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Abstract: Next-generation approaches have enabled researchers to deeply study the plant microbiota
and to reveal how microbiota associated with plant roots has key effects on plant nutrition,
disease resistance, and plant development. Although early “omics” experiments focused mainly
on the species composition of microbial communities, new “meta-omics” approaches such as
meta-transcriptomics provide hints about the functions of the microbes when interacting with
their plant host. Here, we used an RNA-seq dataset previously generated for tomato (Solanum
lycopersicum) plants growing on different native soils to test the hypothesis that host-targeted
transcriptomics can detect the taxonomic and functional diversity of root microbiota. Even though
the sequencing throughput for the microbial populations was limited, we were able to reconstruct
the microbial communities and obtain an overview of their functional diversity. Comparisons of the
host transcriptome and the meta-transcriptome suggested that the composition and the metabolic
activities of the microbiota shape plant responses at the molecular level. Despite the limitations,
mining available next-generation sequencing datasets can provide unexpected results and potential
benefits for microbiota research.

Keywords: fungi; holobiont; meta-transcriptome; microbiota; RNA-seq; tomato

1. Introduction

”Omics” approaches have profoundly changed our views on environmental and host-associated
microbiotas. Metagenomics has allowed researchers to explore the diversity and composition of fungal
and bacterial communities under diverse environmental conditions [1], and meta-transcriptomics
identifies the most relevant metabolic pathways operating in the microbiota. Such approaches have
been applied to the human microbiota, linking microbial profiles with the emergence of specific
diseases [2], and to plant microbiota, describing the metabolic processes of the microbes associated
with different species of plants [3,4]. Moreover, because of the large amount of information generated
by next-generation sequencing (NGS), plant RNA-seq datasets that were originally generated to study
the host transcriptome may be a novel resource for studying the plant-associated microbiota [5].

Microorganisms 2020, 8, 38; doi:10.3390/microorganisms8010038 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0002-6996-6642
https://orcid.org/0000-0002-2033-2286
https://orcid.org/0000-0001-7412-8750
https://orcid.org/0000-0003-2467-9719
http://dx.doi.org/10.3390/microorganisms8010038
http://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/8/1/38?type=check_update&version=2


Microorganisms 2020, 8, 38 2 of 16

Some studies have focused on host–microbe pairs under controlled laboratory conditions, in
so-called “dual RNA-seq” approaches and applied to plants such as cassava (Manihot esculenta)
colonized by different arbuscular mycorrhizal (AM) fungal isolates [6] and Norway spruce (Picea abies)
infected with Heterobasidion annosum [7]. Plant RNA-seq datasets have also been used to study the
plant-associated microbiota, for example in the perennial grass Holcus lanatus growing in different
soils [8]. These approaches are often limited by sequencing depth or read length, requiring assembly
and annotation of the reads [5,9], and may have potential drawbacks such as the assembly of chimeric
transcripts [10]. They demonstrate, however, how unbiased RNA-sequencing may reveal not only the
biochemical functions being performed by a complex microbial community, but also the species within
the community that are metabolically active.

Here, we used an RNA-seq dataset previously generated for tomato plants (Solanum lycopersicum)
growing on different native soils [11,12] to test the hypothesis that host-targeted transcriptomics can
detect the taxonomic and functional diversity of the root microbiota. We also examined potential
correlations of microbiome diversity and activity with specific plant gene expression profiles.
The previous research, which integrated transcriptomics and proteomics, was focused on the plant
side—it revealed that two tomato cultivars, growing in native soils with different biological properties,
responded to natural soil microbiotas by increasing their innate immunity and activating basal defense
responses. The transcriptomic response of the plants depended more on soil type, and likely on the
microbiota present, than on plant genotype. Parallel investigations of the cultivable fungi and of the
tomato-associated mycobiota using internal transcribed spacer (ITS)-metabarcoding revealed consistent
differences in the fungal community assemblage depending on the soil and plant genotype [13,14].
Here, we focus our attention on the microbial side, covering both fungal and bacterial communities.

To verify the feasibility of our approach, we developed a bioinformatic pipeline that was able
to taxonomically and functionally annotate short RNA-seq reads. The pipeline takes advantage of
read alignment, lowest common ancestor assignments, and functional annotation to reconstruct the
diversity of active microbes associated with the roots of the two tomato cultivars grown on different
native soils or on a control substrate. Our analysis succeeded in rendering bacterial and fungal diversity
profiles, as well as identifying active functional categories. Applying the pipeline to our system we
verified the hypothesis that microbial functions are also impacted by plant pathogen tolerance and soil
suppressiveness. Finally, using genome-wide RNA-seq data mapped on tomato we further correlated
the diversity and functional profiles to the host transcriptome.

2. Materials and Methods

2.1. Plant Material and Sequencing

The RNA-seq libraries analyzed in this study were obtained in a previous study [11].
The experimental setup consisted of two tomato (Solanum lycopersicum) genotypes, “Battito” (B)
and “Cuore Di Bue” (C), which are resistant and susceptible, respectively, to Fusarium oxysporum f.sp.
lycopersici (FOL) pathogen (races 1 and 2). Both genotypes were grown in a greenhouse pot experiment
in two field-sampled soils, “Albenga” (AL) and “Rosta” (RO), which are suppressive and conducive,
respectively, to FOL and in a disinfected peat-based substrate as a control (CONT). For each condition,
three biological replicates were considered. A complete characterization of soil physicochemical
features is available in Poli et al. [13]. Details of the sampling protocol, RNA extraction, and Illumina
sequencing (50 bp single-end) procedures are described in Chialva et al. [11]. Raw RNA-seq reads are
available in the NCBI Short Read Archive repository [15] under accession no. SRP126554. The same
dataset was used to analyze the tomato transcriptome and to reconstruct the microbial diversity
associated with plant roots as described below.
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2.2. Plant Transcriptome Analysis

Raw RNA-seq libraries were analyzed according to the bioinformatic pipeline described in
Chialva et al. [12], using the Heinz tomato genome (SL2.4) as the reference [16] and normalizing
expression values with the DESeq2 package [17] in R [18].

2.3. Meta-Transcriptome Filtering and Annotation

Reads originating from microbial populations were filtered and annotated using a custom
bioinformatic pipeline. Because the short read length could lead to the assembly of chimeric sequences,
we chose to annotate reads rather than generating an assembly.

Raw adapter-filtered reads were first trimmed using TRIMMOMATIC v0.35 [19] setting Q >28
(with a 10-base sliding window) and length >45 bp. Host reads were then removed by mapping
trimmed libraries on the tomato reference genome (SL.2.50) [16] using STAR c2.2.5a [20] in “end-to-end”
mode, allowing a maximum number of 1000 multi-reads and setting intron length limits to 40 and
23,000 bp. To remove residual host reads, accounting for transcript variants and possible contaminants,
we mapped reads on a NCBI NT subset containing all tomato and human sequences using Bowtie2
v2.2.9 [21] in “end-to-end” mode with “-D 25 -R 4 -N 1 -L 15 -i S,1,0.50” parameters. The rRNA sequences
were then removed using Sortmerna v2.1 [22], using “-L 14 -passes 14,7,1 -e 1” parameters and the
built-in databases plus a comprehensive subset of tomato rRNAs from the NCBI NT database [23] as
the reference.

Filtered reads were then annotated on the whole NCBI NT database (release 13 July 2016) using
the lowest common ancestor method (LCA) implemented by Taxoner64 v1.7 [24] according to the
complete NCBI taxonomy (release 13 July 2016). Taxoner64 was run using the previously used Bowtie2
parameters (see above) and assigning reads to the nearest neighbor taxon ID at 97% sequence similarity.

Output files, containing reads annotated by taxid and GI (now accession number), were further
processed in R [18] with custom scripts to obtain read counts per taxa. Taxonomic annotation for each
taxon was retrieved using the CHNOSZ library [25], and data were further filtered to remove residual
contaminants (Viridiplantae and Metazoa) as well as low-abundance taxa (<5 raw reads in at least
3 libraries).

As a further step, we functionally annotated the filtered microbial reads from the previous analysis
by mapping to the eggNOG database v4.5 [26]. To overcome the short read length (50 bp), which did not
allow functional assignment using conventional tools (such as MG-RAST or BLASTX), we generated
a set of “pseudo-reads” extending reads 50 bp upstream and 50 bp downstream on their mapping
reference in NCBI, thus generating longer 150 bp fragments. Pseudo-reads were generated taking into
account reference sequence start and end coordinates and extracting selected ranges (150 bp) using the
“getfasta” function in Bedtools v2.26.0-19 [27]. Pseudo-reads from different samples were then pooled
and mapped on eggNOG using DIAMOND-BLASTX v0.8.24 [28] with -k1 -e0.001 -b15 -c1 parameters
and removing redundant high-scoring segment pairs (HSPs).

2.4. Analysis of Arbuscular Mycorrhizal Colonization

Mycorrhizal colonization was assessed on a representative portion of the same root materials
used to generate RNA-seq libraries. Immediately after sampling, roots were washed thoroughly under
flowing tap water, stained for at least 12 h in methyl blue (0.1% w/v in lactic acid), and then bleached in
lactic acid (3 washes, 1 h each). Root samples were then cut into 1 cm segments, mounted on glass
slides, and observed by light microscopy. Mycorrhizal colonization parameters were visually estimated
according to Trouvelot et al. [29]. For each condition, 9 different plants were analyzed, with 60 root
segments examined for each plant.
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2.5. Statistical Analysis

Statistical tests were performed in the R statistical programming environment [18]. Normalized
read counts were grouped at the family level for bacteria and fungi. Permutational analysis of variance
(PERMANOVA) of bacterial and fungal communities were computed using the “vegan” package v2.5-6
in R [30].

Differential abundance analysis was performed using the DESeq2 package v1.12.14 [17] to increase
sensitivity relative to traditional rarefaction techniques [31]. The DESeq2 function was run using
the independent filtering option and setting fitType = “parametric” and betaPrior = T. Taxa were
considered as differentially abundant between conditions at an adjusted p-value < 0.05.

Statistical and differential Clusters of Orthologous Groups (COG) abundance analyses were
obtained as previously described for taxa. Non-metric multidimensional scaling (NMDS) ordination
analysis on functional categories was performed using “vegan” R package v2.5-6 [31]. Additionally,
COG categories were mapped with KO KEGG identifiers using the “ko2cog.xl” mapping file at
http://www.genome.jp/kegg/files/ko2cog.xl. Enriched KEGG pathways among KO IDs were then
inferred using the clusterProfiler v3.14.0 package in R [32] at p < 0.1.

Data normality and homoscedasticity were tested using Shapiro–Wilk [33] and Levene’s test [34]
in the “stats” v3.6.1 and “car” v3.0-3 packages [34], respectively (p < 0.05). According to data
distributions, ANOVA was adopted for normal homoscedastic data and the Kruskal–Wallis test
adopted for non-normal homoscedastic data [35] from the custom R package “stats” v3.6.1 at p < 0.05.
Pairwise comparisons between treatments were performed when needed, using the appropriate post
hoc tests. Tukey’s test [36] in the package “agricolae” v1.3-1 [37] was adopted for ANOVA, and Dunn’s
test [38] in package “FSA” v0.8.25 [39] for Kruskall–Wallis, both at p < 0.05.

Variance partitioning analyses were used to explain plant transcriptome variance, using as
explanatory variables meta-transcriptome diversity (fungi and bacteria) and functional diversity,
as well as genotype and soil factors. DESeq2-normalized counts for microbial taxa and COG categories
were used as meta-transcriptome descriptors. The analyses were performed using the “varpar” function
in the “vegan” package [31]. Since collinearity was detected within datasets, a forward-selection
procedure [40] was applied using the “forward.sel” function in the “adespatial” package v0.3-7 [41]
with alpha = 0.05 and nperm = 999. Testable partitions were tested for significance using permutational
ANOVA (999 permutation) on the RDA model (p < 0.05).

All analyses were performed on a HP Proliant server (64 cores, 128 GB RAM) running Ubuntu
server 14.04. Custom R functions used to perform analyses are available at https://github.com/mchialva.

3. Results and Discussion

3.1. Reconstructing the Root-Associated Meta-Transcriptome from Host-Targeted RNA-seq Libraries

The RNA-seq dataset analyzed here was obtained from roots of two tomato genotypes grown
in two native soils and one inert, control substrate in pots [11]. By observing the RNA-seq mapping
rate onto the tomato reference genome, we noticed that a variable proportion of reads, ranging from
4% to 25%, were not aligning to the host genome. To uncover the diversity of active species in the
microbial communities associated with tomato roots and their functional activities, we implemented a
custom bioinformatic pipeline to filter reads generated by microbial transcripts (meta-transcriptome).
The pipeline was composed of several steps, including reads trimming and filtering procedures,
host reads and rRNA removal, and meta-transcriptome annotation (Figure S1). Taxonomic affiliations
and functional annotations were obtained using the full NCBI Nucleotide database [23] and the
eggNOG database [26], respectively.

Our pipeline detected from 93,736 to 581,439 microbial reads, depending on the sample, within
the filtered sequences (Table 1). The vast majority of sequences (81% to 96%, depending on the library)
were unique, displaying low redundancy. The mapping rate on the NCBI database ranged between
8.59% and 42.85% (Table 1), representing a variable proportion of bacteria and eukaryotes (Figure 1a).

http://www.genome.jp/kegg/files/ko2cog.xl
https://github.com/mchialva
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Table 1. Meta-transcriptome reads assignment statistics.

Sample SRA 1 Run SRA 1 Sample
Accession

Raw Filtered Unique Filtered
Reads (%)

Mapped on
NCBI (%) Bacteria Eukaryotes Mapped %

(eggNOG)

BAL_R1 SRR6368019 SRS2751529 11,382,297 184,182 88.88 27.12 4952 16,074 33.41
BAL_R2 SRR6368032 SRS2751512 20,308,970 391,019 93.74 25.88 8662 34,437 34.28
BAL_R3 SRR6368031 SRS2751523 12,614,238 187,812 95.77 41.37 3141 54,951 59.10
BRO_R1 SRR6368030 SRS2751514 14,986,370 230,155 95.61 15.59 2909 7937 23.69
BRO_R2 SRR6368029 SRS2751516 15,367,923 207,560 95.43 17.80 2853 8265 18.92
BRO_R3 SRR6368036 SRS2751513 17,906,164 484,731 95.56 10.99 5185 13,803 29.70

BCONT_R1 SRR6368035 SRS2751519 12,893,929 93,736 85.68 19.14 5114 676 29.46
BCONT_R2 SRR6368034 SRS2751517 23,428,531 382,171 84.86 42.85 4751 98,337 44.00
BCONT_R3 SRR6368033 SRS2751518 13,161,547 117,290 91.33 34.91 2982 8861 23.11

CAL_R1 SRR6368022 SRS2751525 13,376,685 342,990 88.63 8.59 4691 7049 36.23
CAL_R2 SRR6368021 SRS2751526 12,343,880 317,136 81.39 13.11 9361 7628 34.98
CAL_R3 SRR6368024 SRS2751522 18,637,725 380,329 89.13 9.16 5928 6830 32.38
CRO_R1 SRR6368023 SRS2751524 13,977,334 208,810 90.82 10.80 4651 3801 31.17
CRO_R2 SRR6368026 SRS2751530 18,315,136 534,056 89.60 10.61 9998 13,518 34.78
CRO_R3 SRR6368025 SRS2751520 27,710,101 581,439 91.36 12.77 8804 8195 18.68

CCONT_R1 SRR6368028 SRS2751515 17,006,711 138,440 89.62 17.90 3071 820 13.90
CCONT_R2 SRR6368027 SRS2751521 29,267,531 246,552 92.28 22.81 11,392 2488 22.10
CCONT_R3 SRR6368020 SRS2751527 16,244,284 98,253 94.61 16.58 2804 1210 21.72

1 Short Read Archive respository at NCBI, https://www.ncbi.nlm.nih.gov/sra.

https://www.ncbi.nlm.nih.gov/sra
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Figure 1. Active taxonomic diversity of root-associated microbiota of tomato plants grown in native
and control soils. (a) Relative abundance of reads in each condition by superkingdom. (b,c) Bar plots of
the three most represented phyla for bacteria (b) and fungi (c) among the different conditions. The first
letter of the sample name indicates genotype (“Cuore di Bue” or “Battito”), while the following part
refers to the soil/substrate type (RO, “Rosta” conducive soil; AL, “Albenga” suppressive soil; control
(CONT), neutral peat-moss substrate).

Even though the Illumina libraries were enriched in poly-A transcripts, because they were initially
targeted to the host plant, the analysis was successful in detecting a significant number of bacterial
reads. The bacterial read counts were similar to those corresponding to fungi, possibly due to the
presence of poly-A stretches in the bacterial transcripts. As frequently reported in similar studies,
only a small proportion of the non-host reads could be successfully assigned [42,43], and in our case,
this was probably due to the short read length (50 bp SE). Since the sampling protocol used to generate
the RNA-seq dataset included repeated dH2O washes to remove most of the rhizospheric microbes [11],
we hypothesized that the microbial meta-transcriptome reads could be attributed to both the rhizoplane
and the endosphere root compartments. For this reason, we refer to these sequences as belonging to
root-associated communities throughout. Indeed, all of the fungal and bacterial families we detected
(see below) are well-known to be tightly associated with plant roots [44–47] and belong to diverse
ecological guilds, from symbionts to saprotrophs.

3.2. Tomato Root-Associated Active Microbiota Diversity Is Shaped by Both Soil Type and Host Genotype

Most of the bacterial reads were assigned to Actinobacteria and Proteobacteria, while the fungal
reads were dominated by Ascomycota (Figure 1b,c). At the phylum level (Figure 1b,c), a similar overall
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bacterial community composition emerged, with major variation across conditions observed only
for fungi.

Indeed, the relative abundance of Glomeromycotina (Glomeromycota according to NCBI
taxonomy) seemed to be dependent on soil type; this taxon was detected in both native soils
but not in the control substrate.

As expected, the analysis showed that root-associated communities also were present in plants
growing on the disinfected substrate, demonstrating quick re-colonization of a microbe-depleted
environment in the non-sterile greenhouse conditions used for these experiments.

The taxa-count tables we obtained for fungi and bacteria were then used to investigate the effect of
soil versus plant genotype on microbial diversity (at the phylum and family levels). The PERMANOVA
showed that host genotype explained a large part of the variance in community composition for
bacteria (20.10% of variance explained, p < 0.01) and fungi (28.83%, p < 0.001) at the family level
(Table 2). By contrast, soil type explained 20.25% of the variance (p < 0.05) only for the fungal community.
These results are in agreement with data reported by Poli et al. [13] showing that the fungal communities
tightly associated with tomato roots appeared to be mainly shaped by plant genotype.

We performed a differential abundance analysis comparing the “Cuore di Bue and “Battito”
cultivars (Table S1).

Table 2. PERMANOVA analysis of meta-transcriptome diversity and functioning in relation to host
genotype, soil, and its interaction. Df = degrees of freedom; SS = sum of squares; MS = mean sum
of squares; Pseudo-F = F value by permutation. Statistical significance is indicated in bold (p < 0.05);
p-values are based on 999 permutations.

Source Df SS MS F R2 p Explained Variance (%)

Bacteria (family)

Genotype 1 0.10739 0.107388 4.5390 0.20102 0.0032 20.10
Soil 2 0.05908 0.029542 1.2487 0.11060 0.2511 11.06

Genotype × Soil 2 0.0838 0.041915 1.7716 0.15692 0.0762 15.69
Residual 12 0.28391 0.023659 0.53145 53.15

Total 17 0.53421 1 100

Fungi (family)

Genotype 1 0.69477 0.69477 7.6321 0.28835 0.0004 28.83
Soil 2 0.48786 0.24393 2.6796 0.20247 0.0294 20.25

Genotype × Soil 2 0.13449 0.06724 0.7387 0.05581 0.6368 5.58
Residual 12 1.09239 0.09103 0.45337 45.34

Total 17 2.40951 1 100

COG genes

Genotype 1 0.3782 0.3781 2.7336 0.11915 0.0253 11.92
Soil 2 0.7818 0.39089 2.8254 0.24630 0.0091 24.63

Genotype × Soil 2 0.3539 0.17696 1.2791 0.11151 0.2334 11.15
Residual 12 1.6601 0.13835 0.52304 52.30

Total 17 3.1740 1 100

Some Actinobacteria and Proteobacteria families that are commonly associated with the root
endosphere and rhizosphere [48,49] were enriched or depleted in “Cuore di Bue” compared with
“Battito” cultivars (Figure 2a). These families included Brucellaceae (log2FC = 1.48), Methylobacteriaceae
(log2FC = 1.45), Burkholderiaceae (log2FC = 1.07), Pasteurellaceae (log2FC = −1.23), Alcaligenaceae
(log2FC = −1.27), Corynebacteriaceae (log2FC = −0.84), and Micrococcaceae (log2FC = −0.48). Among
the fungi, the susceptible cultivar “Cuore di Bue” hosted fewer Nectriaceae (Ascomycota), while other
Ascomycota members, such as Mycospherellaceae, Metschnikowiaceae and Chytridiomycota were
enriched (Figure 2b). Comparison of the two genotypes revealed a higher abundance in the resistant
cultivar “Battito” of some fungal taxa such as Nectriaceae, which includes many Fusarium strains that
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can be plant pathogens or biocontrol agents. This result suggests that the resistant genotype readily
recruits biocontrol Fusaria strains, which can putatively confer resistance against FOL as reported in
the literature [50].
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Figure 2. MA-plots of differential abundance analysis of bacterial and fungal families/phyla across
genotype and soil types. (a,b) Enriched and depleted taxa of bacteria (a) and fungi (b) associated with
“Cuore di Bue” versus “Battito” cultivars. (c,d) Enriched and depleted families of bacteria (c) and
fungi (d) in native versus control soil. (e,f) Enriched and depleted families of bacteria (e) and fungi
(f) in disease suppressive versus conducive soils. Differentially expressed (False Discovery Rate [FDR]
< 0.05) families and phyla are depicted in pale red and light blue, respectively. Taxa name sizes are
log10-proportional to the adjusted p-value (FDR). Rug density plots (pale red) along each axis indicate
the density of abundances (x-axis) and log2fold-changes (y-axis); x-axis is log10-scaled.
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We also tested which taxa were enriched in native soils versus the neutral control. The results
highlighted four bacterial families and 10 fungal families as differentially abundant in native soils
(Table S1).

Among bacteria, Actinobacteria such as Streptosporangiaceae (log2FC = 3.19), Nocardiopsaceae
(log2FC = 2.23), and Streptomycetaceae (log2FC = 2.04) emerged as predominant components
of the native microbiota (Figure 2c). Among fungi (Figure 2d), Glomeraceae (log2FC = 5.97),
Claroideoglomeraceae (log2FC = 4.46), Tuberaceae (log2FC = 3.77) and Pyronemataceae (log2FC = 6.89)
were enriched in native soils relative to the control.

Compared to native soils, the control soil samples had a greater abundance of the bacterial family
Oxalobacteraceae (log2FC = −1.34) (Figure 2c) but were not enriched for any fungal taxa (Figure 2c,d).
Interestingly, Oxalobacteraceae, which is commonly found in soil and in association with the root
endosphere, was previously described as one of the most persistent bacterial taxa associated with
cucumber seeds [51]. If Oxalobacteraceae are similarly persistent in their association with tomato
seeds, they might be the first to re-colonize the disinfected substrate (CONT), since no competition
with any other microbes would exist.

The type of soil also influenced the root-associated microbiota. Specifically, we observed an
enrichment of the bacterial families Nocardiopsaceae and Kofleriaceae in AL suppressive soil (Figure 2e).
Interestingly, these two families were previously associated with soil disease suppressiveness because
of their anti-fungal activity [52], confirming the disease-suppressive potential of AL soil.

Among fungi (Figure 2f), arbuscular mycorrhizal (AM) fungi (Glomeraceae and
Claroideoglomeraceae) as well as pathogenic fungi such as Ceratocystidaceae were less abundant in
the AL disease-suppressive soil (False Discovery Rate [FDR] < 0.05).

Funneliformis mosseae was the most represented AM fungus. Interestingly, this species is
cosmopolitan, able to colonize roots of a large number of different plants and is highly resistant
to soil disturbances [53,54], since AM fungi are easily detectable by light microscopy after root staining,
as we confirmed in the molecular results by examining root segments (Figure 3).

Quantitative analysis revealed a significant difference (p < 0.05) between RO and AL soils
(Figure 3a), with a lower occurrence of fungal structures and arbuscules in roots of both tomato
genotypes grown in AL suppressive soil. The decreased presence of AM fungi in the suppressive soil
AL, along with a higher abundance of bacteria with well-known anti-fungal activities, raises novel
questions about the fungal dynamics in suppressive soils [55].

3.3. Basal Microbial Metabolisms Are Detected in the Reconstructed Meta-Transcriptome

Reads assigned by the pipeline to bacterial and fungal taxa were pooled and functionally annotated
to dissect microbial functional diversity associated with tomato roots under different soil and genotype
conditions (Table S2). Reads were annotated using the eggNOG functional database [26] and differential
expression analysis of Clusters of Orthologous Groups (COG) genes was performed. The mean mapping
rate ranged between 13.9% and 59.10% of filtered reads (Table 1).

PERMANOVA analysis on COGs profiles (Table 2) showed that the largest part of the variation
was linked to the soil type (p < 0.01, 24.63% explained variance), but also that the genotype has a
relevant role (p < 0.05, 11.91% explained variance).

Distances between functional profiles were visualized through non-metric multidimensional
scaling (NMDS) ordination analysis, clustering genotypes, and soil type (Figure 4a,c). The ordination
was well-supported by PERMANOVA analysis, which detected an effect of genotype and soil. The plot
revealed a different pattern between the two tomato genotypes, with a clear separation between them
(Figure 4a). Similarly, soil types also clustered apart, with a large overlap between the two native soils
and a clear separation of the control substrate (Figure 4c).
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Figure 3. Mycorrhizal colonization of tomato roots growing in native soils and arbuscular mycorrhizal
fungi (AMF) reads abundance. (a) Quantitative parameters of arbuscular mycorrhizal (AM) colonization
of tomato roots (susceptible and resistant genotypes) growing in two different native soils: Mycorrhizal
frequency (F), intensity of mycorrhization (M), presence of arbuscules within the mycorrhized segments
(a), and the presence of arbuscules in the whole root apparatus (A) are plotted. Letters indicate
significant differences among means according to the Kruskall–Wallis test (Dunn’s post hoc test,
p < 0.05). (b) Normalized reads relative abundances assigned to phylum Glomeromycotina in the
meta-transcriptome analysis. (c,d). Micrographs showing AMF colonization in tomato roots from AL
(c) and RO (d) natural soils. Scale bars correspond to 30 µm in (e) and to 25 µm in (f).

We next compared expression of COGs in susceptible (“Cuore di Bue”) versus resistant (“Battito”)
cultivars (Table S2) and found 210 differentially expressed COGs, with 33 up-regulated and 177
down-regulated (FDR < 0.05) genes (Figure 4b). Interestingly, with few exceptions, most of the
differentially expressed COGs were depleted in the susceptible cultivar “Cuore di Bue” (i.e., they were
enriched in the resistant “Battito” cultivar). Differentially expressed genes mainly belonged to a few
functional categories: “Function unknown (S)” (76 COGs); “Carbohydrate transport and metabolism
(G)” (20 COGs); “Posttranslational modification, protein turnover, chaperones (O)” (20 COGs);
“Intracellular trafficking, secretion, and vesicular transport (U)” (12 COGs); “Translation, ribosomal
structure and biogenesis (J)” (12 COGs); “Signal transduction mechanisms (T)” (11 COGs); and “Amino
acid transport and metabolism (E)” (10 COGs). Among the most interesting of the down-regulated gene
categories we found in the “Cuore di Bue” cultivar were calcium calmodulin-dependent protein kinases
(ENOG410XRMJ, ENOG410XNRX) and serine threonine protein kinases (COG0515, ENOG410XNPH),
both of which are categories involved in signal transduction.

When we analyzed native soils versus control, we found 49 differentially expressed COGs, with a
similar number of up- and down-regulated categories (Figure 4d). Up-regulated COGs mostly belonged
to the “Translation, ribosomal structure and biogenesis (J)” category (15/24 COGs). Down-regulated
genes were assigned to a few other categories, such as “Energy production and conversion (C)”,
“Function unknown (S)”, and “Carbohydrate transport and metabolism (G)”, with eight, six, and four
COGs terms, respectively. Of the 15 upregulated COGs assigned to category “J”, five corresponded to
ribosomal proteins (COG1717, COG1997, COG1631, COG1632, COG1358). Since ribosomal proteins
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have been proposed as markers of in situ growth rates in microbial communities [56], our data suggest
that in native soils, as compared to the control substrate, the higher microbial abundance associated
with plant roots is mirrored by a higher microbial metabolic activity. Despite the differences between
the native soils and the control, we found no COGs that were differentially expressed between the
suppressive and conducive soils. This supports the NMDS ordination analysis, which displayed high
similarities between AL and RO COGs expression profiles.
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Figure 4. Meta-transcriptome functional diversity. (a,c) non-metric multidimensional scaling (NMDS)
ordination plots on Bray–Curtis distances of expressed Clusters of Orthologous Groups (COG) functions
clustered using 95% confidence ellipses by genotype (a) and substrate type (c); stress = 0.0776. AL,
“Albenga” suppressive soil; RO, “Rosta” conducive soil; CONT, neutral control soil. (b,d) Boxplot of
differentially expressed COG functions (FDR < 0.05) between genotypes (susceptible versus resistant,
(b), and substrate type (native versus control soils, (d)). COGs are clustered by the more frequently
represented functional categories, and points represent COG terms for each functional category; COGs
that are significantly differentially expressed (FDR < 0.05) are indicated in red, COGs that are not in
light green.

The functional diversity analysis revealed only a few basal metabolic functions, indicating that
the sequencing depth was insufficient to capture a full profile of expressed microbial genes. However,
we were able to detect major differences in the root-associated microbiota between native versus
artificial substrates—both in the level of metabolic activity and in the genes expressed—and between
different plant genotypes.

3.4. Linking the Meta-Transcriptome with the Host Transcriptome

Finally, we verified the feasibility of linking the taxonomic and functional diversity of the
root-associated active microbiota, reconstructed from RNA-seq data, to the tomato transcriptome using
variance-partitioning analysis. Meta-transcriptome features, namely LCA taxonomic assignments and
functional diversity (expressed COG terms), were treated as explanatory variables of the variation
in tomato expressed genes across conditions. We performed two independent analyses, first testing
the influence of the taxonomic profile and then testing that of the functional profile (Figure 5).
When considering the fungal and bacterial taxa associated with roots (Figure 5a), a large amount of
plant transcriptome variance is explained by the active microbial diversity (35%, p < 0.001). By contrast,
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soil and genotype factors individually did not explain any of the transcriptome variance, although
2% of the explained variance was collinear to these two factors. Interestingly, 22% of the explained
variance was collinear between soil type and microbial diversity, probably meaning that these two
factors are interdependent in modulating tomato transcriptomic responses. Similarly, the genotype
factor also shared 5% of collinearly explained variance with microbial diversity. The analysis was
repeated considering active fungal and bacterial communities as independent factors. The bacterial
community alone explained the greatest portion of plant transcriptome variance (18%) with high
collinearity with fungal diversity (Figure S2). The active fungal community, however, did not explain a
significant portion of the variance on its own, being entirely collinear with other factors (mainly soil
type and bacterial community).
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(a) Tomato transcriptome variance explained by genotype, soil, and active microbiota diversity (bacteria
and fungi). (b) Tomato transcriptome variance explained by genotype, soil, and mapped COG terms
(functional diversity). Residuals, unexplained variance fractions (discrepancy between the data and an
estimation model). Significant fractions are indicated by asterisks (ANOVA on RDA model, * p < 0.05;
** p < 0.01; *** p < 0.001).

By using expressed COG functions within the meta-transcriptome as an explanatory variable,
we were able to attribute 42% (p < 0.001) of the plant transcriptome variance to microbial functions
(Figure 5b). We also detected collinearity between soil type and COG terms that amounted to 20%.
However, unlike the results of the previous analysis, the variance explained exclusively by the soil
factor dropped to 2% (p > 0.05).

These results highlight that the taxonomic composition and in particular the expression profile
of root-associated microbial communities correlate well with the plant expression profile across soils
and genotypes, explaining more variance than genotype and soil factors. However, unexpectedly,
the cumulative contribution of soil type and COGs in explaining tomato gene expression was
slightly higher, similar to what we described above when considering meta-transcriptome diversity.
This suggests that there is a strong relationship between soil features and meta-transcriptome
functioning/diversity.
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4. Conclusions

Despite the low sequencing coverage of microbial transcripts, the deep mining of transcriptome
datasets we previously generated from tomato plants grown in non-sterile environments [11] allowed
the identification of a number of active microbes associated with roots. Our data demonstrate that this
approach is feasible even with a high abundance of host sequences (>90%) and a short read length
(50 bp), even though the number of microbial reads (excluding rRNAs) harvested was considerably
lower than was obtained in other meta-transcriptome studies [57,58]. Notwithstanding these technical
constraints, we were able to reconstruct the active microbiota and functional diversity as reported in
other works [43]. The reliability of the mined information was validated only for Glomeromycotina,
so the accuracy and precision of our whole-community assemblage reconstructions need to be
further confirmed, such as by generating simulated RNA-seq libraries at different read lengths and
coverage values.

When considering the active diversity and functional profiles of the tomato-associated microbes,
we found that the main driver of both is the host genotype, largely confirming previous data obtained in
tomato [13] as well as in other plant models, such as rice [59], Arabidopsis [49], and Lotus [60]. However,
especially in terms of taxonomic diversity, we also found a major impact of soil type, which was more
conspicuous when considering the fungal communities. In addition to many bacteria, we detected
arbuscular mycorrhizal fungi in the roots of both genotypes, but these fungi were more abundant
in tomatoes growing in conducive RO soil than in suppressive AL soil, as was also confirmed by
morphological quantification. At the same time, pathogenic fungi were less represented in AL soil,
where bacteria belonging to Nocardiopsaceae and Kofleriaceae, known for their potential anti-microbial
activity [52], were dominant. Taken as a whole, the data provided detailed information on the diversity
of microbial communities associated with the roots of two tomato genotypes and supported our
previous findings [11,12]. Lastly, through variance partitioning analysis we showed a good correlation
between meta-transcriptome (including both taxonomic and functional diversity of microbes associated
with roots) and plant host transcriptome.

In conclusion, the use of host-targeted RNA-seq libraries to study the meta-transcriptome is a
feasible approach. It allows the reconstruction of microbial taxonomical and functional diversity at a
relatively low sequencing depth (>90% host sequences), maximizing the throughput of the RNA-seq
approach in a cost-effective way.
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assignment on eggNOG 4.5 database and differential expression analysis performed using DESeq2 R package
(FDR < 0.05).

Author Contributions: Conceptualization, M.C. and P.B.; methodology, M.C. and S.G.; formal analysis,
M.C.; investigation, M.C. and M.N.; data curation, M.C.; writing—original draft preparation, M.C. and P.B.;
writing—review and editing, M.C., P.B., S.G., M.N., W.N.H. and L.L.; visualization, M.C.; funding acquisition, P.B.,
W.N.H. and L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Mycoplant project (Root Microbiome for Plant Health: dissecting the
role of soil fungi, TO_call03_2012_0039, Fondazione Compagnia di San Paolo Torino). This research has received
funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 727929 (TOMRES). The authors are grateful to the Researchers Supporting Project number (RSP-2019/53),
King Saud University, Riyadh, Saudi Arabia.

Acknowledgments: The authors thank Andrea Berruti for valuable help in multivariate statistics, Enrico Ercole,
Paolo Bagnaresi, and Alessandra Salvioli for fruitful discussions. The authors are grateful to Dr. J. Mach for the
critical reading and text editing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

http://www.mdpi.com/2076-2607/8/1/38/s1


Microorganisms 2020, 8, 38 14 of 16

References

1. Cowan, D.A.; Ramond, J.-B.; Makhalanyane, T.P.; De Maayer, P. Metagenomics of extreme environments.
Curr. Opin. Microbiol. 2015, 25, 97–102. [CrossRef] [PubMed]

2. Deng, Z.-L.; Gottschick, C.; Bhuju, S.; Masur, C.; Abels, C.; Wagner-Döbler, I. Metatranscriptome Analysis
of the Vaginal Microbiota Reveals Potential Mechanisms for Protection against Metronidazole in Bacterial
Vaginosis. Msphere 2018, 3, e00262-18. [CrossRef] [PubMed]

3. Crump, B.C.; Wojahn, J.M.; Tomas, F.; Mueller, R.S. Metatranscriptomics and Amplicon Sequencing Reveal
Mutualisms in Seagrass Microbiomes. Front. Microbiol. 2018, 9, 388. [CrossRef] [PubMed]

4. Saminathan, T.; García, M.; Ghimire, B.; Lopez, C.; Bodunrin, A.; Nimmakayala, P.; Abburi, V.L.; Levi, A.;
Balagurusamy, N.; Reddy, U.K. Metagenomic and Metatranscriptomic Analyses of Diverse Watermelon
Cultivars Reveal the Role of Fruit Associated Microbiome in Carbohydrate Metabolism and Ripening of
Mature Fruits. Front. Plant Sci. 2018, 9, 4. [CrossRef]

5. Cox, J.W.; Ballweg, R.A.; Taft, D.H.; Velayutham, P.; Haslam, D.B.; Porollo, A. A fast and robust protocol for
metataxonomic analysis using RNAseq data. Microbiome 2017, 5, 7. [CrossRef]

6. Mateus, I.D.; Masclaux, F.G.; Aletti, C.; Rojas, E.C.; Savary, R.; Dupuis, C.; Sanders, I.R. Dual RNA-seq reveals
large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in
the mycorrhizal symbiosis. ISME J. 2019, 13, 1226–1238. [CrossRef]

7. Kovalchuk, A.; Zeng, Z.; Ghimire, R.P.; Kivimäenpää, M.; Raffaello, T.; Liu, M.; Mukrimin, M.; Kasanen, R.;
Sun, H.; Julkunen-Tiitto, R.; et al. Dual RNA-seq analysis provides new insights into interactions between
Norway spruce and necrotrophic pathogen Heterobasidion annosum s.l. BMC Plant Biol. 2019, 19, 2. [CrossRef]

8. Young, E.; Carey, M.; Meharg, A.A.; Meharg, C. Microbiome and ecotypic adaption of Holcus lanatus (L.)
to extremes of its soil pH range, investigated through transcriptome sequencing. Microbiome 2018, 6, 48.
[CrossRef]

9. Celaj, A.; Markle, J.; Danska, J.; Parkinson, J. Comparison of assembly algorithms for improving rate of
metatranscriptomic functional annotation. Microbiome 2014, 2, 39. [CrossRef]

10. Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments.
Genome Biol. 2014, 15, R46. [CrossRef]

11. Chialva, M.; Salvioli di Fossalunga, A.; Daghino, S.; Ghignone, S.; Bagnaresi, P.; Chiapello, M.; Novero, M.;
Spadaro, D.; Perotto, S.; Bonfante, P. Native soils with their microbiotas elicit a state of alert in tomato plants.
New Phytol. 2018, 220, 1296–1308. [CrossRef]

12. Chialva, M.; Zhou, Y.; Spadaro, D.; Bonfante, P. Not only priming: Soil microbiota may protect tomato from
root pathogens. Plant Signal. Behav. 2018, 13, e1464855. [CrossRef] [PubMed]

13. Poli, A.; Lazzari, A.; Prigione, V.; Voyron, S.; Spadaro, D.; Varese, G.C. Influence of plant genotype on the
cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol. 2016, 120, 862–872.
[CrossRef] [PubMed]

14. Voyron, S.; Ercole, E.; Ghignone, S.; Poli, A.; Spadaro, D.; Bonfante, P.; Girlanda, M. Plant Genotype Control
over the Recruitment of the Tomato Fungal Microbiota. In Proceedings of the Ecology of Soil Microorganisms,
Prague, Czech Republic, 29 November–3 December 2015; p. 175.

15. Leinonen, R.; Sugawara, H.; Shumway, M. International Nucleotide Sequence Database Collaboration The
Sequence Read Archive. Nucleic Acids Res. 2011, 39, D19–D21. [CrossRef] [PubMed]

16. Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.;
Aoki, K.; et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012,
485, 635–641.

17. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. 2014, 15, 550. [CrossRef] [PubMed]

18. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2019.

19. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics
2014, 30, 2114–2120. [CrossRef]

20. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.
STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

http://dx.doi.org/10.1016/j.mib.2015.05.005
http://www.ncbi.nlm.nih.gov/pubmed/26048196
http://dx.doi.org/10.1128/mSphereDirect.00262-18
http://www.ncbi.nlm.nih.gov/pubmed/29875146
http://dx.doi.org/10.3389/fmicb.2018.00388
http://www.ncbi.nlm.nih.gov/pubmed/29599758
http://dx.doi.org/10.3389/fpls.2018.00004
http://dx.doi.org/10.1186/s40168-016-0219-5
http://dx.doi.org/10.1038/s41396-018-0342-3
http://dx.doi.org/10.1186/s12870-018-1602-0
http://dx.doi.org/10.1186/s40168-018-0434-3
http://dx.doi.org/10.1186/2049-2618-2-39
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1111/nph.15014
http://dx.doi.org/10.1080/15592324.2018.1464855
http://www.ncbi.nlm.nih.gov/pubmed/29701498
http://dx.doi.org/10.1016/j.funbio.2016.03.008
http://www.ncbi.nlm.nih.gov/pubmed/27268246
http://dx.doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pubmed/21062823
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/bioinformatics/bts635


Microorganisms 2020, 8, 38 15 of 16

21. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.
[CrossRef]

22. Kopylova, E.; Noe, L.; Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in
metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [CrossRef]

23. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13.
[CrossRef] [PubMed]

24. Pongor, L.S.; Vera, R.; Ligeti, B. Fast and Sensitive Alignment of Microbial Whole Genome Sequencing
Reads to Large Sequence Datasets on a Desktop PC: Application to Metagenomic Datasets and Pathogen
Identification. PLoS ONE 2014, 9, e103441. [CrossRef] [PubMed]

25. Dick, J.M. Calculation of the relative metastabilities of proteins using the CHNOSZ software package.
Geochem. Trans. 2008, 9, 10. [CrossRef] [PubMed]

26. Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.;
Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional
annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293.
[CrossRef] [PubMed]

27. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics
2010, 26, 841–842. [CrossRef]

28. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015,
12, 59–60. [CrossRef]

29. Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système
radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Physiological
and Genetical Aspects of Mycorrhizae, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France,
1–5 July 1985; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; Institut National de la Recherche Agronomique:
Paris, France, 1986; pp. 217–221.

30. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.;
Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package Version 2.5-6. 2019.
Available online: https://CRAN.R-project.org/package=vegan (accessed on 23 December 2019).

31. McMurdie, P.J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible.
PLoS Comput. Biol. 2014, 10, e1003531. [CrossRef]

32. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS 2012, 16, 284–287. [CrossRef]

33. Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd eds.; Sage: Thousand Oaks, CA, USA, 2019.
34. Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor

of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292.
35. Kruskal, W.H. A Nonparametric test for the Several Sample Problem. Ann. Math. Stat. 1952, 23, 525–540.

[CrossRef]
36. Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99–114. [CrossRef]
37. De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-1. 2019.

Available online: https://CRAN.R-project.org/package=agricolae (accessed on 23 December 2019).
38. Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [CrossRef]
39. Ogle, D.H.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R Package Version 0.8.26. 2019. Available

online: https://github.com/droglenc/FSA (accessed on 23 December 2019).
40. Derksen, S.; Keselman, H.J. Backward, forward and stepwise automated subset selection algorithms:

Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [CrossRef]
41. Dray, S.; Blanchet, G.; Borcard, D.; Guenard, G.; Jombart, T.; Larocque, G.; Legendre, P.; Madi, N.; Wagner, H.H.

Adespatial: Multivariate Multiscale Spatial Analysis. R package Version 0.3-7. 2019. Available online:
https://CRAN.R-project.org/package=adespatial (accessed on 23 December 2019).

42. Xiong, X.; Frank, D.N.; Robertson, C.E.; Hung, S.S.; Markle, J.; Canty, A.J.; McCoy, K.D.; Macpherson, A.J.;
Poussier, P.; Danska, J.S.; et al. Generation and Analysis of a Mouse Intestinal Metatranscriptome through
Illumina Based RNA-Sequencing. PLoS ONE 2012, 7, e36009. [CrossRef] [PubMed]

43. Westreich, S.T.; Korf, I.; Mills, D.A.; Lemay, D.G. SAMSA: A comprehensive metatranscriptome analysis
pipeline. BMC Bioinform. 2016, 17, 399. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/bts611
http://dx.doi.org/10.1093/nar/gkx1095
http://www.ncbi.nlm.nih.gov/pubmed/29140470
http://dx.doi.org/10.1371/journal.pone.0103441
http://www.ncbi.nlm.nih.gov/pubmed/25077800
http://dx.doi.org/10.1186/1467-4866-9-10
http://www.ncbi.nlm.nih.gov/pubmed/18834534
http://dx.doi.org/10.1093/nar/gkv1248
http://www.ncbi.nlm.nih.gov/pubmed/26582926
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1038/nmeth.3176
https://CRAN.R-project.org/package=vegan
http://dx.doi.org/10.1371/journal.pcbi.1003531
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.1214/aoms/1177729332
http://dx.doi.org/10.2307/3001913
https://CRAN.R-project.org/package=agricolae
http://dx.doi.org/10.1080/00401706.1964.10490181
https://github.com/droglenc/FSA
http://dx.doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://CRAN.R-project.org/package=adespatial
http://dx.doi.org/10.1371/journal.pone.0036009
http://www.ncbi.nlm.nih.gov/pubmed/22558305
http://dx.doi.org/10.1186/s12859-016-1270-8
http://www.ncbi.nlm.nih.gov/pubmed/27687690


Microorganisms 2020, 8, 38 16 of 16

44. Danielsen, L.; Thürmer, A.; Meinicke, P.; Buée, M.; Morin, E.; Martin, F.; Pilate, G.; Daniel, R.; Polle, A.;
Reich, M. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal
root communities. Ecol. Evol. 2012, 2, 1935–1948. [CrossRef]

45. Palaniyandi, S.A.; Yang, S.H.; Zhang, L.; Suh, J.-W. Effects of actinobacteria on plant disease suppression and
growth promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [CrossRef]

46. Poomthongdee, N.; Duangmal, K.; Pathom-aree, W. Acidophilic actinomycetes from rhizosphere soil:
Diversity and properties beneficial to plants. J. Antibiot. 2015, 68, 106–114. [CrossRef]

47. Detheridge, A.P.; Brand, G.; Fychan, R.; Crotty, F.V.; Sanderson, R.; Griffith, G.W.; Marley, C.L. The legacy
effect of cover crops on soil fungal populations in a cereal rotation. Agric. Ecosyst. Environ. 2016, 228, 49–61.
[CrossRef]

48. Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.;
Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for Arabidopsis
root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [CrossRef]

49. Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.;
Engelbrektson, A.; Kunin, V.; Del Rio, T.G.; et al. Defining the core Arabidopsis thaliana root microbiome.
Nature 2012, 488, 86–90. [CrossRef]

50. Alabouvette, C.; Olivain, C.; L–Haridon, F.; Aimé, S.; Steinberg, C. Using strains of Fusarium oxysporum
to control Fusarium wilts: Dream or reality? In Novel Biotechnologies for Biocontrol Agent Enhancement and
Management; Vurro, M., Gressel, J., Eds.; NATO Security through Science Series; Springer: Dordrecht,
The Netherlands, 2007; pp. 157–177, ISBN 978-1-4020-5799-1.

51. Green, S.J.; Inbar, E.; Michel, F.C.; Hadar, Y.; Minz, D. Succession of Bacterial Communities during Early Plant
Development: Transition from Seed to Root and Effect of Compost Amendment. Appl. Environ. Microbiol.
2006, 72, 3975–3983. [CrossRef] [PubMed]

52. Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; Van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.;
DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the Rhizosphere Microbiome for
Disease-Suppressive Bacteria. Science 2011, 332, 1097–1100. [CrossRef] [PubMed]

53. Rosendahl, S. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol. 2008,
178, 253–266. [CrossRef] [PubMed]

54. Öpik, M.; Moora, M.; Liira, J.; Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal
communities in different ecosystems around the globe. J. Ecol. 2006, 94, 778–790. [CrossRef]

55. Teixeira, P.J.P.; Colaianni, N.R.; Fitzpatrick, C.R.; Dangl, J.L. Beyond pathogens: Microbiota interactions with
the plant immune system. Curr. Opin. Microbiol. 2019, 49, 7–17. [CrossRef]

56. Del Giorgio, P.A.; Cole, J.J. Bacterial Growth Efficiency in Natural Aquatic Systems. Annu. Rev. Ecol. Syst.
1998, 29, 503–541. [CrossRef]

57. Leimena, M.M.; Ramiro-Garcia, J.; Davids, M.; Van den Bogert, B.; Smidt, H.; Smid, E.J.; Boekhorst, J.;
Zoetendal, E.G.; Schaap, P.J.; Kleerebezem, M. A comprehensive metatranscriptome analysis pipeline and its
validation using human small intestine microbiota datasets. BMC Genom. 2013, 14, 530. [CrossRef]

58. Liao, W.; Ren, J.; Wang, K.; Wang, S.; Zeng, F.; Wang, Y.; Sun, F. Alignment-free Transcriptomic and
Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains. Sci. Rep.
2016, 6, 1–15. [CrossRef]

59. Zhang, J.; Liu, Y.-X.; Zhang, N.; Hu, B.; Jin, T.; Xu, H.; Qin, Y.; Yan, P.; Zhang, X.; Guo, X.; et al. NRT1.1B
is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 2019,
37, 676–684. [CrossRef]

60. Zgadzaj, R.; Garrido-Oter, R.; Jensen, D.B.; Koprivova, A.; Schulze-Lefert, P.; Radutoiu, S. Root nodule
symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial
communities. Proc. Natl. Acad. Sci. USA 2016, 113, E7996–E8005. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/ece3.305
http://dx.doi.org/10.1007/s00253-013-5206-1
http://dx.doi.org/10.1038/ja.2014.117
http://dx.doi.org/10.1016/j.agee.2016.04.022
http://dx.doi.org/10.1038/nature11336
http://dx.doi.org/10.1038/nature11237
http://dx.doi.org/10.1128/AEM.02771-05
http://www.ncbi.nlm.nih.gov/pubmed/16751505
http://dx.doi.org/10.1126/science.1203980
http://www.ncbi.nlm.nih.gov/pubmed/21551032
http://dx.doi.org/10.1111/j.1469-8137.2008.02378.x
http://www.ncbi.nlm.nih.gov/pubmed/18248587
http://dx.doi.org/10.1111/j.1365-2745.2006.01136.x
http://dx.doi.org/10.1016/j.mib.2019.08.003
http://dx.doi.org/10.1146/annurev.ecolsys.29.1.503
http://dx.doi.org/10.1186/1471-2164-14-530
http://dx.doi.org/10.1038/srep37243
http://dx.doi.org/10.1038/s41587-019-0104-4
http://dx.doi.org/10.1073/pnas.1616564113
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Material and Sequencing 
	Plant Transcriptome Analysis 
	Meta-Transcriptome Filtering and Annotation 
	Analysis of Arbuscular Mycorrhizal Colonization 
	Statistical Analysis 

	Results and Discussion 
	Reconstructing the Root-Associated Meta-Transcriptome from Host-Targeted RNA-seq Libraries 
	Tomato Root-Associated Active Microbiota Diversity Is Shaped by Both Soil Type and Host Genotype 
	Basal Microbial Metabolisms Are Detected in the Reconstructed Meta-Transcriptome 
	Linking the Meta-Transcriptome with the Host Transcriptome 

	Conclusions 
	References

