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Abstract: Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused
by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane,
which can result in reduced plant growth and plant death. In order to better understand the
molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic
study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant
(LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and
absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and
annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with
1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans
infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in
resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated.
One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were
upregulated, whereas the other half corresponded to downregulated proteins. The significantly
upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary
metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven
candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system,
glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified
based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new
light on the differential expression of proteins in sugarcane cultivars in response to infection by
X. albilineans. The identification of these genes provides important information for sugarcane variety
improvement programs using molecular breeding strategies.

Keywords: Saccharum spp.; leaf scald; Xanthomonas albilineans; comparative proteomics; iTRAQ;
disease resistance

1. Introduction

Sugarcane (Saccharum spp. hybrids) is an important food and bioenergy source and a significant
component of the economy in more than 100 countries in the tropics and subtropics [1]. Commercial
sugarcane cultivars (2n = 100–130) have a highly polyploid, aneuploid, heterozygous, and interspecific
genome. This genome is composed of about 80% of S. officinarum (2n = 80) chromosomes, 10–15% of
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S. spontaneum (2n = 40–128) chromosomes, and 5–10% recombinant chromosomes between those two
progenitors [2,3], thus providing major challenges for sugarcane omics researches [4]. A BAC (bacterial
artificial chromosome)-based monoploid genome sequence of cultivar R570 [5] and a genome sequence
of haploid S. spontaneum clone AP85–441 were recently reported [3]. These two genome sequences
included 25,316 and 35,525 protein-coding genes, respectively. A polyploid sugarcane genome sequence
of cultivar SP80–3280 from Brazil was also assembled, and this genome was composed of a gene space
of 373,869 putative genes [6]. These data provide important reference sequence information in the post
genomics era [4].

Because sugarcane is vegetatively propagated, the burden of certain viral and bacterial pathogens
can gradually increase and result in the degeneration of sugarcane cultivars [7,8]. Leaf scald caused
by Xanthomonas albilineans has been a destructive sugarcane disease in most sugarcane growing
countries [9–11]. This disease was limited to a few locations of China in the early 1980s, but it
recently spread to most sugarcane planting provinces of the country [10–12]. Sugarcane infection
by X. albilineans can result in high losses of cane tonnage and reduced juice quality in susceptible
varieties. Death of stalks and poor ratooning leads to removal of these varieties from commercial
production [9]. X. albilineans multiplies in the xylem and colonizes the entire sugarcane plant. Infected
plants of susceptible cultivars display symptoms such as white, narrow, and sharply defined leaf
stripes to complete necrosis and wilting of leaves, leading to plant death [13,14]. Management of leaf
scald includes planting pathogen-free seed cane and growing resistant cultivars [9].

The proteomic approach is a powerful tool for the identification of the functions of proteins
expressed during plant-pathogen interactions, and therefore for a better understanding of plant
immunity [15]. Investigating changes in the plant proteome, in contrast to the transcriptome, allows
identification of direct effectors of plant stress responses [16]. During the last decades, the most
frequently used proteomic approach was the two-dimensional gel (2-DE) technique, where differentially
expressed spots were excised and analyzed by diverse mass spectrometry (MS) methods [15,17].
More advanced protein quantification techniques have been developed using tandem mass tags
(TMTs) and isobaric tags for relative and absolute quantification (iTRAQ), resulting in more precise,
accurate, and reproducible measurements [18]. The amine specificity of iTRAQ reagents makes most
peptides in a sample amenable to this labeling strategy with no loss of information from samples
involving post-translational modifications, thus providing extra statistical validation within any given
experiment [19]. Recently, TMT/iTRAQ-based quantitative proteomics has been used for proteomic
identification and quantification in sugarcane developmental processes and response to abiotic and
biotic stresses [1].

iTRAQ quantitative proteomics has been applied to understand strategies (such as suppress/evade
defense mechanisms) during the interactions between sugarcane and Sporisorium scitamineum. In a
first study, 273 and 341 differentially expressed proteins (DEPs) were identified in two sugarcane
cultivars, “Yacheng05–179” (smut-resistant) and “ROC22” (smut-susceptible) [20]. Several of these
DEPs were found in the resistant cultivar such as β-1,3-glucanase, endo-1,4-β-xylanase, heat shock
proteins, peroxidase, pathogenesis-related protein 1 (PR1), and lectins, thus suggesting that they
may play a role in sugarcane smut resistance [20]. In another study, 209 and 125 DEPs were
identified in the smut resistant cultivar GT29 and the smut susceptible cultivar Yacheng 71–374,
respectively [21]. The photosynthesis pathway, reactive oxygen species (ROS), abscisic acid (ABA),
and calcium signal pathway related proteins were upregulated in both cultivars. Furthermore, more
DEPs were upregulated in GT29 than in Yacheng 71–374, suggesting that these DEPs may be involved
in resistance to the sugarcane smut pathogen.

The objective of this study was to determine quantitative proteome changes in sugarcane cultivars
LCP 85–384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald) using a high-throughput
iTRAQ-based technique. The identification of DEPs between these two cultivars after inoculation with
X. albilineans provided information regarding the molecular mechanisms involved in resistance of
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sugarcane to leaf scald. These data are also first clues for molecular breeding of sugarcane for resistance
to this disease.

2. Materials and Methods

2.1. Plant Growth and Inoculation with X. albilineans

Two sugarcane cultivars differing in resistance to leaf scald, LCP 85–384 (resistant) and ROC20
(susceptible) were used for inoculation with X. albilineans. LCP 85–384 originated from the Louisiana
State University Agricultural Center, Sugar Research Station (St. Gabriel, LA, USA) [22] and ROC20
was provided by the Taiwan Sugar Corporation (Taiwan, China) [23]. Young plants of the two cultivars
were grown in a climatic chamber at 28 ◦C with 60% humidity, and a 16/8 h (light/dark) photoperiod.
At the 3-5 leaf stage, and when the plant height was approximately 15-20 cm, they were inoculated
with X. albilineans strain Xa-FJ1 by cutting leaf blades at mid-length with sterilized scissors previously
dipped in a bacterial suspension of 108 CFU/mL of X. albilineans [10]. Control plants were inoculated
with sterile XAS liquid medium [24]. The leaf samples used to extract total proteins for iTRAQ analysis
were collected at 0 post-inoculation (hpi) (named R0_CK, and S0_CK for the resistant and susceptible
cultivar, respectively) and 48 hpi (named R48_Xa, and S48_Xa for the resistant and susceptible cultivar,
respectively). At each sampling time point, leaf tissue from six plants of each genotype were collected
and then divided into three aliquots. Thus, a total of 12 samples were immediately snap-frozen in
liquid nitrogen after sampling and stored at −80 ◦C until protein extraction and iTRAQ analysis.

2.2. Quantification of Populations of X. albilineans in Inoculated Sugarcane Leaves

Population size of X. albilineans was determined in inoculated plants at 0 and 48 hpi using
a quantitative PCR (qPCR) assay developed by Garces et al. [25]. Briefly, leaf sampling was
identical to those for iTRAQ analysis and then total genomic DNA was extracted using the standard
CTAB protocol [10]. One microliter (µL) of total leaf DNA (100 ng/µL) and serial 10-fold dilutions
(107–10 copies/µL) of pMD-albI plasmid were used as qPCR templates [24]. Total DNA of a disease-free
sugarcane leaf and sterile distilled water were used as negative and blank controls, respectively. Three
biological replicates and three technical replicates were used for all the samples.

2.3. Total Protein Extraction and Peptide Preparation

To extract total proteins, frozen samples were individually ground into powder in a pre-chilled
mortar with liquid nitrogen. The powder was mixed with lysis buffer containing 50 mM Tris-HCl
(pH 8), 8 M Urea and 0.2% SDS. The homogenate was incubated with an ultrasonic homogenizer
(JY92-IIDN, Ningbo, China) (power 150 W) on ice for 5 min and then centrifuged at 12,000× g for
15 min at 4 ◦C The ~700 µL supernatant was transferred to a new 1.5 mL centrifuge tube. Then, 7 µL
2 mM dithiothreitol was added and samples were incubated at 56 ◦C for 1 h, followed by addition
of sufficient iodacetic acid to the sample and an additional incubation for 1 h at 25 ◦C in the dark.
Cold acetone (four-fold volume of supernatant) was added to the sample and vortexed vigorously
for ~10 s before placing samples overnight at −20 ◦C. The samples were centrifuged at 12,000× g for
15 min at 4 ◦C and the pellets were washed twice with cold acetone. Finally, the pellets were dissolved
using dissolution buffer containing 0.1 M triethylammonium bicarbonate (TEAB, pH 8.5) and 8 M urea.
Protein concentration was determined with the Bradford assay [26]. The supernatant of each sample
containing precisely 0.1 mg of protein was digested with Tripsin Gold (Promega, Madison, WI, USA)
at 37 ◦C for 16 h. The proteins were dried by vacuum centrifugation at 1000 rpm for 2 h after removal
of the urea using a C18 desalting cartridge (3M Corporation, Saint Paul, MI, USA).

2.4. iTRAQ Labeling of Peptides

The desalted peptides were labeled with iTRAQ reagents (iTRAQ® Reagent-8PLEX Multiplex
Kit, Sigma-Aldrich, Shanghai, China), following the manufacturer’s instructions. For each 0.1 mg of
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peptide, 1 unit of labeling reagent was used. Peptides were dissolved in 20 µL of 0.5 M TEAB and the
labeling reagent was added to 70 µL of isopropanol. After incubation for 1 h, the reaction was stopped
with 50 mM Tris-HCl (pH 8.0). Differentially labeled peptides were mixed equally and then desalted
using peptide desalting spin columns (89852; ThermoFisher Scientific, Waltham, MA, USA).

2.5. High-Performance Liquid Chromatography (HPLC) Fractionation

One mL TMT-labeled peptide mix was fractionated in a Waters BEH C18 column (4.6 mm ×
250 mm, 5 µm) on a Rigol L3000 HPLC (Changping, Beijing, China) operating at 1 mL/min. The
column oven temperature was set at 50 ◦C. Mobile phases A (2% acetonitrile, adjusted to pH 10.0 with
ammonium hydroxide) and B (98% acetonitrile, adjusted to pH 10.0 with ammonium hydroxide) were
used to obtain a gradient elution. The solvent gradient was set as follows: 3% B, 5 min; 3–8% B, 0.1 min;
8–18% B, 11.9 min; 18–32% B, 11 min; 32–45% B, 7 min; 45–80% B, 5 min; 80–5%, 0.1 min; 5% B, 6.9 min.
The tryptic peptides were monitored under UV light and 214 nm wavelength. Eluent was collected
every minute and then merged to 10 fractions. The samples were vacuum-dried and reconstituted in
0.1% (v/v) aqueous formic acid (FA) in water for subsequent analyses. Three biological replicates were
prepared for all the samples.

2.6. Liquid Chromatography Mass Spectrometry (LC-MS/MS) Analysis

Shotgun proteomics analyses were performed using an EASY-nLCTM 1200 UHPLC system (Thermo
Fisher Scientific, Waltham, MA, USA) coupled to an Orbitrap Q Exactive HF-X mass spectrometer
(ThermoFisher, Scientific, Waltham, MA, USA) operating in the data-dependent acquisition (DDA)
mode. Two micrograms of total peptides reconstituted in 0.1% (v/v) FA were injected into an Accelaim
PepMap100 C18 Nano-Trap column (2 cm × 150 µm, 5 µm). Peptides were separated on a Reprosil-Pur
120 C18-AQ analytical column (15 cm × 150 µm, 1.9 µm), using a 60 min linear gradient from 5 to 100%
eluent B (0.1% FA in 80% acetonitrile (CAN)) in eluent A (0.1% FA in H2O) at a flow rate of 600 nL/min.
The solvent gradient was set as follows: 6−12% B, 2 min; and 12−35% B, 50 min; 35−50% B, 2 min;
50−100% B, 1 min; and 100% B, 5 min. Three biological replicates were prepared for all the samples.

For DDA, the Q-Exactive HF-X mass spectrometer was operated in positive polarity mode with
a spray voltage of 2.3 kV and a capillary temperature of 320 ◦C. Full MS scans from 350 to 1500 m/z
were acquired at a resolution of 60,000 (at 200 m/z) with an automatic gain control (AGC) target
value of 3 × 106 and a maximum ion injection time of 20 milliseconds (ms). From the full MS scan,
a maximum number of 40 of the most abundant precursor ions were selected for higher-energy
collisional dissociation (HCD) fragment analysis at a resolution of 15,000 (at 200 m/z) with an automatic
gain control (AGC) target value of 1 × 105, a maximum ions injection time of 45 ms, a normalized
collision energy of 32%, an intensity threshold of 8.3 × 103, and the dynamic exclusion parameter set at
60 s.

2.7. Data Quality Control

The raw data obtained from MS detection were uploaded directly into proteome discovery v.
2.2 (Thermo Fisher Scientific, Waltham, MA, USA) software for database retrieval, peptide mapping
and protein quantification. The retrieved results were filtered using proteome Discoverer v. 2.2.
Peptide Spectrum Matches (PSMs) with 95% confidence intervals. Proteins containing at least one
unique peptide fragment were considered reliable. The reliable PSMs and proteins were verified
with other reliable proteins. Peptide fragments and proteins with false discovery rates (FDR) of >5%
were excluded. The protein sequences of sugarcane infected by X. albilineans were deposited into the
United States National Center for Biotechnology Information (NCBI) SRA database under accession
number PXD015930.
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2.8. Database Search and Quantitative Proteomic Analysis

The gene ontology (GO) (http://www.geneontology.org), KEGG (http://www.genome.jp/kegg/),
cluster of orthologous groups of proteins (COG) (http://www.ncbi.nlm.nih.gov/COG/), and other
databases were used to annotate the identified proteins. GO annotation included the analysis of
identified proteins with InterProScan v. 5.22–61.0 (European Bioinformatics Institute, Cambridge,
UK) and databases Pfam (http://pfam.sanger.ac.uk/), ProPrInt (http://crdd.osdd.net/raghava/

proprint/), ProDom (http://prodom.prabi.fr/prodom/current/html/home.php), SMART (http://smart.
embl.de/), ProSite (https://prosite.expasy.org/doc/PS51082) and PANTHER (http://www.pantherdb.org/).
The KEGG and COG annotations were used in a BLAST comparison (E-value ≤ 10−4) of the verified
proteins, and proteins with the highest scores were annotated. InterPro (IPR) also included the use of
InterProScan software [27] with the Pfam, ProDom, and SMART domain databases. IPR was conducted
with unknown proteins using their pattern structure or characteristics.

Proteome Discoverer v. 2.2 software was used to acquire the relative quantitative values of the
PSMs of all samples. The values were based on the peak area of the plot generated by the original
spectrograph. The relative quantitative values of the unique peptide fragments determined following
calibration were obtained based on the quantitative data for all unique peptide fragments of each
protein. For the differential analysis of proteins, the mean quantitative value of all biological repeats
of each sample was used to calculate the ratio (fold change) between two samples. To determine the
statistical significance of the difference, a T-test was conducted on the relative quantitative value of
each protein for two samples to be compared. When the fold change (FC) was ≥ 1.5 and p ≤ 0.05,
protein expression was considered significantly increased (upregulated). When FC ≤ 0.67 and p ≤ 0.05,
protein expression was considered significantly decreased (downregulated). Among all identified
DEPs, protein–protein interactions (PPIs) were predicted in silico using software STRING v11.0.
(https://string-db.org/) [28]. The PPIs (more than two protein interactions) data that were highly
similar to sorghum proteins were retrieved and their networks were drawn using Cytoscape V3.6.1
(http://www.cytoscape.org/).

2.9. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was extracted with the TRIzol® Kit (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s recommendations. Quantitative real-time PCR (qRT-PCR) analysis of the seven
candidate genes was performed with the QuantStudio® Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA). The GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) gene was used as
the internal control. First-strand cDNA was synthesized from 1 µg of total RNA using the HiScript® III
RT SuperMix of the qPCR (+gDNA wiper) kit (Vazyme, Nanjing, China). The resulting cDNA was then
used for the qPCR assay with the ChamQTM Universal SYBR® qPCR Master Mix (Vazyme, Nanjing,
China) following the manufacturer’s instructions. All the primer pairs were designed with Beacon
Designer software v. 8.20 (Primer Biosoft International, Palo Alto, CA, USA) and the primer sequences
for each gene were listed in Supplementary Table S1. To confirm the specificity of the product and
to avoid the production of primer dimmers, a dissociation curve was designed after each qPCR run.
The 2−∆∆CT method was used to analyze the relative changes in expression of each gene [29]. Three
independent biological replicates (aliquots) and three replicates were set for each leaf tissue sample.

2.10. Statistical Analyses

The paired comparison T-test was used to determine if the differences between protein (log2

Fold Change) and transcriptional (2–∆∆CT) data of seven candidate genes at 48 hpi were significant.
A general linear model was fitted to all relative expression levels (2–∆∆CT) of each gene using the
one-way ANOVA procedure, and Student–Newman–Keuls (SNK) test was performed with the mean
values. All the statistical analyses were conducted with SAS version 8.1 (SAS Institute, Cary, NC, USA).

http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/COG/
http://pfam.sanger.ac.uk/
http://crdd.osdd.net/raghava/proprint/
http://crdd.osdd.net/raghava/proprint/
http://prodom.prabi.fr/prodom/current/html/home.php
http://smart.embl.de/
http://smart.embl.de/
https://prosite.expasy.org/doc/PS51082
http://www.pantherdb.org/
https://string-db.org/
http://www.cytoscape.org/
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3. Results

3.1. Pathogen Population Size in the Resistant and the Susceptible Sugarcane Cultivar after Inoculation with
X. albilineans

The population size of X. albilineans was six time higher in leaf scald susceptible cultivar ROC20
(mean of 611 copies of X. albilineans genome/µL) than in resistant cultivar LCP 85–384 (mean of
102 copies of X. albilineans genome/µL) at 48 hpi. No genome of X. albilineans was detected in the
control plants inoculated with sterile liquid medium (Ct values greater than 35).

3.2. Overview of Proteomic Profiling of Sugarcane Infected by X. albilineans

iTRAQ analysis revealed 574,559 and 548,154 total spectra, 21,703 and 19,350 unique peptides,
and 6126 and 5463 proteins for the non-infected control plants (R0_CK and S0_CK) and the plants
inoculated with X. albilineans (R48_Xa and S48_Xa), respectively. A total of 6891 proteins (at least
one unique peptide with > 95% confidence) were identified among all proteins from all samples
when screened against the Saccharum spp. unigene database (P101SC18020747-01) (Table 1). Among
those, 4295 proteins were annotated to 1099 GO terms after GO analysis. Among the 2231 proteins
annotated in the biological process category, most proteins were distributed into the oxidation-reduction
process (525 proteins, 24%), the metabolic process (280 proteins, 13%), proteolysis (163 proteins, 7%),
and the carbohydrate metabolic process (156 proteins, 7%). The 1015 proteins annotated in the cell
component category were distributed into 10 different subcellular locations: ribosome (150 proteins,
15%), membrane (144 proteins, 14%), intracellular (140 proteins, 14%), cytoplasm (128 proteins, 13%),
integral component of the membrane (100 proteins, 10%), nucleus (88 proteins, 9%), proteasome
core complex (24 proteins, 2%), photosystem II (23 proteins, 2%), photosystem II oxygen evolving
complex (21 proteins, 2%), and nucleosome (20 proteins, 2%) (Supplementary Figure S1). Among
the 2998 proteins annotated in the molecular function category, most proteins were attributed to the
following functions: ATP binding (516 proteins, 17%), protein binding (453 proteins, 15%), and nucleic
acid binding (230 proteins, 8%) (Supplementary Figure S1). Using the KEGG pathway analysis, 2740
proteins were annotated in 107 pathways such as carbohydrate metabolism, translation, and amino
acid metabolism, etc. (Supplementary Figure S2).

Table 1. Statistics of the proteins identified by iTRAQ in two sugarcane cultivars inoculated with
Xanthomonas albilineans (LC P85–384 resistant and ROC20 susceptible to leaf scald).

Run Name a Total Spectra Number of Peptides Number of Proteins

Run1 574,559 21,703 6126
Run2 548,154 19,350 5463
All 6891

a Run1 included one mixed sample (reference) and six samples from plants of resistant cultivar LCP 85–384 (3
aliquots: R0_CK1, R0_CK2, R0_CK3) and susceptible cultivar ROC20 (S0_CK1, S0_CK2, S0_CK3) inoculated with
pathogen-free culture medium; Run2 included one mixed sample (reference) and six samples from plants of resistant
cultivar LCP 85–384 (R0_Xa1, R0_ Xa2, R0_ Xa3) and susceptible cultivar ROC20 (S0_ Xa1, S0_ Xa2, S0_ Xa3)
inoculated with X. albilineans.

3.3. Identification of Differentially Expressed Proteins (DEPs) in Response to X. albilineans Infection

A total of 285 DEPs were identified for the two sugarcane cultivars after inoculation with
X. albilineans and based on a p value ≤ 0.05 and an expression change ≥ 1.5 (up-regulation) or
≤ 0.67 (down-regulation) (Supplementary Figure S3). Among those, 164 DEPs were upregulated
(Supplementary Table S2) and 123 DEPs were downregulated (Supplementary Table S3). For resistant
cultivar LCP 85–384, 172 DEPs were found after inoculation with X. albilineans (R48_ vs. R0_CK) and
among those, 113 were upregulated and 59 were downregulated. For susceptible cultivar ROC20,
192 DEPs were identified after inoculation with the pathogen (S48_Xa vs. S0_CK), and the same number
of DEPs (96) was upregulated and downregulated (Figure 1A). Seventy-nine DEPs were shared by
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both cultivars. Among those, 45 were upregulated and 32 were downregulated, whereas two proteins
(Cluster-4871.159982 and Cluster-4871.183445) were upregulated in LCP 85–384 but downregulated in
ROC20 (Figure 1B).
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Figure 1. (A) Venn diagram of the 285 differentially expressed proteins (DEPs) and (B) heat map
of expression changes (average of three biological replicates) of 79 common DEGs identified in two
sugarcane cultivars inoculated with Xanthomonas albilineans. LC P85–384 is resistant to leaf scald and
ROC20 is susceptible to the disease. The number of statistically significant DEPs was based on a p value
≤ 0.05 and a fold change of protein expression ≥ 1.5 (upregulation) or ≤ 0.67 (downregulation). The
total numbers of DEPs for each treatment are shown outside the circles and the numbers of DEPs
exclusively expressed in one treatment are shown in each circle. The overlapping section of two-four
circles represents the common DEPs between all treatments: upregulated DEPs in R48_Xa vs. R0_CK
(in blue), downregulated DEPs in R48_Xa vs. R0_CK (in yellow), upregulated DEPs in S48_Xa vs.
S0_CK (in pink), downregulated DEPs in S48_Xa vs. S0_CK (in green). R0_CK = cultivar LCP85–384
inoculated with sterile liquid medium, R48_Xa = cultivar LCP85–384 inoculated with X. albilineans,
S0_CK = cultivar ROC20 inoculated with sterile liquid medium, S48_Xa = cultivar ROC20LCP85–384
inoculated with X. albilineans The red scale color in (B) is associated with upregulation whereas the
blue scale color corresponds to downregulation.

3.4. Gene Annotation of DEPs

Seventy-six of the 285 DEPs identified by GO enrichment analysis were attributed to 21 functional
groups. The most significantly enriched GO terms (>5 DEPs) in the library of resistant cultivar LCP
85–384 (R48_Xa vs. R0_CK) included “response to stimulus (GO:0050896)” and “response to oxidative
stress” (GO:0006979) of the biological process category, as well as “heme binding (GO:0020037)” and
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“peroxidase activity” (GO:0004601) of the molecular function category (Figure 2). For the library
of susceptible cultivar ROC20 (S48_Xa vs. S0_CK), the most significantly enriched GO terms (>5
DEPs) were “hydrolase activity, acting on ester bonds (GO:0016788)” of the molecular function
category and “cellular component organization or biogenesis (GO:0071840)” of the biological process
category. The DEPs that corresponded to the most significantly enriched GO terms in LCP 85–384
were upregulated proteins, whereas those in ROC20 were downregulated proteins (Supplementary
Figure S4).
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Figure 2. Gene ontology (GO) classification of significantly upregulated (A) and downregulated (B)
differentially expressed proteins (DEPs) in sugarcane cultivar LCP 85–384 inoculated with Xanthomonas
albilineans (R48_Xa vs. R0_CK). LCP 85–384 is resistant to leaf scald. DEPs were annotated with
a GO term belonging to one of three biological process categories: biological process (BP, in pink
color), molecular function (MF, in blue color), and cellular component (CC, in green color). The X-axis
represents the p-value and Y-axis shows the GO term names.

3.5. Functional Classification of DEPs by KEGG Analysis

Most proteins identified by KEGG analysis were involved in metabolic pathways (map01100) of
the two sugarcane cultivars (Supplementary Table S4). Proteins involved in biosynthesis of secondary
metabolites (map01110) were significantly upregulated in resistant cultivar LCP 85–384 (Supplementary
Table S4). Some amino acid metabolism pathways (map00250 and map00270), purine and pyrimidine
metabolism pathways (map00230 and map00240), and amino sugar and nucleotide sugar metabolism
(map00520) were significantly enriched in both cultivars (Table 2). Proteins associated with defense
response pathways were essentially expressed in the leaf scald resistant cultivar (LCP 85–384) and
included DEPs associated with phenylpropanoid biosynthesis pathway (map00940), ubiquitin mediated
proteolysis (map04120), and glutathione metabolism (map00480) (Supplementary Table S4). Two
photosynthesis-related pathways were also involved in the response of sugarcane to X. albilineans
infection: photosynthesis pathway (ko00195) and photosynthesis-antenna proteins pathway (ko00196)
(Table 2).
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Table 2. Number of differentially expressed proteins (DEPs) in major KEGG pathways identified in two sugarcane cultivars LCP 85–384 (resistant to leaf scald) and
ROC20 (susceptible to leaf scald) after inoculation with Xanthomonas albilineans a.

Pathway ID Pathway Name R48_Xa vs. R0_CK S48_Xa vs. S0_CK

Upregulation Downregulation Upregulation Downregulation

ko01100 Metabolic pathways 27 0 24 11
ko01110 Biosynthesis of secondary metabolites 16 0 13 0
ko00940 Phenylpropanoid biosynthesis 7 0 2 0
ko03013 RNA transport 4 0 0 0
ko00250 Alanine, aspartate and glutamate metabolism 3 1 3 0
ko00520 Amino sugar and nucleotide sugar metabolism 3 1 2 2
ko00630 Glyoxylate and dicarboxylate metabolism 3 0 0 0
ko00480 Glutathione metabolism 2 1 0 0
ko00561 Glycerolipid metabolism 2 0 1 0
ko03420 Nucleotide excision repair 2 0 1 0
ko00511 Other glycan degradation 2 0 2 0
ko04146 Peroxisome 2 0 2 0
ko00230 Purine metabolism 2 0 3 0
ko04120 Ubiquitin mediated proteolysis 1 1 2 0
ko00650 Butanoate metabolism 1 1 1 0
ko00195 Photosynthesis 1 2 0 1
ko04075 Plant hormone signal transduction 1 0 1 0
ko00640 Propanoate metabolism 1 0 2 0
ko00280 Valine, leucine and isoleucine degradation 2 0 1 0
ko00920 Sulfur metabolism 0 2 0 3
ko03010 Ribosome 0 4 0 2
ko00270 Cysteine and methionine metabolism 0 2 0 1
ko01230 Biosynthesis of amino acids 0 0 0 3

a Only showing the KEGG pathways with ≥ 3 DEPs. R48_Xa (LCP 85–384) and S48_Xa (ROC20) correspond to leaves inoculated with X. albilineans and R0_CK (LCP 85–384) and S0_CK
(ROC20) correspond to leaves inoculated with sterile liquid medium.
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3.6. Protein–Protein Interactions (PPIs) Network Predicted in the STRING Database

The STRING database is a large repository of protein–protein interaction networks, including
functional interactions, regulatory interactions, and stable complexes of proteins. The PPIs of the
285 sugarcane DEPs were identified by submitting a protein query sequence in the search box of the
database. Ninety-two DEPs interacted with each other in the two varieties inoculated with X. albilineans.
Among those, 51 DEPs (36 upregulated and 15 downregulated) were found in LCP 83–384 whereas
61 DEPs (29 upregulated and 32 downregulated) were found in ROC20 (Figure 3). A majority of
these proteins were enriched in the metabolic (ko01100), the biological secondary metabolic (ko01110),
glutathione (ko00480) and glycolysis/gluconeogenesis pathways (ko00010).
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Figure 3. Illustration by STRING analysis of protein–protein interactions (PPIs) networks in sugarcane
cultivars LCP85–384 (A) and ROC20 (B) inoculated with X. albilineans. Blue lines connect proteins of
the PPI networks and the darker blue colors indicate higher core PPI values. The red and green colors
indicate the upregulated and downregulated DEPs, respectively. Darker colors of circles are related
to higher log2 Fold Change values of DEPs. The protein IDs were listed in Supplementary Tables S2
and S3.

3.7. Identification of Plant Defense Genes Triggered by Colonization of Sugarcane by X. albilineans

To further characterize the DEPs attributed to defense-related pathway categories in LCP 85–384
or ROC20, 35 representative DEPs from these categories were selected for further characterization,
including phenylpropanoid biosynthesis (nine DEPs), ubiquitin mediated proteolysis (four DEPs),
glutathione metabolism (three DEPs), MAPK signaling pathway (one DEP), zeatin biosynthesis
(one DEP), pantothenate and CoA biosynthesis (one DEP) (Supplementary Table S5). Proteins
related to defense response pathways were upregulated in the two cultivars, particularly in LCP
85–384. Of nine upregulated DEPs of the phenylpropanoid biosynthesis pathway (map00940),
seven and two proteins were expressed in LCP 85–384 and ROC20, respectively (Supplementary
Table S5 and Figure 4). Of the four DEPs involved in ubiquitin mediated proteolysis (ko04120),
one protein (ubiquitin-activating enzyme E1, Cluster-4871.278138) was upregulated whereas one
protein (unidentified protein, Cluster-4871.291736) was downregulated in LCP 85–384, and two
proteins (a hypothetical protein, Cluster-4871.231017 and an unidentified protein, Cluster-4871.173568)
were upregulated in ROC20. In the glutathione metabolism pathway (ko00480), two proteins
(unidentified protein, Cluster-4871.341601; hypothetical protein, Cluster-4871.292606) were upregulated
and one protein (unknown [Zea mays], Cluster-4871.237470) was downregulated in LCP 85–384.
The serine/threonine-protein kinase SAPK2-like isoform (Cluster-4871.243737) involved in the
MAPK signaling pathway (ko04016) was upregulated, whereas the cis-zeatin O-glucosyltransferase
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(Cluster-4871.308103) of the zeatin biosynthesis pathway (ko00908), as well as a hypothetical protein
(Cluster-4871.148300) of pantothenate and CoA biosynthesis (ko00770) pathway, were downregulated
in LCP 85–384 and ROC20 (Supplementary Table S5 and Figure 4).
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Figure 4. Hierarchical clustering of 35 differentially expressed proteins (DEPs) enriched in different
plant-defense related pathways of two sugarcane cultivars inoculated with Xanthomonas albilineans.
Data were recorded 48 h post inoculation: R48_Xa vs. R0_CK for LCP 85–384 (resistant to leaf scald)
and S48_Xa vs. S0_CK for ROC20 (susceptible to leaf scald). (A) phenylpropanoid biosynthesis
(ko00940); (B) ubiquitin mediated proteolysis (ko04120), (C) photosynthesis (ko00195), (D) glutathione
metabolism (ko00480), (E) other pathways including MAPK signaling pathway-plant (ko04016),
photosynthesis-antenna proteins (ko00196), zeatin biosynthesis (ko00908), pantothenate and CoA
biosynthesis (ko00770). Colored boxes in each column represent a relative expression of protein (log2

Fold Change from −1.5 to +1.5).

3.8. Transcript Profiling of Seven Selected Genes by qRT-PCR

Seven candidate genes were selected for further investigation of their transcript profiling because
the DEPs encoded by these genes were involved in two main KEGG pathways and five important
disease-resistance gene families (Supplementary Table S1). The transcription level of these seven genes
was determined by qRT-PCR analysis at 0 and 48 hpi. The PCR amplification efficiency of the seven
genes ranged from 98% to 101%. Relative expression between protein levels (log2 Fold Change) and
transcriptional levels (2–∆∆CT) of these genes at 48 hpi was not significantly different according to the
paired comparison T-test (p-values ranged from 0.1678 to 0.2172) (Figure 5).
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The psaA gene was also significantly highly expressed (p < 0.05), with a fold change of 2.1 in LCP 85–384. 
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Figure 5. Relative expression levels (values in boxes) of seven sugarcane genes based on iTRAQ (log2

Fold Change) and qRT-PCR (2–∆∆CT) data of two cultivars inoculated with Xanthomonas albilineans. Data
were recorded at 48 h post inoculation: R48_Xa for leaf scald-resistant cultivar LCP 85–384 and S48_Xa
for leaf scald-susceptible cultivar ROC20. The paired comparison T-test was used to determine if
differences between iTRAQ (log2 Fold Change) and qRT-PCR (2–∆∆CT) data were significant at p = 0.05.

Four genes were highly expressed in the leaf scald resistant and susceptible cultivars as compared
to the pathogen-free control plants: GAPC3 coding for the cytosolic glyceroldehyde-3-phosphate
dehydrogenase, UGT coding for the UDP-glycosyltransferase, nsLTP coding for the non-specific lipid
transfer protein, and UBA1 coding for the ubiquitin-activating enzyme E1 (Figure 6). Three genes
coding respectively for the photosystem I P700 apoprotein A1 (psaA, Cluster-4871.13787), a non-specific
lipid-transfer protein (nsLTP, Cluster-4871.183445), and the ubiquitin-activating enzyme E1 (UBA1,
Cluster-4871.278138) were all downregulated in ROC20 in comparison to pathogen-free control
plants. The UDP-glycosyltransferase (UGT, Cluster-4871.235701) and nsLTP gene (Cluster-4871.183445)
were highly upregulated (p < 0.01) in resistant cultivar LCP 85–384 with 3.5- and 9.9-fold changes,
respectively. The psaA gene was also significantly highly expressed (p < 0.05), with a fold change of
2.1 in LCP 85–384. The genes coding for cytochrome P450 (P450, Cluster-4871.249909), the cytosolic
glyceroldehyde-3-phosphate dehydrogenase (GAPC3, Cluster-4871.143463), and the argonaute family
protein (AGO, Cluster-4871.119964) were significantly upregulated with 5.3-, 1.8-, and 1.7-fold change,
respectively, in ROC20. The UBA1 (Cluster-4871.278138) gene was significantly upregulated with
a 1.7-fold change in LCP 85–384 and was almost not expressed in ROC20 after inoculation with
X. albilineans (Figure 6).
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Figure 6. Relative expressions of seven differentially expressed proteins (DEPs) identified in leaves of
two sugarcane cultivars inoculated with Xanthomonas albilineans. LCP 85–384 is resistant to leaf scald
and ROC20 is susceptible to the disease. Gene expression was determined by qRT-PCR analysis at
0 and 48 h after plant inoculation. R0_CK (LCP 85–384) and S0_CK (ROC20) were inoculated with
sterile liquid medium and R48_Xa and S48_Xa were inoculated with X. albilineans. Each column
represents the mean value of three aliquots from six pooled plants and three technical replicates. The
vertical bar at the top of each column is the standard error of the mean. Differences in gene expression
for each gene and each cultivar were analyzed using the Student–Newman–Keuls test (* = p < 0.05;
** = p < 0.01). psaA = photosystem I P700 apoprotein A1 (Cluster-4871.13787), GAPC3 = Cytosolic
glyceroldehyde-3-phosphate dehydrogenase (Cluster-4871.143463), UGT = UDP-glycosyltransferase
(Cluster-4871.235701), nsLTPs = non-specific lipid transfer protein (Cluster-4871.183445), P450 = plant
cytochrome P450 72A15 (Cluster−4871.249909), AGO = argonaute family protein (Cluster-4871.119964),
UBA1 = ubiquitin-activating enzyme E1 (Cluster-4871.278138).
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4. Discussion

4.1. Overall Assessment of DEPs Involved in Response to X. albilineans Infection

This comparative proteomic study using the iTRAQ technique resulted in identification of 4295
proteins involved in response of sugarcane to infection by X. albilineans. More than 500 of these
proteins were attributed to the oxidation-reduction process (biological process category) and ATP
binding (molecular function category), while most of the predicted proteins were annotated as proteins
of carbohydrate metabolism, as well as translation and amino acid metabolism pathways. For the
leaf scald resistant cultivar LCP 85–384, 27 DEPs were enriched in metabolic pathways and 16 DEPs
were enriched in biosynthesis of secondary metabolites, indicating that metabolites play key roles in
sugarcane in response to X. albilineans infection. Large numbers of primary and secondary metabolites
play vital roles in plant defense mechanisms involving complex cascades [30–32]. Besides metabolic
pathways and the biosynthesis of secondary metabolites, infection of sugarcane by X. albilineans also
triggered plant-defense related pathways such as phenylpropanoid biosynthesis, ubiquitin mediated
proteolysis, glutathione metabolism, and photosynthesis. PPI network analysis also indicated that
these important pathways participate in sugarcane resistance and defense response during X. albilineans
infection. Indeed, the above-mentioned pathways are commonly activated in sugarcane in response to
various pathogens [1].

4.2. Regulation of Photosynthesis and Glycolytic Pathways of Sugarcane in Response to X. albilineans Infection

Generally, genes related to photosynthesis are downregulated as chlorotic and necrotic tissues
develop during infection of plants by pathogens [33,34]. However, in our study, the psaA1 gene
(Cluster-4871.13787) was significantly upregulated in the leaf scald resistant cultivar and only slightly
downregulated in the susceptible cultivar at protein and transcription levels. This suggested that
stimulation of the first step of photosynthesis occurs during the early stages of expression of sugarcane
lead scald resistance to allow efficient light-driven electron transport. Notably, psaA1 is one of PSI P700
apoproteins that are the primary electron donors of photosystem I (PSI) [35,36]. At the early stage (48 hpi)
of plant infection by X. albilineans, no white-pencil lines nor chlorotic symptoms appeared on the two
sugarcane cultivars. Similarly, the final receptors of electrons in light-dependent reactions (encoded by
the ferredoxin [2Fe-2S] and ferredoxin-DNADP+ reductase genes) were overproduced during infection
of sugarcane by Acidovorax avenae subsp. avenae [37]. Genes related to the photosynthesis-antenna
proteins were also upregulated in Cucumis sativus against Cucurbit chlorotic yellows virus infection [38].

GAPC3 is one of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene families which
play crucial roles in cellular processes [39]. In addition to being involved in glycolysis, GAPC is a
phosphorylating NAD-dependent GAPDH catalyzing the conversion of glyceraldehyde-3-P (Ga3P) to
1,3-bisphosphoglycerate in the cytoplasm [40]. In our study, GAPC3 (Cluster-4871.143463) was highly
expressed in both sugarcane cultivars but was upregulated in susceptible ROC20 at both protein and
transcription levels. This suggested that GAPC3 does not contribute to disease resistance but may favor
progress of the pathogen during plant colonization. Overexpression of MeGAPCs in cassava resulted
in decreased disease resistance against X. axonopodis pv manihotis, the causal agent of cassava bacterial
blight. In contrast, MeGAPCs-silenced cassava plants by virus-induced gene silencing conferred
improved disease resistance, as evidenced by physical interaction of MeGAPCs with autophagy-related
protein 8b (MeATG8b) and MeATG8e, and inhibition of autophagic activity [41].

4.3. Activation of Plant Innate Immune Systems in Sugarcane after Inoculation with X. albilineans

Ubiquitination is one of the posttranslational protein modifications governing plant immune
responses [42–44]. The process of ubiquitination involves covalent attachment of the highly
conserved small protein ubiquitin to substrate proteins through a stepwise enzymatic cascade.
The ubiquitin-activating enzyme (E1 or UBA) is one of three different catalytic enzymes that typically
catalyze at the initial step of ubiquitination [45,46]. In tobacco, the expression of NtUBA1 and
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NtUBA2 was regulated in response to viral infection, wounding, and defense-related hormones [47].
In Arabidopsis, enzyme E1 was involved in R-protein-mediated resistance [42]. Genome-wide analysis
of genes encoding core components of the ubiquitin system in soybean revealed that a large number
of UBS-related genes (including E1 gene GmUBA1) played a role in immunity against soybean cyst
nematode [48]. In our study, UBA1 was overexpressed in leaf scald resistant LCP 85–384 at protein
and mRNA levels, but highly repressed in susceptible ROC20, especially at transcription level. These
results indicated the UBA1 gene plays an active role in sugarcane in response to colonization by X.
albilineans.

RNA silencing plays a major role in regulating plant developmental processes and environmental
adaptation to diverse biotic and abiotic stresses through transcriptional gene silencing (TGS) and
post-transcriptional gene silencing (PTGS) [49]. In addition to a ribonuclease III-type dicer-like (DCL)
enzyme and RNA-dependent RNA polymerases (RDRs), an Argonaute (AGO) protein (catalytic core
in RNA-induced silencing complex (RISC) is also a core component of the RNA silencing process [50].
Of the 10 Arabidopsis AGO protein families, AtAGO4 participates in the repeat-associated siRNA
(ra-siRNA) pathway mediating methylation of DNA repeats [51,52]. This protein is also involved in
the miRNA pathway mediating gene expression, as evidenced by a subset of the miRNAs preferential
association with AtAGO4 [53,54]. AtAGO4 is required for the resistance of Arabidopsis to Pseudomonas
syringae and AGOs (including AGO4 protein) of Brassica napus are involved in plant resistance to the
necrotrophic fungal pathogen Sclerotinia sclerotiorum [55,56]. In our study, the sugarcane AGO gene
(a homologue of Zea mays AGO4, LOC100381552) was highly upregulated in the leaf scald resistant and
in the susceptible cultivar, but especially in ROC20. This indicated that the AGO4 protein was activated
in sugarcane during infection by X. albilineans. However, the molecular mechanisms involving AGO4
during the interactions between sugarcane and X. albilineans remain to be deciphered.

4.4. High Level Expression of the UDP-Glycosyltransferase in the Sugarcane Cultivar Resistant to Leaf Scald

The UDP-glycosyltransferase (UGTs; EC 2.4.1.91) catalyzes the transfer of sugar molecules to a
variety of acceptor molecules, such as hormones, lipids and other small molecules [57,58]. The glycoside
molecule then regulates the biological activity, water solubility and stability of receptors [57,59,60].
Up to now, 106 GT families have been identified in the carbohydrate-active enzyme database (CAZy;
http://www.cazy.org/). The largest of these families is GT Family 1 that comprises a large number of UGT
members [61,62]. UGTs play an important role in the regulation of plant hormone balance, detoxification
of endogenous and exdogenous substances, and modification of secondary metabolites [58,60]. Recently,
several studies suggested that the UDP-glycosyltransferase was positively regulated in plant species
in response to pathogens. For example, expression of TaUGT4 in wheat was higher in a Fusarium
head blight (FHB) resistant cultivar than in a susceptible one after treatment with deoxynivalenol
(DON) produced by Fusarium graminearum [63]. Wheat overexpressing TaUGT5 was also more resistant
to F. graminearum as evidenced by reduced proliferation and destruction of plant tissue by the
pathogen [64]. Gene HvUGT-10W1 from barley conferred resistance to FHB [65]. The overexpression
of the BnUGT74B1 gene in B. napus increased the aliphatic and indolic glucosinolates levels by a
factor 1.7 and 1.5 in leaves infected by Sclerotinia sclerotiorum and Botrytis cinerea, respectively [66].
BrUGT74B1 was also involved in phytoalexins biosynthesis which has an important role in plant
disease resistance [67].

In our study, a sugarcane UDP-glycosyltransferase (a homolog of UGT73C2 of A. thaliana)
was highly upregulated at 48 hpi in the resistant cultivar following inoculation by X. albilineans,
suggesting that this gene plays an important role during the defense of sugarcane against this pathogen.
The receptor molecules of sugarcane involved in the glycosylation process remain to be identified.
A primary response of sugarcane to Ustilago scitaminea infection appears to be the production of
glycoproteins inhibiting germination and inducing aggregation of fungal teliospores [68].

http://www.cazy.org/
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4.5. Different Expression Patterns of Plant Non-Specific Lipid Transfer Proteins (nsLTPs) in the Leaf Scald
Resistant and the Leaf Scald Susceptible Sugarcane Cultivar

nsLTPs are a group of small, basic proteins that are abundantly expressed in plants, having the
ability to bind or transfer various types of hydrophobic molecules in vitro, such as fatty acids, fatty
acyl-CoA, phospholipids, glycolipids, and cutin monomers [69,70]. nsLTPs are involved in key cellular
processes such as the stabilization of membranes, cell wall organization, and signal transduction,
in addition to responses to stress and developmental processes [70]. Notably, nsLTPs exhibit strong
antimicrobial activity in vitro and interfere with the membrane of target organisms, thus leading to the
loss of membrane integrity [70]. In our study, a sugarcane nsLTP gene (homolog of Zea may nsLTP I)
was strongly overexpressed in leaf scald resistant cultivar LCP 85–384 at both protein and transcription
levels, suggesting that this gene plays a positive role in resistance to X. albilineans. Similar observations
were reported in other plants in response to infection by various pathogens. For example, several
nsLTP isoforms of Trichoderma harzianum T39-treated grapevines increased after Plasamopara viticola
inoculation [71]; the early expression level of the nsLTP gene was significantly increased in wheat
infected by the rust pathogen Puccinia triticina before visible haustoria formation [72]. The nsLTP gene
is also involved in the priming acquisition at the early priming stage and memory in beta-aminobutyric
acid (BABA)-primed mango fruit after Colletotrichum gleosporioides inoculation [73]. These findings
provided additional proofs of participation of nsLTPs in the defense response of plants to pathogens.

4.6. Upregulation of the Plant Cytochrome P450 after Colonization of Sugarcane by X. albilineans

Plant P450s participate in a large number of primary and secondary metabolisms, including
the phenylpropanoid, flavonoid, cyanogenic glucoside, essential sterols and steroid hormones, and
other biosynthetic pathways which are thought to convey adaptive advantages in specific ecological
niches [74–77]. P450s acting on fatty acids (FA)-involved oxygenation reactions in plants is enhanced
by biotic and abiotic stress at the transcriptional level [78]. For example, CYP709C1 (a P450 protein)
was the first sub-terminal hydroxylase of long-chain FAs characterized in plants and its induction
by methyl jasmonate resulted in plant defense reaction [79]. The P450 protein CYP74 of A. thaliana
catalyzed the generation of oxylipins (jasmonates, aldehydes, divinyl ether, and alcohols) that acted as
not only signaling molecules, but also exhibited antimicrobial and antifungal properties [80]. Oxidation
of JA-isoleucine conjugate (JA-Ile) by cytochrome P450 monooxygenase is the major mechanism for
turning off JA signaling [81,82]. Jasmonates are lipid-derived compounds that act as signals in plant
stress responses and developmental processes [82,83].

In sugarcane, cytochrome P450 sequences have been annotated in the genome of S. spontaneum
AP85–441 [3,84]. A sugarcane P450 protein showed interaction activities with ScMat1, a putative
sugarcane transcription factor TFIIH subunit that has kinase activity [85]. Additionally, sugarcane gene
ScCPR450 was highly expressed at the mRNA level in plants under SA or PEG stresses, suggesting
that this gene plays a role in the response of sugarcane to stresses [86]. In our study, expression of a
sugarcane P450 gene (homolog of Setaria italica P450 72A15) was increased in the leaf scald resistant
and susceptible cultivars, particularly in the susceptible cultivar. A similar observation showed that
GbCYP86A1-1 positively regulated the defense of Gossypium barbadense against Verticillium dahliae by
cell wall modification and the activation of immune pathways [87]. However, the precise role of P450
proteins in sugarcane in response to pathogen infection remains to be determined.

5. Conclusions

This study provides the first global proteomic dataset of sugarcane in response to infection
by X. albilineans. The DEPs that were identified are predicted to be involved in metabolic
pathways and biosynthesis of secondary metabolites as well as some plant-defense related pathways,
such as phenylpropanoid biosynthesis and plant immune signal transduction. Seven candidate
genes coding for a UDP-glycosyltransferase, a non-specific lipid-transfer protein, an acytochrome
P450 protein, a cytosolic glyceroldehyde-3-phosphate dehydrogenase, an argonaute family protein,
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the ubiquitin-activating enzyme E1, and the photosystem I P700 apoprotein A1 (chloroplast) were
activated or repressed at the transcriptional level after inoculation with the leaf scald pathogen. These
genes are good candidates for further investigations of the pathways involved in the sugarcane response
to infection by X. albilineans.
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