 cells was determined by
flow cytometry. The results are presented as the mean ± standard deviation (SD) of three independent
experiments. *** P < 0.001.

3.3. Sfp1 Affects SOD Gene Expression and Enzyme Activity

In C. albicans, superoxide is mainly detoxified by superoxide dismutases (Sods) that convert
superoxide into the less toxic hydrogen peroxide [4,35]. Moreover, previous studies showed that Sods
are involved in the C. albicans response to menadione, an ROS-generating antifungal, and macrophage
killing [7,18,19]. Because the sfp1∆/sfp1∆ mutant is resistant to menadione-induced oxidative stress
(Figure 2A–C), we hypothesized that Sfp1 may regulate SOD expression. To test this hypothesis, SOD
gene expression levels and enzyme activity were compared among different C. albicans strains. Based
on the results of real-time qPCR analysis, the expression of the SOD1, SOD4, and SOD5 genes, but not
SOD2 and SOD3, was significantly upregulated in the sfp1∆/sfp1∆ mutant with menadione treatment
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compared to that in the other two strains (Figure 3A and Figure S2). Finally, Sod enzyme activity was
also measured. As shown in Figure 3B, the sfp1∆/sfp1∆ mutant exhibited 40% higher Sod enzyme
activity than the wild-type and SFP1-reintegrated strains. These results further indicated that Sfp1
negatively regulates the cellular response to menadione/superoxide, possibly through its control of
SOD gene expression and enzyme activity.
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Figure 3. SOD gene expression and activity in cells treated with menadione. (A) The expressions levels
of SODs were analyzed using real-time qPCR after treatment of the cells with 170 µM menadione for
2 h. The PMA1 transcript was used as an endogenous control. (B) Cells were treated with 170 µM
menadione for 2 h, and Sod enzyme activity was then measured. The results are presented as the mean
± standard deviation (SD) of three independent experiments. *** P < 0.001.

3.4. Sfp1 Is Also Related to Cellular Susceptibility to Hydrogen Peroxide

By the activity of Sods, superoxide is converted into H2O2. However, H2O2 is still toxic and
highly reactive and requires further detoxification. Therefore, to explore the correlation between Sfp1
and H2O2 detoxification, cellular susceptibility to H2O2 was determined through PI staining and
flow cytometry. The sfp1∆/sfp1∆ mutant exhibited a much lower percentage of PI-positive cells after
treatment with different concentrations of H2O2 than the wild-type and SFP1-reintegrated strains
(Figure 4A). For example, 55% of the wild-type cells were PI-positive following 90 mM H2O2 treatment,
whereas only 28% of the sfp1∆/sfp1∆ mutant were stained by PI (Figure 4A).
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Moreover, the intracellular ROS content was measured in cells treated with a sublethal dose of H2O2.
The sfp1∆/sfp1∆ mutant showed significantly lower fluorescence intensity in flow cytometric analysis
following H2DCFDA staining than the wild-type and SFP1-reintegrated strains (Figure 4B). Previous
reports indicated that intracellular ROS accumulation is correlated with changes in the C. albicans
cell surface, leading to a rough appearance with many protrusions and disc-like depressions [36,37].
Similar morphologies were observed when the wild-type strain was treated with H2O2 (Figure 4C).
In contrast, the cell surfaces of the sfp1∆/sfp1∆ mutant (±H2O2) and the wild-type (without H2O2

treatment) remained relatively smooth (Figure 4C). These results are consistent with the low level of
intracellular ROS accumulation in the sfp1∆/sfp1∆ strain following H2O2 treatment (Figure 4B) and
suggest that the sfp1∆/sfp1∆ mutant is better able to detoxify H2O2 than the wild-type strain.
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3.5. Sfp1 Regulates the Glutathione System to Detoxify Hydrogen Peroxide 

Figure 4. Susceptibility of C. albicans to H2O2 and H2O2-induced intracellular ROS generation. (A) Cells
were treated with various concentrations of H2O2 as indicated for 2 h and stained with 4 µg/mL PI.
Cell viability was then quantified by flow cytometry. The dead cells are represented as PI-positive cells.
(B) Cells were treated with 30 mM H2O2 for 2 h and stained with 20 µg/mL H2DCFDA. Intracellular
ROS were quantified by flow cytometry. The results are presented as the mean ± standard deviation
(SD) of three independent experiments. *** P < 0.001. ** P < 0.01. * P < 0.05. (C) Cells were treated with
30 mM H2O2 for 2 h. Cell surface structure was examined using SEM at 5500×magnification. Arrows
point to the rough appearance of protrusions and disc-like depressions.
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3.5. Sfp1 Regulates the Glutathione System to Detoxify Hydrogen Peroxide

Both catalase and the glutathione system participate in the conversion of H2O2 into water [38,39]
and provide overlapping defense against H2O2 in the model yeast Saccharomyces cerevisiae [40].
Therefore, we determined whether the effect of Sfp1 on the cellular response to hydrogen peroxide
is via catalase and/or the glutathione system. Interestingly, the sfp1∆/sfp1∆ mutant displayed
slightly lower expression of the CAT1 catalase gene than the wild-type and SFP1-reintegrated strains
(Figure 5A). Moreover, catalase enzyme activity was lower in the sfp1∆/sfp1∆ mutant treated with
H2O2 than in the other tested strains (Figure 5B). However, the sfp1∆/sfp1∆ mutant showed the
upregulation of glutathione-related genes in DNA microarray and real-time qPCR analysis (Table 1
and Figure 6A). These genes included GCS1, GPX2, and GTT11. The GCS1, GPX2, and GTT11 genes
encode gamma-glutamylcysteine synthetase, glutathione peroxidase, and glutathione S-transferase,
respectively [20,41,42]. Therefore, the sfp1∆/sfp1∆ mutant exhibited lower catalase gene expression and
enzyme activity but the increased expression of glutathione redox genes. These results suggest that the
resistance to H2O2 seen in the sfp1∆/sfp1∆ mutant is mainly due to changes in the glutathione redox
system rather than catalase.

To further explore the link between Sfp1 and the glutathione redox system, a sodium selenite
sensitivity assay was performed to detect alterations in cellular glutathione content. Glutathione is
involved in selenite-induced oxidative stress and reacts with selenite to yield superoxide, causing
cell death [43]. Therefore, cells containing a high level of glutathione are more sensitive to sodium
selenite. Indeed, Figure 6B shows that the sfp1∆/sfp1∆ mutant was much more sensitive to sodium
selenite than the wild-type strain, suggesting a higher cellular glutathione level in the mutant.
Moreover, the total glutathione and GSH (reduced form of glutathione) content was also measured.
The sfp1∆/sfp1∆ mutant contained a much higher total glutathione and GHS content than the wild-type
and SFP1-reintegrated strains (Figure 6C). Because GSH plays an important role in detoxifying ROS
in Candida species [44], the high GSH content likely contributes to H2O2 resistance in the sfp1∆/sfp1∆
mutant. Finally, glutathione peroxidases (Gpxs) catalyze the reduction of H2O2 using GSH, and their
activities were measured. As shown in Figure 6D, the sfp1∆/sfp1∆ mutant possessed much higher Gpx
activity than the wild-type and SFP1-reintegrated strains. In summary, the deletion of SFP1 enhanced
GCS1, GPX2, and GTT11 gene expression, which was correlated with a higher total glutathione and
GSH content and high Gpx activity. These results suggest that Sfp1 is involved in the regulation of the
glutathione redox system to detoxify H2O2.
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Figure 5. Catalase gene expression and enzyme activity. (A) The expression level of the CAT1 gene was
detected using real-time qPCR. The PMA1 transcript was used as an endogenous control. (B) Cells
were treated with 1 mM H2O2 for 2 h, and catalase activity was determined. The results are presented
as the mean ± standard deviation (SD) of three independent experiments. *** P < 0.001; * P < 0.05.
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Figure 6. Sfp1 regulates the glutathione system in response to H2O2. (A) GCS1, GPX2, and GTT11 gene
expression levels were detected using real-time qPCR. The PMA1 transcript was used as an endogenous
control. The results are presented as the mean ± standard deviation (SD) of three independent
experiments. ** P < 0.01. * P < 0.05. (B) One colony was inoculated into YPD medium and grown at
30 ◦C overnight. This culture was harvested by centrifugation and washed with sterile double-distilled
water (ddH2O). Cells were ten-fold serially diluted and spotted onto YPD agar with or without 3 mM
sodium selenite. The agar plates were incubated at 30 ◦C for 3–4 days. Representative images of three
independent experiments with identical results are shown. (C) Cells were treated with 1 mM H2O2 for
2 h. The GSH and GSSG content was determined by measuring TNB absorbance at 415 nm. The GSH
content was determined as follows: [total glutathione]–2[GSSG]. The results are presented as the mean
± standard deviation (SD) of three independent experiments. ** P < 0.01. *** P < 0.001. (D) Cells were
treated with 1 mM H2O2 for 2 h. The enzyme activity of glutathione peroxidase (Gpx) was determined
by the oxidation of NADPH. The results are presented as the mean ± standard deviation (SD) of two
independent experiments. * P < 0.05.
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3.6. The Hog1 Signaling Pathway and the Transcription Factor Cap1 Are Related to the Sfp1-Mediated
Oxidative Stress Response

The Hog1 MAPK pathway and Cap1-mediated transcriptional regulation are involved in the
C. albicans oxidative stress response. Hog1 phosphorylation and Cap1 are required for the response of
C. albicans to oxidants and phagocytic killing [17,45]. Based on our results that show Sfp1 is involved
in the C. albicans oxidative stress response, we were interested in determining the relationship among
Hog1, Cap1, and Sfp1.

As shown by DNA microarray analysis (Table 1) and real-time qPCR (Figure 7A), SSK1 that
encodes a component of the Hog1 signaling pathway, was upregulated in the sfp1∆/sfp1∆ mutant
compared to their expression in the other tested strains. In particular, C. albicans utilizes Ssk1 to adapt
cells to oxidative stress [32]. As shown by Western blotting in Figure 7B, the sfp1∆/sfp1∆ mutant
contained a significant amount of phosphorylated Hog1 at time point zero, and Hog1 phosphorylation
was strongly enhanced in cells treated with H2O2 for 15 and 30 min (Figure 7B). However, as shown by
a longer exposure of blot, phosphorylated Hog1 was detected in the wild-type strain in cells treated
with H2O2 (Figure S3). These results suggest that the Sfp1-mediated oxidative stress response involves
the Hog1 signaling pathway.

Interestingly, the oxidative stress response genes controlled by Sfp1 (Table 1) overlapped with
Cap1, including GCS1, GTT11, YCF1, CYS3, CIP1, EBP1, IFD6, and OYE32 [46,47]. Moreover, the
expression of the CAP1 gene was upregulated in the sfp1∆/sfp1∆ mutant compared to its expression in
the wild-type and SFP1-reintegrated strains (Table 1 and Figure 7A). These results raise the possibility
that the oxidative stress response of Sfp1 may involve regulating CAP1 expression.
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Figure 7. Hog1 signaling and the Cap1 transcription factor are related to the Sfp1-mediated oxidative
stress response. (A) Gene expression levels of CAP1 and SSK1 were analyzed using real-time qPCR.
The PMA1 transcript was used as an endogenous control. The results are presented as the mean
± standard deviation (SD) of three independent experiments. *** P < 0.001. * P < 0.05. (B) After
cell treatment with 10 mM H2O2 for 0, 15, and 30 min, Hog1 phosphorylation was assayed using
Western blotting. Act1 was used as a loading control. Anti-phospho-p38 (Thr180/Tyr182) antibody
(Cell Signaling, Inc.) was used to detect phosphorylated Hog1. Rabbit polyclone anti-β-actin antibody
(GeneTex, Inc.) was used to detect Act1.
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3.7. The sfp1∆/sfp1∆ Mutant is Resistant to Macrophage Killing

During infection, C. albicans encounters host phagocytes that produce ROS to kill the pathogen.
Due to the involvement of Sfp1 in the oxidative stress response, the interaction between the macrophage
cell line RAW264.7 and C. albicans was investigated. There was no statistically significant difference in
phagocytosis between the sfp1∆/sfp1∆ mutant, wild-type, and SFP1-reintegrated strains (Figure 8A).
However, the wild type and SFP1-reintegrated strains were relatively sensitive to macrophage killing
and displayed ~30% viability (Figure 8B). In contrast, the sfp1∆/sfp1∆ mutant was extremely resistant
to macrophage killing (Figure 8B). Notably, growth of the sfp1∆/sfp1∆ mutant was even enhanced in
the macrophage.
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ROS content upon antifungal drug treatment. The sfp1Δ/sfp1Δ mutant exhibited less ROS 
accumulation with miconazole and caspofungin treatment than the controls (Figure 9B). 

Figure 8. The sfp1∆/sfp1∆ mutant is resistant to macrophage-mediated killing. (A) C. albicans cells were
cocultured with 2 × 106 macrophage cells for 20 min at an MOI of 1. Data were obtained from three
independent experiments by analyzing at least 300 macrophages per well. (B) A total of 105 C. albicans
cells were cocultured with macrophages for 16 h at an MOI of 1:10. The cell viability was determined
by CFU counting. The results are presented as the mean ± standard deviation (SD) of five independent
experiments. ** P < 0.01.

3.8. The sfp1∆/sfp1∆ Mutant is Resistant to ROS-Generating Antifungals

Miconazole and caspofungin are commonly used antifungals that induce ROS to kill C. albicans [7,8].
In addition, the addition of antioxidants impairs ROS-generating antifungal efficacy [7,21]. Because the
sfp1∆/sfp1∆ mutant exhibits high antioxidative activity, we were interested in linking the susceptibility
of the sfp1∆/sfp1∆ mutant to ROS-generating antifungals. As shown in Figure 9A, the result of spot
assay showed that the sfp1∆/sfp1∆ mutant was resistant to miconazole and caspofungin, as opposed
to the controls. Moreover, H2DCFDA staining was performed to measure the intracellular ROS
content upon antifungal drug treatment. The sfp1∆/sfp1∆ mutant exhibited less ROS accumulation
with miconazole and caspofungin treatment than the controls (Figure 9B).
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Figure 9. The effect of SFP1 deletion on cellular susceptibility to ROS-generating antifungals and
the accumulation of intracellular ROS upon antifungal treatment. (A) One colony was inoculated
into YPD medium and grown at 30 ◦C overnight. This culture was harvested by centrifugation and
washed with sterile double-distilled water (ddH2O). Cells were ten-fold serially diluted and spotted
onto YPD agar with or without 8 µg/mL of an antifungal. The agar plates were incubated at 30 ◦C for
3–4 days. Representative images of three independent experiments with identical results are shown.
(B) Cells were treated with 3 µg/mL miconazole or 1 µg/mL caspofungin for 2 h. Intracellular ROS were
measured using H2DCFDA staining and quantified by a flow cytometer. The results are presented as
the mean ± standard deviation (SD) of three independent experiments. ** P < 0.01.

4. Discussion

C. albicans is challenged by oxidative stress from host phagocytes and antifungals [3,4]. C. albicans
has complex antioxidant systems, signaling pathways, and transcriptional regulatory machinery to
cope with oxidative stress. One key mechanism known to activate the expression of antioxidant genes
is primarily mediated by Cap1, a bZIP transcription factor in the AP-1 family [47,48]. After exposure
to H2O2, Cap1 is activated by the oxidation of its redox-active cysteine residues, allowing the nuclear
accumulation of Cap1 [21]. Within the nucleus, Cap1 is phosphorylated and induces the expression
of many genes, including CAT1, which encodes catalase, and TRX1, which encodes thioredoxin [46].
Moreover, C. albicans cells lacking CAP1 are sensitive to ROS and phagocyte killing [34,49]. Another
mechanism related to the C. albicans oxidative response is Hog1 MAPK signaling [50]. Hog1 is activated
in C. albicans in response to diverse stimuli, such as high doses of H2O2, which results in its nuclear
accumulation [14]. Moreover, global transcriptional analysis using DNA microarray revealed that 46
core stress genes induced in response to H2O2 are Hog1-dependent [51].

In this study, we demonstrated that the transcription factor Sfp1 is also involved in the oxidative
stress response of C. albicans. We showed that the sfp1∆/sfp1∆ mutant possesses a higher total antioxidant
capacity, Sod enzyme activity, GSH content, and glutathione peroxidase activity than the wild-type
and SFP1-reintegrated strains (Figure 1, Figure 3, and Figure 6). In addition, the sfp1∆/sfp1∆ mutant
was more resistant to phagocyte killing and ROS-inducing antifungals (Figures 8 and 9). Moreover,
DNA microarray analysis and real-time qPCR revealed that the expression of many oxidative stress
response-related genes was upregulated in the sfp1∆/sfp1∆ mutant compared to their expression in the
other two strains, including CAP1 (Table 1 and Figure 7A). Moreover, many oxidative stress response
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genes (e.g., SOD1, GCS1, GTT11, CIP1, EBP1, IFD6, and OYE32) were regulated by both Sfp1 and Cap1
[[46,47] and Table 1]. Recently, Sfp1 was found to reciprocally modulate carbon source-conditional
stress adaptation with another transcription factor, Rtg3 [52]. Sfp1 regulates oxidative stress response
genes in a carbon source-dependent manner [52]. In the study of Kastora et al. [52], the sfp1∆/sfp1∆
mutant was more sensitive to H2O2 than the wild-type strain. These results contrasted with the
increased sensitivity of the sfp1∆/sfp1∆ mutant to H2O2 in this study (Figure 1). Our explanation
for this result is that these two studies use C. albicans strains from a different genetic background
and different concentrations of H2O2. Taken together, our and other studies highlight the complex
transcription regulation network of the oxidative stress response. However, the epistatic relationship
between Sfp1, Rtg3, and Cap1 needs to be further investigated by either construction of a double
mutant or chromatin immunoprecipitation to determine the possible interaction between the Sfp1
protein and the CAP1 promoter. Additionally, whether Sfp1 directly controls oxidative stress genes
also requires further study.

In addition to Cap1, Sfp1 is also associated with the Hog1 MAPK signaling pathway. As shown in
Figure 7A, the sfp1∆/sfp1∆ mutant exhibited increased gene expression of the response regulator SSK1,
which is an upstream component of the Hog1 cascade, compared to its expression in the other tested
strains [53]. In particular, Ssk1 is required for oxidative stress response [32,54], phagocyte killing, and
virulence in a disseminate murine model of candidiasis [55,56]. Moreover, Hog1 phosphorylation
was enhanced in the sfp1∆/sfp1∆ mutant compared to that in the wild-type strain in the absence and
presence of H2O2 (Figure 7). Finally, compared to the catalase Cat1, the glutathione system seems to
play a greater role in H2O2 detoxification in the sfp1∆/sfp1∆ mutant (Figures 5 and 6). Glutathione is the
most important thiol-containing molecule required to maintain the redox homeostasis, as it functions
as redox buffer, antioxidant, and enzyme cofactor against oxidative stress [57–59]. Interestingly,
the sfp1∆/sfp1∆ mutant exhibited the upregulation of the MET1 and CYS3 genes (Table 1), which encode
enzymes involved in methionine and cysteine biosynthesis, respectively. Methionine and cysteine are
the precursors of glutathione biosynthesis [42]. Recently, the relationship between Hog1 and Sfp1 was
revealed, in which Hog1 is required for Sfp1-dependent ribosome biogenesis (RiBi) gene expression
and recruitment to target promoters [60]. However, future studies to examine the role of Hog1 and
Sfp1 in C. albicans amino acid and glutathione biosynthesis are still needed.

In addition to C. albicans, transcription factors that are vital for controlling oxidative stress response
have been also studied in other fungal species [61–64]. For example, Skn7 and Yap1 are the AP-1-like
bZIP transcription factors in S. cerevisiae. Yap1 is the orthologue of C. albicans Cap1 and accumulates
in the nucleus following exposure to H2O2 [62]. Previous studies indicated that Yap1 collaborates
with Skn7 to control many oxidative stress response genes [62,65–67]. Similarly, Candida glabrata Yap1
and Skn7 are involved in oxidative stress response by cooperatively binding to the upstream region
of core oxidative stress genes [68]. Moreover, Ada2 is suggested to orchestrate C. glabrata against
ROS-mediated immune defenses during infection [69]. Evidence for Skn7 having a role in virulence is
also reported in different fungal species [70]. Therefore, oxidative stress adaptation is not only essential
for cell survival, but also an important virulence trait. In this study, our results showed the multiple
functions of Sfp1 and the regulatory complexity of the C. albicans oxidative stress response. These
results should also provide useful insight into the oxidative stress response in other important human
fungal pathogens.
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