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Abstract: Heavy metal pollution is a serious environmental problem as it adversely affects crop
production and human activity. In addition, the microbial community structure and composition are
altered in heavy-metal-contaminated soils. In this study, using full-length 16S rRNA gene sequences
obtained by a PacBio RS II system, we determined the microbial diversity and community structure
in heavy-metal-contaminated soil. Furthermore, we investigated the microbial distribution, inferred
their putative functional traits, and analyzed the environmental effects on the microbial compositions.
The soil samples selected in this study were heavily and continuously contaminated with various
heavy metals due to closed mines. We found that certain microorganisms (e.g., sulfur or iron oxidizers)
play an important role in the biogeochemical cycle. Using phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt) analysis, we predicted Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional categories from abundances of microbial communities and
revealed a high proportion belonging to transport, energy metabolism, and xenobiotic degradation in
the studied sites. In addition, through full-length analysis, Conexibacter-like sequences, commonly
identified by environmental metagenomics among the rare biosphere, were detected. In addition to
microbial composition, we confirmed that environmental factors, including heavy metals, affect the
microbial communities. Unexpectedly, among these environmental parameters, electrical conductivity
(EC) might have more importance than other factors in a community description analysis.
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1. Introduction

As of 2017, 4677 out of 5544 mines (for coal, metal, and nonmetals) in Korea have been abandoned
owing to environmental concerns and/or economic factors. In particular, in the case of metal mines,
most mines (about 95%; 2084 out of 2184) in Korea are in disuse due to soil pollution caused by
waste rock and mine tailings with acid mine drainage (AMD) [1]. The mine tailings dams and/or
AMD contaminated by heavy metals, including iron and cadmium, have led to serious environmental
problems related to crops and public health through the contamination of the water supply and food
chain, respectively. Although these contaminated areas have been reclaimed by a long-term plan under
the Ministry of Environment in Korea, there are rising concerns regarding soil contamination by heavy
metals [2,3].

Heavy metal pollution by anthropogenic activities affects microbial activities and community
structures in terrestrial environments. There is a specific relationship between microorganisms
and minerals in these extremely toxic environments. Soil microorganisms can affect plant growth

Microorganisms 2019, 7, 357; doi:10.3390/microorganisms7090357 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0003-0359-7431
http://www.mdpi.com/2076-2607/7/9/357?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms7090357
http://www.mdpi.com/journal/microorganisms


Microorganisms 2019, 7, 357 2 of 15

and increase the accumulation of heavy metals in plants (i.e., phytoremediation) [4,5]. Therefore,
the analysis of microbial communities might provide fundamental information for phytoextraction
improvement [6]. Most previous studies have focused on identifying microbial community structures
in polluted soils or isolating useful microorganisms for the removal of heavy metals see review in [7].
Moreover, based on cultivation and metagenome approaches, we can easily understand and expand our
knowledge of new microbe-mineral interactions [8–10]. Recently, microbial communities from various
environments have been extensively sequenced and analyzed by next-generation sequencing (NGS)
platforms using partial regions of the 16S rRNA gene (e.g., V1-V3, V3-V4, V4-V5, or V4-V6) [5,11–17].
Additionally, numerous unrecognized bacteria and archaea have been identified by NGS technology,
and the results can serve as fundamental taxonomic information in (meta)genome analysis with
putatively deduced functional characterizations [18,19].

Although previous studies using specific regions of the 16S rRNA gene have shown that taxonomic
assignments are highly sensitive, advanced high-throughput analysis revealed unintended missing
classifications with less accuracy, especially at the genus or species level [20]. This might be because
most of the naturally existing microorganisms have not yet been cultivated and identified.

Recently, a single molecular real-time (SMRT) DNA sequencing system has been developed by
Pacific Biosciences (PacBio) and applied to microbial community and (meta)genome analyses [21–24].
This system is able to generate raw reads more than 10 kb long with a low error rate [25]. Although the
PacBio platform is less attractive than other short-read platform such as Illumina and Ion-Torrent due
to the higher cost, it has been applied to microbial community analysis without primer bias and with
high quality [26–28]. Based on the advantages of the PacBio platform, we also expect to obtain more
accurate results from full-length reads generated by the PacBio system for the microbial community in
heavy-metal-contaminated soil (from disused mines) and identify the rare microorganism(s) in the
biosphere [29]. As mentioned above, most mines in Korea are in disuse and crops and human health
might be affected by contaminated water. Additionally, very little is known about the composition and
structure of the bacterial community in these contaminated areas in Korea. Therefore, in the present
study, we characterized and compared the microbial communities in heavy-metal-contaminated sites
in the Korea. The main objectives of the present study are to demonstrate the practical application of
the PacBio system in microbial community structure analysis and to investigate the microbial diversity
and structure, along with the effect of environmental parameters, including heavy metals, on them.

2. Materials and Methods

2.1. Sample Collection and Characterization

For the microbial community analysis, we selected three sites in regions with heavy metal
contamination, namely, Hwaseong (H), Daegu (D), and Bonghwa (B), in the Korea (Table S1). From
each site, duplicate soil samples were collected from the surface (2–5 cm depth; F) and subsurface
(60–75 cm depth; B) at five randomly selected spots (1–5) located 1 m from each other for replication [30].
Alphanumeric codes were assigned to each sample; for example, BF1 is the first surface sample collected
at Bonghwa. The samples were transferred to sterile plastic tubes or bags and stored at -80 ◦C until the
microbial community structure analysis. The sampling depths were determined based on the recovery
depth for heavy-metal-contaminated soil from abandoned mines in the Korea [31]. Inductively coupled
plasma atomic emission spectroscopy (ICP-OES; PerkinElmer Optima 7300 DV) was used to determine
the concentrations of the heavy metals [copper (Cu), lead (Pb), arsenic (As), zinc (Zn), and cadmium
(Cd)]. Before the analysis, the soil samples were sequentially filtered through 2.0-mm and 0.15-mm
sieves, dried, and then digested with concentrated nitric acid. Calibration was performed using a
distilled water blank and standard solution [31,32]. The concentrations of the selected heavy metals
in each sample were determined in duplicate. Total nitrogen (TN), total carbon (TC), and organic
matter (OM) were measured using a CNS analyzer (US/Vario Max CN, Elementar Analysensysteme,
GmbH, Hanau, Germany). pH and electrical conductivity (EC) were determined using a pH/EC meter
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(Sevenmulti S40, Mettler Toledo, Greifensee, Switzerland) [33]. In situ temperature was determined
using a thermometer (waterproof digital thermocouple thermometer, A1.T9234, Daihan, Seoul, Korea).
The particle size distribution of the soil samples was plotted on a particle size distribution curve
(semi-log graph; Table S1) to assess soil texture [33,34] (Table S1).

2.2. PCR Amplification of Bacterial 16S rRNA Gene and Sequencing by PacBio System

Total genomic DNA (gDNA) was extracted from each prepared sample using a Power Soil DNA
kit (Mo Bio Laboratories, Solanan Beach, CA, USA). The quality and quantity of the extracted gDNA
were determined using a DS-11 Plus Spectrophotometer (DeNovix, Inc., Wilmington, DE, USA) and by
performing electrophoresis on a 1.0% (w/v) agarose gel, respectively.

For full-length bacterial 16S rRNA gene amplification, we performed PCR using the following
mixture: 10 µL of 2× Dr. MAX Master Mix Solution (Doctor Protein Corp., Seoul, Korea), 1 µM of 27F
(5’-AGRGTTYGATYMTGGCTCAG-3’) and 1492R (5’-RGYTACCTTGTTACGACTT-3’) primer set (final
concentration), and ~10 ng of environmental DNA as a template. Where necessary, the template was
diluted using 0.1× TRIS-EDTA buffer to decrease the concentration of PCR inhibitors. Cycling was
performed with an initial denaturation at 95◦C for 7 min, followed by 30 cycles at 95 ◦C for 30 s, 55
◦C for 30 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min. The detailed sequences for
barcode and adapter are provided in Table S2. Amplification products were separated by agarose gel
electrophoresis and purified using a PCR Clean-up Kit (LaboPass, Cosmo Genetech, Seoul, Korea).
SMRTbell adapters were then ligated onto the purified PCR products and the libraries were sequenced
by Pacific Biosciences using P6-C4 chemistry on a PacBio RS II SMRT DNA sequencing system (Pacific
Biosciences, Menlo Park, CA, USA).

2.3. Sequence Analysis, Diversity Indices, and Statistics

Raw sequences were initially processed through the PacBio SMRT portal. All purified sequencing
data were then processed using Mothur version 1.39.5 [24,35,36]. All sequences were aligned against a
SILVA-based reference alignment and classified against the greengenes (version gg_13_8_99) reference
database using a negative Bayesian classifier implemented within Mothur [36]. Diversity indices
(Shannon and Simpson indices, and the Chao1 nonparametric richness index (and Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) clustering, nonmetric multidimensional scaling
(NMDS), and analysis of similarities (ANOSIM) were determined using the Mothur package [37].
A dissimilarity level of 3% was used in further investigations including diversity indices. Habitat
specialization was calculated as described by Liu et al. [38] using Levin’s niche breadth index (B) [39],
which assigns low niche breadth values to specialists (< 1.5) and higher values to generalists (> 3).

A Mann–Whitney U test was performed to compare the diversity indices between the microbial
communities from each analyzed site. To estimate the relationship between microbial community
and environmental factors, a canonical correspondence analysis (CCA) was performed using the
VEGAN package [40–42]. The 32 highest-ranked genera (>5% proportion in each sample) were
assessed using CCA. Manual selection of environmental parameters through application of a Monte
Carlo permutation test (999 random permutations) was conducted to determine their statistical
significance (p < 0.05). The resulting ordination biplot approximated the weight of each OTU with
respect to each environmental variable, represented as arrows. The length of the arrows indicated the
relative importance of environmental factors that explained variations in the microbial communities.
All figures were generated by R packages [43] and/or Origin Pro 2018 (OriginLab, Northampton,
MA, USA) [44]. Further, for estimation of the interactions between microbial compositions and
environmental parameters, Spearman’s rank correlation coefficient (ρ) was calculated simultaneously
using the ‘rcorr’ function with the Hmics package [45] in R to analyze the significance of the correlation.
A high correlation coefficient (|ρ|≥ 0.7) with a p-value < 0.05 between microbial compositions and
environmental parameters was visualized via Cytoscape (v.3.6.1) [46]. To estimate correlation values
between environmental parameters, we used Spearman’s rank correlation analysis [47]. Functional



Microorganisms 2019, 7, 357 4 of 15

profiles of microbial communities were predicted by phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt) [13]. Although functional predictions were assigned up
to all Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) numbers, only xenobiotic
biodegradation and metabolism, energy metabolism, and membrane transport were selected as
contamination-related categories for analysis simplification and clarity. The categories related to
“human disease” or “eukaryotes” were excluded due to the lack of relevance to environmental samples.

The full 16S rRNA gene sequences recovered in this study have been deposited in the
DDBJ/ENA/GenBank Sequence Read Archive (SRA) under the accession number SRP137440, and are
provided as a supplementary file.

3. Results

3.1. Environmental Data

The geographical and physiochemical parameters of 30 soil samples from the three sites are
summarized in Table S1. A pH range of 2.8–6.9 (average pH 4.9± 1.3) indicated acidic to near-neutral pH.
The subsurface (pH 4.3 ± 1.5) was slightly more acidic than the surface (pH 5.4 ± 1.2). The temperature
reached an average of 23 ± 3.0 ◦C. The EC was in the range of 0.15–20.2 (average: 4.3 ± 5.5) ds/m.
Except for the Bonghwa samples (11.1 ds/m), most samples had extremely low EC values (0.86 ds/m).
In addition, we found significant differences in the other environmental factors (e.g., TN, OM, and
temperature) between sampling site and depth. The average concentrations (ppm) of the major heavy
metals (Cu, Pb, As, Zn, and Cd) were estimated as 322.6 ± 320.4, 1175.6 ± 1770.9, 5373.7 ± 9638.3,
3884.6 ± 7491.6, and 28.4 ± 51.7 ppm, respectively (Table S1). In particular, the concentration of As was
higher than that of other heavy metals. However, in Hwaseong, the heavy metal concentrations were
extremely low and As was undetectable. Although the soil texture was similar, the difference in the soil
composition (e.g., sand, silt, and clay) was significant between samples from different sites (Table S1).

3.2. General Statistics for 16S rRNA Gene Amplification

A total of 122,702 sequences were obtained and analyzed from the 148,594 raw sequences after
quality filtering supplied in the Mothur program (Table 1). The data analyzed for each sample ranged
in size from 1490 sequences for sample HF4 to 8284 for sample DB5.

The whole analyzed sequences were classified into different well-determined, candidate, and
unclassified phyla (Figure S1a). From all samples, the phylum Proteobacteria was identified as the
highly accounted-for (i.e., dominant) group (comprising about 41% of the total number of purified
sequences), followed by Acidobacteria, Actinobacteria, Chloroflexi, AD3, Firmicutes, Planctomycetes,
Nitrospirae, and Gemmatimonadetes, comprising 19.7%, 10.2%, 7.5%, 5.4%, 4.8%, 3.6%, 2.8%, and 1.3%
of all sequences, respectively.

The results of NMDS showed that microbial communities were apparently clustered by sampling
site (Rsq: 0.560 and Stress: 0.302), excluding two samples (DF1 and BF1) (Figure 1). The stress
value for NMDS indicated poor representation for microbial communities; however, the ANOSIM
results indicated that the microbial community compositions (based on the 97% similarity level) were
significantly different between most analyzed samples (Table S3). Furthermore, with the exception of
the DF1 sample, UPGMA showed that samples from the three distantly located sites formed a separate
cluster (Figure S2). In the case of Bonghwa, we found a tendency to split into two parts depending on
the sampling depth. In addition, the samples from Hwaseong formed a separate and distant cluster
outside the other samples, indicating a more distinguished relationship.
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Table 1. An overview of the soil samples and estimates of 16S rRNA gene sequence diversity and phylotype coverage of the PacBio data. Diversity was estimated using
operational taxonomic units (OTUs). Diversity indices and richness estimators were calculated using the Mothur package (the mother project; http://www.mothur.org).

Sample* Grouping
name

No. of
analyzed reads OTU Chao Shannon Simpson Good’s

coverage
Sampling site

(GPS, altitude)

BB1

BB

2738 388 1629.03 3.79 8.62 0.89

Bongwha
(129◦3’17.9"E,

36◦51’45.6”N, 630 m)

BB2 2931 544 2092.42 4.65 24.99 0.87
BB3 2240 355 1814.62 3.98 13.51 0.88
BB4 2404 600 4411.03 4.14 5.74 0.78
BB5 7769 1492 7657.55 4.66 9.77 0.84

BF1

BF

5677 486 2820.18 2.73 3.67 0.93
BF2 4606 508 2393.16 4.01 12.06 0.92
BF3 4420 547 2592.36 4.07 12.18 0.91
BF4 3969 743 2787.00 5.25 53.47 0.87
BF5 3784 601 3295.08 4.64 24.51 0.88

DB1

DB

4107 792 2427.76 5.03 16.91 0.87

Daegu (128◦40’18.6"E,
35◦46’52.5”N, 243 m)

DB2 2149 424 1513.36 4.30 8.74 0.86
DB3 5250 1036 4241.84 5.09 13.70 0.86
DB4 2762 551 1756.51 4.38 7.55 0.86
DB5 8284 952 3784.81 4.99 40.10 0.92

DF1

DF

5962 699 3354.82 4.17 13.56 0.91
DF2 5489 712 2880.12 4.15 8.73 0.91
DF3 4019 711 3157.89 4.39 8.37 0.87
DF4 3880 702 2803.69 4.13 5.05 0.87
DF5 3521 478 1580.64 4.69 36.54 0.91

HB1

HB

4712 2425 9038.20 7.57 627.07 0.61

Hwaseong
(126◦55’47.6"E,

37◦13’09.1”N, 105 m)

HB2 4634 2167 7723.74 7.30 355.46 0.65
HB3 4489 2308 8079.12 7.52 557.24 0.61
HB4 3825 2057 6954.94 7.50 521.60 0.59
HB5 3360 1954 7019.94 7.60 726.93 0.55

hf1

HF

3142 1673 5914.55 7.30 539.23 0.60
hf2 1662 1026 4310.03 7.09 348.38 0.51
hf3 3720 2097 8645.22 7.57 607.90 0.56
hf4 1490 1032 3987.65 7.42 861.26 0.45
hf5 5707 2801 10771.69 7.62 661.09 0.63

* Samples were named as follows: sampling site, depth [B: subsurface (below 60–75 cm), F: surface (below 2–15 cm)] and sampling replicates.

http://www.mothur.org
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Figure 1. Microbial community profiles of the samples from Hwaseong (circles), Daegu (squares),
and Bonghwa (triangles) based on non-metric multidimensional scaling (NMDS) using the Mothur
package. Distance matrix was calculated using the Yue and Clayton theta supplied in the Mothur
package. Operational taxonomic units (OTUs) were determined based on 3% dissimilarity of nucleotide
sequences. Blue and red denote surface and subsurface, respectively.

The analyzed sequences were affiliated with 42 phyla and the eight most abundant phyla (>5%
proportion of all reads in each sample) were designated as major phyla: Acidobacteria, Actinobacteria,
AD3, Chloroflexi, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria (Figure 2a and Figure S1).
These phyla contributed from 87.4% to 99.7% (average 95.0%) of all sequences. In particular, among the
phyla, we found that Proteobacteria accounted for the highest proportion, especially in the BB sample,
which had the greatest proportion (about 70%). On the other hand, the proportion of Acidobacteria of
the BB sample was less than that of the other sites.

At the genus taxonomic level, the aforementioned sequences were assigned to 720 genera, including
the unclassified group with a high taxonomic level (e.g., class, order, or family). For further analysis,
we analyzed only 352 clearly assigned genera, excluding the sequences assigned as “unclassified,”
although we might have lost many sequences (Figure 2b). Finally, we selected 32 genera from each
sample based on >5% of total sequences for the following analyses such as CCA and interaction.
Moreover, from a combined sample (as grouped together by the same depth of each site), we found only
16 genera (>5% proportion of each combined sample) designated as dominant microbes (Figure S1b).
In this analysis, eight genera, Leptospirillum, Rhodoplanes, Thiobacillus, Acidithiobacillus, Sulfobacillus,
Conexibacter, Candidatus Solibacter, and Rhodovastum, had the highest relative abundance, accounting for
about 80% of total bacterial abundance from all samples. The genera Acidothiobacillus and Sulfobacillus
were only identified in two samples (BF and BB) and in BF samples, respectively, as major taxa
(Figure 2b). Iron-oxidizing gram-positive acidophiles were identified in Daegu and Hwaseong samples
as a minor taxon (less than 0.5% of total bacterial abundance); however, this iron-oxidizer was detected
in BF with comparatively high abundance (5% of total bacterial abundance). Unexpectedly, the genus
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Halothiobacillus, isolated from marine environments including hydrothermal vents and considered as
an obligately chemolithoautotrophic and sulfur oxidizer, was identified in BB.
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Subsequently, to determine generalist and specialist genera among those selected in this study
(n = 32), we calculated niche breadth (B) by Levin’s index [38,39] from all analyzed sites and
depths. From this analysis, only 16 genera were determined as generalists (B > 3, Alicyclobacillus,
Aquicella, Clostridium, Conexibacter, Nitrospira, and Rhodanobacter) and specialists: (B < 1.5, Gallionella,
gram-positive iron-oxidizing_acidophile, Halothiobacillus, Leptolyngbya, Leptospirillum, Rhodoferax,
Sulfobacillus, Thioalkalivibrio, Thiobacillus, and YNPFFP6 classified into the family Sulfobacillaceae).

In Table 1, the metrics for alpha diversity (number of OTUs, Chao1 richness, Shannon evenness,
Simpson diversity, and Goods’ coverage) of the microbial community are summarized. OTUs were
defined as sequences with 97% sequence similarity. While variations in diversity indices were observed,
there were no significant differences between surface and subsurface for intragroup and intergroup
samples (estimated by Mann-Whitney U test). However, diversity indices of the H (Hwaseong)
samples combined from surface and subsurface showed higher values than those of other samples
(Figure S4). In particular, the Simpson diversity index showed extremely remarkable differences (p =

0.0003 estimated by Mann-Whitney U test). On the other hand, the diversity indices of the samples from
Bonghwa and Daegu showed similar ranges (p > 0.11 estimated by Mann-Whitney U test) (Figure S4).

3.3. Environmental Factors Significantly Affecting the Microbial Community

To explain the variation in the microbial communities (i.e., the selected 32 genera) between
sampling sites, CCA and association network analysis were performed. These analyses facilitated the
investigation of the effect of environmental parameters including soil components. The CCA results
indicated that with the exception of the pH and clay, most environmental variables exhibited significant
effects on the microbial communities (p < 0.012 based on the 999 permutations) (Figure S3). On the x
axis (CA1), OM, TC, EC, and C/N showed highly positive positions (0.93–0.97), while temperature, pH,
and silt showed highly positive positions (0.90–0.99) on the y axis (CA2). To estimate the interactions
between the microorganism(s) and environmental parameters, an associated network analysis was
performed based on Spearman’s rank correlation coefficient (ρ) (Figure 3). From the network analysis,
20 genera and 13 environmental factors were obtained based on the criteria described in the Materials
and Methods. Furthermore, a total of 76 correlations (41 positive and 35 negative) were established
between environmental factors and genera (Figure 3). Based on this analysis, we found that As and EC,
among the environmental factors, and Rhodoplanes genus, in the microbial composition, have higher
interactions than others. Unexpectedly, four genera (Leptospirillum, Sulfobacillus, Acidithiobacillus, and
Gram-positive iron-oxidizer) have positive interactions with EC, but not pH, and it was observed
that pH exhibited a negative relationship only with Cu. These genera have been categorized as an
acidophilic bacterial group [48]. In addition, four genera (Thiobacillus, Halothiobacillus, Rhodovastum,
and Acidiphilum) and three environmental variables (TC, C/N, and OM) showed only an intragroup
relationship (Figure 3).
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Figure 3. Profile clustering Cytoscape network visualization of the 32 most abundant genera with
environmental correlation (solid line, positive correlation; dotted line, negative correlation) estimated
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marked with cyan squares, gray diamonds, and green circles, respectively.

3.4. Predictive Functional Profiles from Microbial Communities

Although we tried to understand microbial functional traits by analyzing the abundances and
distribution of microorganisms in each site, it is difficult to predict their ecological roles. Therefore,
to observe and compare study sites, putative functional profiles from 16S rRNA gene sequences
were predicted via KEGG pathways of PICRUSt analysis. Among all KEGG pathways predicted by
PICRUSt, the abundance of the KEGG category related to “Transport” was estimated as the highest
(11.8–13.3% of total KEGG categories), after exclusion of the poorly relevant categories (see Materials
and Methods). The proportions for xenobiotic biodegradation and energy metabolism were estimated
to be 6.0% and 7.5%, respectively. Notably, between the studied sites, variation in some functional
traits of third-tier KO was observed, such as in degradation of DDT, aminobenzoate, and nitrotoluene
(Figure S5). However, the proportions of other third-tier functional categories were similar between
sampling sites.

4. Discussion

Over the past 10 years, NGS technology has been introduced and developed, and has played
a central role in the field of microbial ecology for sequencing small-subunit ribosomal RNA genes
(e.g., the 16S rRNA gene). Traditional strategies, i.e., clone-based sequencing and culture-dependent
methods, for microbial community analysis have recently been extensively replaced by NGS platforms
such as pyrosequencing (of Roche 454), paired-end sequencing (HiSeq or MiSeq of Illumina), and an
ion semiconductor (IonTorrent). These platforms are now commonly used to generate hundreds of
thousands of read sequences from various environmental samples from an amplicon of the variable
region(s) of the 16S rRNA gene [49,50]. However, it is well known that the amplicon approach might
have an amplification bias that occurs by variable region selection associated with the primer choice [51].
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The bias can affect the results for taxonomic classification and diversity indices [52]. Contrastingly,
full-length 16S rRNA gene sequences enable the clear identification of taxonomy and phylogeny [53],
despite amplification bias. In addition, some studies have reported molecular analysis of microbial
community structures with no replication and randomization for experimental design [30,54,55].
Nevertheless, owing to the sequencing cost or analysis techniques that need computing ability, most
previous studies have described the microbial community structures from various environments,
including heavy-metal-contaminated soils, using a partial length of the 16S rRNA gene sequenced by
other NGS platforms. In response, this study sought to analyze the microbial community structure
and estimate the relationship between microbial compositions and environmental parameters in
heavy-metal-contaminated soils using a full-length bacterial 16S rRNA gene sequenced by the PacBio
RS II platform with plentiful replicates for each studied site.

A number of studies have reported that environmental parameters can affect the microbial
community structure and chemical processing (i.e., nutrient cycles) of soil. In the present study,
we found that environmental factors influence microbial compositions (Figure 3 and Figure S3). In
particular, heavy metals have significantly higher impact than other factors on microbial community
structure. Contrary to the NMDS results, the CCA results showed that the microbial communities
from Hwaseong are closely formed (Figure 1 and Figure S3). In addition, we identified that EC
(ds m-1) has a higher positive correlation with heavy metals than with other environmental factors
(Figure 3 and Figure S3). Although organic matter may influence the retention of heavy metals [56,57],
we found no significant correlation with heavy metals (Table S1). In fact, soil EC has been known
as an indirect indicator of soil health. It affects yields and suitability of crop, and plant nutrient
availability, as well as key soil processes such as the emission of greenhouse gases (e.g., nitrogen
oxides and methane) [58,59]. Some studies proposed that soil EC is a major factor that contributes to
bacterial community and activity [60,61]. Moreover, Jordán et al. [62] contended that EC, related to
metal bioavailability, shows higher correlation with heavy metal distribution. The associated network
analysis conducted in the present study revealed that EC had a direct, positive relationship only with
Pb and As; however, EC was also found to have an indirect, positive relationship with Cu and Cd. In
addition, the aforementioned heavy metals and EC exhibited more relationships, including a negative
association with microorganisms, than other environmental factors. These findings suggest that EC
is a major factor associated with the activities of microbial communities (see Figure 3). Additionally,
we observed that only four genera (Acidothiobacillus, Leptosprillum, Sulfobacillus, and Gram-positive
iron-oxidizing_acidophile) exhibited a positive relationship with EC. Although the members of these
genera are known to be acidophiles, our analysis did not reveal any relationship between pH and these
microorganisms. Therefore, this finding possibly indicates that, compared to other environmental
factors, EC has a stronger relationship with the acidophiles. Collectively, these results indicate that
metal concentrations alone do not reflect toxicity or environmental pollution. Measurement and
analysis of EC and heavy metal concentration can be used to effectively assess contamination risk [62]
and predict indigenous microbial activity [61].

With respect to the microbial composition, Proteobacteria, Acidobacteria, and Actinobacteria
phyla were identified as predominant groups (Figure 2a and Figure S1a). Notably, these phyla are
commonly found in terrestrial environments [63–65]. However, although Acidobacteria are considered
to be dominant in soil, comprising an average of 20% of total soil bacteria, the ecological roles of the
phylum are still poorly understood, due to the lack of cultured representatives references in [66].

At the genus level, 16 genera were identified in this study as generalist or specialist, which were
dominant. Among the genera, 10 (Gallionella, Gram-positive iron-oxidizing_acidophile, Halothiobacillus,
Leptolyngbya, Leptospirillum, Rhodoferax, Sulfobacillus, Thioalkalivibrio, Thiobacillus, and YNPFFP6
classified into the family Sulfobacillaceae) were identified as specialist for their habitat. This suggests
the possibility of the development of a microbial indicator of contamination by heavy metals in soil.
Interestingly, with the exception of samples from Bonghwa, the microbial compositions of surface
and subsurface samples were similar. This might be because the physiochemical characterizations
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of surface and subsurface soil at Daegu and Hwaseong were similar (Table S1), indicating that
environmental factors affect microbial community structures. In addition, some microorganisms in
BF and BB were identified as unique compared to other samples. For example, Leptospirillum and
Thiobacillus were only identified as predominant in BF and BB, respectively (Figure 2b). Generally,
Leptosprillum has been identified as an iron oxidizer and acidophile under oxic conditions [7]. It has
been classified into four groups [67]; in particular, group IV is reported to be capable of hydrogen and
iron oxidation [67]. Moreover, Leptosprillum spp. contributes significantly to AMD processing and
bioleaching [7,68]. Since first being described in 1904, Thiobacillus spp. are known as autotrophic sulfur
oxidizers, using reduced sulfur compounds as an energy source [69]. Interestingly, we found that
Halothiobacillus was identified only in BB. Also, Halothiobacillus has been shown to be a minor group
in AMD environments [70]. In addition, some Halothiobacillus species isolated from hydrothermal
vents are described as halotolerant and reclassified from the genus Thiobacillus [71]. However, recent
investigation indicated that Halothiobacillus might be considered an important early indicator in acid
mine drainage [72]. Some members of the genus Halothiobacillus might be adapted to play a role
in t he sulfur cycle through sulfur oxidation metabolism in a metal mine environment. For this
reason, the physiological and genomic characterization of the genus Halothiobacillus might be worth
further investigation.

On the other hand, the genus Rhodoplanes, described as a primarily phototrophic purple nonsulfur
bacterium [73], was only found in samples from Daegu and Hwaseong with high abundance (ranging
from 8% to 15% of total bacterial abundance). In addition, we found sequences related to genera
that are key players in geochemical cycling for nitrogen (i.e., Nitrospira) or sulfur (Sulfobacillus,
Desulfosporosinus). Unexpectedly, in addition to microbial community analysis, PICRUSt indicated
relatively little functional variation between sampling sites. Only a few functional categories were
observed to exhibit variation between sampling sites. The “transport” category was identified as
dominant in all studied sites with a similar proportion. However, it is possible that our PICRUSt
results support the relationship between microbial communities and environmental factors. Moreover,
we hypothesize that the microorganism(s) are adapted to their local habitat and microbial community
stability is affected during a long period of heavy-metal contamination, which acts as a selective
pressure [74,75]. Based on the present analysis, we observed that EC might have a greater effect on the
microbial community structure compared to heavy metals or organic matter.

Although we successfully characterized the microbial distribution and their predicted functional
traits from each sampling site, clear ecological roles and whole-metagenome analysis are lacking.
Nevertheless, using full-length sequencing application, this study provides accurate information
about microbial community structures and interactions in heavy-metal-contaminated soil in Korea.
In addition, the findings might also enable identification of the rare biosphere [28] using full-length
sequencing. For example, in DB and DF samples (Figure 2b), sequences classified in the genus
Conexibacter were detected. To date, in the genus Conexibacter, only two species have been isolated as
novel representatives of the deep branch of the phylum Actinobacteria from soil [76,77]. Moreover,
Conexibacter spp. have been recently recognized in environmental metagenomics [78,79] and massive
sequencing [80], including Oxford Nanopore MinION [81]. Finally, the findings of the present study
provide valuable insight into the decrease in microbial activity and diversity variations caused by
heavy metal pollution, as determined by full-length sequencing.
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