1	Supplementary information
2	Understanding high-salt and cold adaptation of a polyextremophilic enzyme
3 4	Ram Karan ^{1*} , Sam Mathew ¹ , Reyhan Muhammad ² , Didier B. Bautista ¹ , Malvina Vogler ¹ , Romina Oliva ^{1,3} , Luigi Cavallo ¹ , Stefan T. Arold ^{2,4*} , Magnus Rueping ^{1*}
5 6	¹ King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia
7 8 9	² King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
10 11	³ Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
12	⁴ Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
13 14	*Corresponding author: Ram Karan, <u>ram.karan@kaust.edu.sa</u> , Stefan T. Arold <u>, stefan.arold@kaust.edu.sa;</u> Magnus Rueping, <u>magnus.rueping@kaust.edu.sa</u>
15	Index:
16	Table S1. Oligonucleotides used in this study
17	Table S2: Biochemical properties of crystalized β -galactosidases from GH42 family.
18	Table S3. β-galactosidase sequence identity matrix (Family 42)
19	Table S4. Structural homologs (DALI) of β -galactosidase from <i>Halorubrum lacusprofundi</i>
20	Table S5. Trends for halo-, psychro and thermoadaption compared mesophilic proteins
21 22	Table S6. Differences in residue RMSF values (Δ RMSF) between 47 and 10 °C for eight functionally relevant residues.
23	Figure S1. Shuttle vector for the expression of bga in Haloferax volcanii
24	Figure S2. X-gal hydrolysis
25 26	Figure S3. Coomassie and InVision His-tag In-gel stained SDS-PAGE, tryptic digest and LC-MS/MS analysis of β -galactosidase
27	Figure S4. MALDI-TOF analysis of purified β -galactosidase
28	Figure S5. Measured melting curve and fitting curve
29	Figure S6. Structural assessment of hla_bga homology model produced by Swiss Modeller

- 30 Figure S7. Sequence alignment based on Hidden Markov Model (HMM) profiles, obtained with HHPRED
- 31 Figure S8. β -D-galactose binding pocket.
- 32 Figure S9. Ratio of amino acids in hla_bga and its structural homologs
- 33 Figure S10. Superimposed β-Galactosidase monomers.
- Figure S11. Ratio of amino acids on the solvent-exposed surface in the hla_bga and its structuralhomologs.
- 36 Figure S12. Backbone RMSD plots over time for the three independent simulations of the three
- 37 investigated systems at the four explored temperatures (10, 27, 47 and 72 $^{\circ}$ C).
- 38 Figure S13. Effect of temperature on the hla_bga monomer and trimer backbone RMSD.
- Figure S14. RMSF values averaged over the last 20 ns of the three simulations ran for each investigated system at 10, 27, 47 and 72 °C.
- 41

42 Table S1. Oligonucleotides used in this study

43

Primer	5'-3'sequence	Use
7His.bga F	cggcccaacggttgattgcatatgcaccaccaccaccacca ccacATGCGTCTCGGAGTCTGTTAC	Inserting <i>bga</i> gene and 6His
7His.bga R	ggtcgactctagaactagtggatcCTACGTCTGAG CGATTCTC	
	CCACCACCATATGATGATG	
pTA693.F	GTTCGAACCGCCCTTTCC	Sequencing of bga gene
pTA693.R	ATGACCATGATTACGCCAAG	

44 45

- 46
- 47

- 50
- 51
- 52
- 53
- 54
- 55

Table 2: Biochemical properties of crystalized β-galactosidases from GH42 family.

57 58

58	
----	--

PDB ID	Organism	Туре	Temperature range, optima (°C)	pH range, optima	Salt range, optima (M)
^[1] hla_bga (current work)	Halorubrum lacusprofundi	Polyextremo philes	4-70, 50	6.0-8.0, 6.5	0.5-4.5, 4
^[2,3] 1KWG	Thermus thermophilus A4	Thermophile	40-90, 70	5.0-9.0, 6.5	-
^[4,5] 5E9A	Rahnella sp. R3	Psychrophile	4-45, 35	5.5-8.0, 6.5	-
^[6] 4UZS	Bifidobacterium bifidum S17	Mesophile	20-55, 40	4.0-8.0, 6.0	-
^[7] 3TTS	Bacillus circulans sp. alkalophilus	Mesophile	10-70, 55	4.5-10, 6.5	-
^[8,9] 40IF	Geobacillus stearothermophilus	Thermophile	30-80, 60	4.5-10, 6.0	-
[10]4UNI	Bifidobacterium animalis subsp. lactis B1-04	Mesophile	30–70, 37	4.0-10, 6.5	-
^[11] 5XB7	Bifidobacterium species	Mesophile	37	6.5	-
^[12] 6Y2K	Marinomonas ef1	Psychrophile	55	6.0	0-2.4

Salt range optima of β -galactosidases other than hla_bga and 6Y2K are not available.

	hla_bga	1KWG	6Y2K	4UNI	4UZS	3TTS	40IF	5E9A	5XB7	5VYM
11 1	100	10	4.1	20	20	20	20	20	26	24
nia_bga	100	46	41	29	29	29	29	28	26	24
1KWG	46	100	55	29	31	31	29	33	26	21
6Y2K	41	55	100	27	27	29	27	29	27	20
4UNI	29	29	27	100	62	33	30	30	24	30
4UZS	29	31	27	62	100	35	32	33	22	37
3TTS	29	31	29	33	35	100	40	46	24	27
40IF	29	29	27	30	32	40	100	49	23	25
5E9A	28	33	29	30	33	46	49	100	24	28
5XB7	26	26	27	24	22	24	23	24	100	23
5VYM	24	21	20	30	37	27	25	28	23	100

Table S3. β-galactosidase sequence identity matrix using Clustal Omega (Family 42)
 77

78 Halorubrum lacusprofundi, hla_bga; Bacillus circulans sp. Alkalophilus, 3TTS; Bifidobacterium animalis

rg subsp. lactis Bl-04, 4UNI; Bifidobacterium bifidum S17, 4UZS; Bifidobacterium adolescentis, 5VYM;

80 *Bifidobacterium* species, 5XB7; *Marinomonas* ef1, 6Y2K; *Rahnella* sp. R3, 5E9A; *Thermus thermophilus* 81 A4, 1KWG; *Geobacillus stearothermophilus*, 4OIF.

#	PDB ID	Organism	Туре	Z-score	Rmsd (A ^o)	Identity (%)
1	1KWK-A	Thermus thermophilus A4	Thermophile	47.1	1.5	46
2	1KWG-A	Thermus thermophilus A4	Thermophile	46.4	1.6	46
3	6Y2K-A	Marinomonas EF1	Thermophile	46.4	1.5	41
4	5E9A-A	Rahnella sp. R3	Psychrophile	41.3	1.8	28
5	4UCF-A	Bifidobacterium bifidum S17	Mesophile	40.6	2.2	29
6	4UZS-A	Bifidobacterium bifidum S17	Mesophile	40.3	2.3	29
7	3TTS-D	Bacillus circulans sp. alkalophilus	Mesophile	40.0	1.9	29
8	ЗТТҮ-Е	Bacillus circulans sp. alkalophilus	Mesophile	39.9	1.9	29
9	40IF-B	Geobacillus stearothermophilus	Thermophile	39.1	2.0	29
10	4UOZ-C	Bifidobacterium animalis subsp. lactis Bl-04	Mesophile	38.6	2.2	29

Table S4. Structural homologs (DALI) of β -galactosidase from Halorubrum lacusprofundi

101 102 Table S5. Trends for halo-, psychro-, and thermoadaption compared to mesophilic proteins

		hla_bga	Halophilic ¹	Psychrophile ²	Thermophilic ³
	pI	decreased	decreased	Decreased	slightly
					decreased
	Grand average hydrophobicity	increased	increased	Increased	increased
	Aliphatic amino acids (%)	decreased	slightly	slightly	increased
			increased	decreased	
S.	Positively charged amino acids, R, K	slightly	slightly	Decreased	increased
SA	and H (%)	increased	increased		
nal	Negatively charged amino acids, D	increased	increased	Decreased	increased
6 a	and E (%)				
nce	Small amino acids, G and A (%)	increased	increased	Decreased	decreased
ne	Hydrophobic residues, F, I, L, V, M	decreased	slightly	Increased	increased
ea	(%)		decreased		
S	Polar residues (%)	decreased	decreased	Increased	decreased
	Non-polar residues (%)	decreased	decreased	Decreased	slightly
					increased
	Aspartic acids (%)	decreased	decreased	Decreased	increased
	Glutamic acids (%)	increased	increased	slightly	increased
				increased	
	Aromatic residues (%)	increased	decreased	slightly	increased
				Increased	
	Proline amino acids (%)	increased	decreased	Decreased	decreased
	Arginine amino acids (%)	increased	increased	slightly	increased
	D 12 11 1	1 1	1 1	increased	. 1
	Positive residues among total number $f = f = \frac{1}{2} \left(\frac{1}{2} \right)^{1/2}$	decreased	decreased	slightly	increased
	of surface residues (%)	• 1	• 1	increased	• 1
	Negative residues among total	increased	increased	Increased	increased
Sis	number of surface residues (%)	h a a a a a d	de case o d	Increased	da ana a a d
alv	surface residues (%)	decreased	decreased	Increased	decreased
an	Non polar residues among total	dooroogad	dooroogod	Deersead	decreased
al	number of surface residues (%)	uecreaseu	uecteaseu	Decleased	uecteaseu
n L	Aromatic residues among total	decreased	decreased	slightly	increased
uc1	number of surface residues (%)	uccicascu	uccicaseu	increased	mercased
Str	Amino acids that form helices (%)	decreased	increased	increased	increased
	Amino acids that form strands (%)	decreased	decreased	decreased	increased
	Amino acids with bulky hydrophobic	decreased	decreased	increased	increased
	side chains (F I I) in the protein	uccicased	uccreased	mercused	mercused
	surface (%)				
	Hydrogen bonds (intra and inter)	increased	decreased	increased	decreased
	Salt bridges	increased	decreased	decreased	decreased

103 104 105 The thermophilic, psychrophilic, halophilic and mesophilic enzymes of varying length were used for the analysis which was reflected in the lower hydrogen bonds and salt bridges compared to hla_bga

[13][,][14][,][15].

106

107

Table S6. Differences in residue RMSF values (Δ RMSF) between 47 and 10 °C for eight functionally

relevant residues.

	Δ RMSF (Å) between 47 and 10 °C					
Residue ^a	Hla_bga	Mesophile (3TTS)	Thermophile (1KWG)			
R102	0.216	0.232	0.127			
N140	0.052	0.121	0.053			
E141	0.074	0.091	0.037			
Y266	0.059	0.276	0.047			
E312	0.036	0.196	0.074			
W320	0.261	0.556 ^b	0.436			
E360	0.396	0.367	0.187			
H363	0.222	0.484	0.221			
average	0.164	0.290	0.148			

^a Numbering from hla_bga, ^b Values above the threshold for significance (0.5 Å) indicated by Dong *et al.* 2018 for a similar temperature rise (15 to 42 °C) are in bold.

117 Figure S1. Shuttle vector for the expression of bga in Haloferax volcanii. The NdeI and BamHI

- restriction sites were used to introduce the bga gene.

Control

 β -galactosidase transformants

Figure S3. (A) Coomassie (left) and (B) InVision His-tag In-gel stained (right) SDS-PAGE of purified β -

130 galactosidase. The dominant band of β -galactosidase is visible at ~100 kDa. The protein was purified by 131 IMAC at high salt concentrations (2 M NaCl) including 10 % (v/v) glycerol. (B) Tryptic digest and LC-

132 MS/MS analysis of β -galactosidase. Sequence coverage: 70 %, matched peptides shown in **bold**.

148Figure S6. Structural assessment of the hla_bga homology model produced by SwissModeller [16]. (A)149Local quality estimates are shown for each amino acid position of the monomer chain A. The overall global150score of the homology model is 0.73 ± 0.05 , global score ranges between 0 to 1 method used was151QMEANDisco [16]. (B) Local quality scores shown on the structure model, red color indicates poor score152and blue color indicates good score. Pictures were derived from the server. (C) Modelled hla_bga, the153modelled loop regions not visible in the electron density are shown in magenta color.

161 162	T-Coffee	
163	Hla_bga	MRLGVCYFPEHWPSEEWERDVAAMADAGLEYVRMAEFSWGVLEPERGT
164	1KWG	M-LGVCYYPEHWPKERWKEDARRMREAGLSHVRIGEFAWALLEPEPGR
165	4UZS	LWYGGDYNPDQWPEEVWDDDIRLMKKAGVNLVSVGIFSWAKIEPEEGK
166	3TTS	IWYGGDYNPEQWDKATMEEDMRMFNLAGIDVATVNVFSWAKIQRDEVS
167	4UNI	IWFGADYNPDQWPEDVQDEDIRLMKQAGVNIVSLAIFSWANIETSDGN
168	5XB7	ILFGAAYYDEYIPRDLDRIDTDMEMMTRAGINVIRIGESTWSTCEPQPGH
169	40IF	ILHGGDYNPDQWLDRPDILQADLELMKLSHTNTFTVGVFAWSALEPEEGV
170	5E9A	LLHGADYNPEQWLDHPDVLVRDVEMMKEARCNVMSVGIFSWSALEPEEGR
171	6Y2K	MKLGVCYYPEHWPKSRWVEDAQHMRRIGIQYVRVGEFSWSTIEPTPGE
172		: * * : * : . : :*. :
173		
174	Hla_bga	FDFEWLDEAIELIGDHGMQAVLCTPTATPPKWLVDERPSIRQEDPDGTVR
175	1KWG	LEWGWLDEAIATLAAEGLKVVLGTPTATPPKWLVDRYPEILPVDREGRRR
176	4UZS	YDFDWLDRAIDKLGKAGIAVDLASATASPPMWLTQAHPEVLWKDERGDTV
177	3TTS	YDFTWLDDIIERLTKENIYLCLATSTGAHPAWMAKKYPDVLRVDYEGRKR
178	4UNI	FEFDWLDRVIDKLYKAGIAVDLASATASPPMWLTSAHPEVLRRDEQGHVI
179	5XB7	${\tt FDWTHIDRALDAATNAGINVIVGTPTYAVPTWLVAMYPDVLATTPAGEP-}$
180	40IF	YRFEWLDKVFDDIYRIGGRVILATPSGARPAWLSQKYPEVLRVNAARVRQ
181	5E9A	YTFDWMDQVLNRLHENGISVFLATPSGARPAWMSQKYPQVLRVGRDRVPA
182	6Y2K	LHWEWLDESLDILHSQGLKVILGTPTATPPKWLVDRHPSMLAKDEAGRVR
183		: :* : . : : : : * *: *.:
184		
185	Hla_bga	EHGS <mark>R</mark> RHYCFNSDAYREETARIVERVTERYADSPHVAGWQTD <mark>NE</mark> FGCHET
186	1KWG	RFGG <mark>R</mark> RHYCFSSPVYREEARRIVTLLAERYGGLEAVAGFQTD <mark>NE</mark> YGCHDT
187	4UZS	WPGA <mark>R</mark> EHWRPTSPVFREYALNLCRRMAEHYKGNPYVVAWHVS <mark>NE</mark> YGCHNR
188	3TTS	KFGG <mark>R</mark> HNSCPNSPTYRKYAKILAGKLAERYKDHPQIVMWHVS <mark>NE</mark> YGGY
189	4UNI	WPGA <mark>R</mark> QHWRPTSPTFRTYALRLCREMAEHYKDNPAIVSWHVG <mark>NE</mark> YGCHNY
190	5XB7	HYGA <mark>R</mark> QIMNIVNPAYRLYGERVIRSLISHVAQQPCVIGYQVD <mark>NE</mark> TKYYDS
191	40IF	LHGG <mark>R</mark> HNHCFTSSVYREKTQHINRLLAERYGDHPALLMWHVS <mark>NE</mark> YGGE
192	5E9A	LHGG <mark>R</mark> HNHCMSSPVYREKVQLMNGQLAKRYAHHPAVIGWHIS <mark>NE</mark> YGGE
193	6Y2K	GFGS <mark>R</mark> RHYTFASLEYREECRRMVTMMAERYGHHPAVASWQTD <mark>NE</mark> YGCHDT
194		*.* :* : : .: .**
195		
196	Hla_bga	VRCYCDDCADAFRTWLADRY-G-DIDRLNEAWGNAFWSQQYGSFDEIDPP
197	1KWG	VRCYCPRCQEAFRGWLEARY-G-TIEALNEAWGTAFWSQRYRSFAEVELP
198	4UZS	-FDYSDDAMRAFQKWCKKRY-K-TIDAVNEAWGTAFWAQHMNDFSEIIPP
199	3TTS	CYCDNCEKQFRVWLKERY-G-TLEALNKAWNTSFWSHTFYDWDEIVAP
200	4UNI	-FDYSDDAVQAFREWCRDRY-G-TIDKVNAAWGTNFWSQRLNSFEEILPP
201	5XB7	VSHDMQVMFIKQLRHEFKN-DLEALNEAYGLDYWSNRINAWEDFP
202	40IF	CHCNLCQEAFREWLKKKY-NHDLDALNAAWWTSFWSHTYTDWSQIESP
203	5E9A	CHCDTCQGQFRDWLKARY-V-TLDALNKAWWSTFWSHTYTDWSQLESP
204	6Y2K	VLSYAEADLAAFRLWLAEKY-G-TVEALNKAWGNVFWSMDYRSFDEIELP
205		. * .: :: :* :: :*: : :. *
206		
207	Hla_bga	GPTPAEHHPSRLLAYARFSSDSVVEYNRLHADLIREADP-DWFV
208	1KWG	HLTVAEPNPSHLLDYYRFASDQVRAFNRLQVEILRAHAP-GKFV
209	4UZS	RYIGD-GNF-MNPGKLLDYKRFSSDALKELYIAERDVLESITP-GLPL
210	3TTS	NALSEEWSGNRTNFQGISLDYRRFQSDSLLECFKMERDELKRWTP-DIPV
211	4UNI	RYVGGEGNF-TNPGRLLDFKHFCSDALKEFFCAERDVLSEVTP-NIPL
212	5XB7	DLTGS-INESLRARFDRFRRDQVAEYLAWQASIIREYMRDDQFI
213	40IF	SPIGEHTIHGLNLDWKRFVTDQTISFFENEIVPLRELTP-HIPI
214	5E9A	SPQGENGVHGLNLDWRRFNTDQVTRFCSEEIRPLKAENP-ALPA
215	6Y2K	NLTVTEANPSHRLDFQRCCSDQVVAFNKLQVDILREHSA-GRDL
216		. :: * . :

217		
218	Hla bga	THNFMGRFPTLNAYDVSEDLDRVAWDS
219	1KWG	THNFMGFFTDLDAFALAODLDFASWDSYPLGFTDLM
220	4UZS	TTNFMVSAGGSMLDYDDWGAEVDFVSNDHYFTPGEA
221	ЗТТЗ	TTNLMGFYPELDYFKWAKEMDVVSWDNYPSMDTP
222	4UNT	TTNEMVSASONTLDYDDWAHEVDEVSNDHYETPGSW
223	5XB7	THNEDYEWRGHSYGLOPAVDHERAARALDICGVDIYHPSEDA
$\frac{223}{224}$	JOIF	
224	-OII EEOA	
225	SEGA	
220	612K	VHNYMGFFTAFDHHKVGQDLDVASWDS <mark>H</mark> PLGSLDKE
227		• • • • • • •
228		
229	Hla_bga	-Y-DGEASPDQLRAGDPDQVGMDHDIYRSALDR-PFWVM <mark>E</mark> QQ-PGDVN <mark>W</mark> P
230	1KWG	PL-PPEEKLRYARTGHPDVAAFHHDLYRGVGRG-RFWVM <mark>E</mark> QQ-PGPVN <mark>W</mark> A
231	4UZS	HFDEVAYAASLMDGISRKEPWFQM <mark>E</mark> HS-TSAVN <mark>W</mark> R
232	3TTS	FSFTAMAHNLMRGLKSGQPFMLM <mark>E</mark> QT-PGVQN <mark>W</mark> Q
233	4UNI	HIDELAYSASLVDGISRKKPWFLM <mark>E</mark> QS-TSAVN <mark>W</mark> R
234	5XB7	ITGKEIAFGGDMARSAGGG-NYLVL <mark>E</mark> TQAQGQHG <mark>W</mark> L
235	40IF	STADLAMKVGFINDLYRSLKOO-PFLLMECT-PSLVNWH
236	5E9A	DIGIAAYTAMYHDI,MRTI,KOGKPFVI,MRST-PSFTNWO
237	6Y2K	PLYTEDEKHTYLRVGHPDAGAFHHDLYRGCGNG-RLWIMEOO-PGPVNWA
238	0121	· ·* *
239		
$\frac{237}{240}$	ula haa	
240 241	nia_bya	
241	IKWG	PHNPSPAPGMVRLWTWEALAHGAEVVSIFRWRQAPFAQEQMHAGLHRPDS
242	4025	PINIRAEPGSVVRDSLAQVAMGADAICIFQWRQSKAGAEKWHSSMVPHAG
243	31115	PYNSAKRPGVMRLWSYQAVAHGADTVMFFQLRRSVGACEKYHGAVIEHVG
244	4UNI	EINPRKEPGELIRDSMLHLAMGADAICYFQWRQSRSGAEKFHSAMLPLAG
245	5XB7	PYPGQLRLQAYSHLASGADGIMYWHWHSIHNSF <mark>E</mark> TY <mark>W</mark> RGLLSHDF
246	40IF	KVNKAKRPGMHFLSSMQMIAHGSDSILYFQWRKSRGSF <mark>E</mark> KF <mark>H</mark> GAVVDHDN
247	5E9A	PTSKLKKPGMHILSSLQAVAHGADSVQYFQWRKSRGSC <mark>E</mark> KF <mark>H</mark> GAVVDHVG
248	6Y2K	PHNPTPADGAVRLWTWEAFSHGAELVSYFRWRQAPFGQ <mark>E</mark> QM <mark>H</mark> AGLLRPDA
249		* : *:: : : . *
250		
251	Hla bga	S-PDRGYADAAHTSEEFATLDGASHVDAPVAVVFDYDSLW
252	1KWG	A-PDOGFFEAKRVAEELAALALPPVAOAPVALVFDYEAAW
253	4UZS	E-DSOIFRDVCELGADLGRLSDEGLMGTKTVKSKVAVVFDYESOW
254	3	HEHTRVERECAELGKELOOLGDTILD-ARSEAKVAVMYDWENRW
255	AUNT	
256	5VB7	
250	JADIE	
257	4016	
250	JE 9A	HIDTRVGREVAELGSILSALAPVAG-SRVEAKVAIIFDWESRW
239	6Y2K	Q-EAEAAKEATLVAQEVKVLAESIGLDADELMSLPSAGKVALMFDYDACW
260		: **:: . :
261		
262	Hla_bga	ALNAQPHAPDFDYWALQEAFYGAVRGRGVQVDVVPPSADLS
263	1KWG	IYEVQPQGAEWSYLGLVYLFYSALRRLGLDVDVVPPGASLR
264	4UZS	ATEYTANPTQ-QVDHWTEPLDWFRALADNGITADVVPVRSDWD
265	3TTS	ALELSSGPSI-ALNYVNEVHKYYDALYKQNIQTDMISVEEDLS
266	4UNI	ATEHTATPTQ-HIREWTEPLDWFAAFANRGVTADVTPIHAOWD
267	5XB7	ALSWFHIETGFPMGGTLTYNDVLRSTYDALFELNVEVDFLPADASADOLA
268	40TF	AI.NDAOGFAAETKRYPOTI.VOHYRPFWERDTPVDVTTKEHDFS
269	5E92	
270	6V0K	
270 271		
271		• • • • • • • • •
212		

273		
274	Hla bga	GYAAVVAPAI.HI.VTEDI.ADRI.TDYTAGGGEVI.FGPRTGVKDAENKI.RPMS
276	1 KWG	GYAFAVVPSLPIVREEALEAFREAEGPVLFGPRSGSKTETFOIPKEL
277	4117.5	SYETAVI.PCVYI.I.SEETSRRVREFVANGGKI.FVTYYTGI.SDENDHIWI.GG
278	3TTS	KYKVVTAPVMYMVKPGFAERVERFVAOGGTFVTTFFSGTVNENDLVTLGG
279	4UNT	TYDAVVIPCVYLESEEMAERI.RTEVRNGGKAEVTYYSALADEHDRI.HTEG
280	5XB7	GYSLVIAPALYTTDOOTIDRLARYVKNGGHLLATMRSFVADENVKVWHDK
281	40TF	RYKI, TAPMI, YI, VSEETTARI, KEFVANGGTI, VMTYTSGI VDEHDI, AYLGG
282	5E9A	GYDLVIAPMLYMVREGVGERISAFVOAGGRFVATYWSGIVNETDLCFLNG
283	6Y2K	MYELLVI, PAOAHITPELONRINSYOGVILAGPRTGSKTETYOIPENI
284	01210	
285		
286	Hla bga	OPGPLTDLVGATVDOHES-LPRRLETTVRRV <mark>GDPTDDSEELAA</mark> PP
287	1 KWG	PPGPLOALI, PLKVVRVES-I, PPGLI, EVAEGALGR
288	4117.5	YPGSIRDVVGVRVEEFAP-MGNDMPGALDHLDLDNG
289	3TTS	YPGELRNVMGTWAEEIDA-II.PGHONEIVLRODWGGLR-GS
290	AUNT	WPGLICDVVCVRIEFHCP-LCTLEPCML-DHLDVSNG
291	5VB7	
292	JATE	
292	4011 5EQN	
293	SESA 6vor	
204	UIZK	
295		· · · · ·
290	TT] - l	
291	HIA_DGA	VSFRTWALWLDPDAALPQIAIDVDGPADGRPAVVTNTVGDGQVTIC
290	IKWG	FPLGLWREWVEAPLKPL-LTFQDGKGALYREGRYLYL
299	402S	TVAHDFADVITSTADTSTVLASYKAERWTGMNEVPAIVANGYGDGRTVYV
300	3'I''I'S	YSCGILCDVIHAETAEVLAEYGADYYKGTPVLTRNKFGNGQSYYV
301	4UNI	TVVHDLADVIDAIADDTTVLATFEADPATGMDGRAAITVHPYHEGGVAYI
302	5XB7	-SANDFIEMLSP-APETHVLAWYDHYAWDSYAAITRHAFGSGDAQWV
303	40IF	YELKDYATVIKIHAATVEGVYEDDFYADTPAVTSNQYGKGQAYYI
304	5E9A	YRASQLCEVIHLEGAAALATYGDDFYAGNPAVTVNLYGKGQAYYV
305	6Y2K	GKLKHWHEQIKTELPCL-LKDDGGNPVLMGEGRHYYL
306		:* :
307		
308	Hla_bga	GVWPESDLADALASDLLDRAGVRYAERLPDGVRIGYRGGRTWV
309	1KWG	AAWPSPELAGRLLSALAAEAGLKVL-SLPEGLRLRRRGTWVFA
310	4UZS	GCRLGRQGLAKSLPAMLGSMGLSDLAGDGRVLRVERADAAAASHFEFV
311	3TTS	ASSPDADFLQGLIANLCEEQGVKPLLNTPDGVEVAER-VKNGTSYLFV
312	4UNI	AGKLGRDGISQSLPEICAALGFELDADPRAGDVLRVVREQ-EDGAIFEFL
313	5XB7	GTQLQADAWRTVLAEALSNAGVHTP-GMELAGTVCVRSGTNTAGDTVTYL
314	40IF	GGRLEDQFHRDFYQELMEKLDLRPVLFVKHEKGVSVQAR-QAPECDYVFI
315	5E9A	ASRNDQQFHADFFTALAKEMKLPRAINTPLPEGVTAARR-TDGESEFIFL
316	6Y2K	GSCIDNTLLKASLAKLSEVAGLSTY-YLPKGVRVRERGNVIFA
317		: :
318		
319	Hla bga	TNFTSDRLRLPEIDPESLAVDD <mark>TDRDGFDPMADD-DKDSS</mark> AD
320	1KWG	FNYGPEAVEAPA
321	4UZS	FNRTHEPVTVDVEG-EA-IAASLAH
322	3TTS	MNHNAEEMTFDAGASRQR-DLLTGK
323	4UNI	FNRTRNTVTADRPA-GDMLICSLAT
324	5XB7	LNYSGSPITFRAPA-SGTFLLGHPTDDG
325	40IF	MNFTEEKOAVVLEE-KVK-DLFTGE
326	5E9A	ONYNADNOTVALPO-DYO-DTVHGG
327	6Y2K	FNYSSNTVVFEPO-NAELVIG
328		* .

329		
330		
331		
332	Hla bga	GIVVGPYGVAVIEGDCVD
333	1KWG	SRRVGPYDLAVWE
334	4UZS	R
335	3TTS	TISGQATIPARGVMILERA
336	4UNI	R
337	5XB7	EQAVTAETPVTVGDAVTLPRWGVDIIVGRQPT
338	40IF	EIVGEIMLDKYEVRVVEKRR
339	5E9A	K
340	6Y2K	SMCLGAADVAIWKKQ
341		:

Figure S7. Sequence alignment obtained with T-Coffee [17]. The red blocks represent the β-galactose
binding site, predicted flexible loops of hla_bga (532-543 and 657-672) are highlighted in yellow shade. *Halorubrum lacusprofundi*, hla; *Thermus thermophilus* A4, 1KWG; *Bifidobacterium bifidum* S17, 4UZS; *Bacillus circulans* sp. Alkalophilus, 3TTS; *Bifidobacterium animalis* subsp. lactis Bl-04, 4UNI; *Bifidobacterium* species 5XB7; *Geobacillus stearothermophilus*, 4OIF; *Rahnella* sp. R3, 5E9A; *Marinomonas* ef1, 6Y2K

352

353

Figure S8. β-D-galactose binding pocket. The binding pocket of hla_bga based on conserved catalytic motif of various β-Gal structures. The amino acids residues of hla_bga, β-Gal-tA4 (1KWK) and β-Dgalactose are red, green and magenta respectively. 1KWK and 1KWG are β-Gal-tA4 with β-D-galactose ligand and without β-D-galactose ligand, respectively.

Figure S9. Ratio of amino acids in hla_bga and its structural homologs. *Halorubrum lacusprofundi*,
hla_bga; bga-mesophile (3TTS, 4UZS, 4UNI, 5XB7); bga-psychrophile (5E9A, 6Y2K); bga-thermophile
(1KWG, 4OIF).

Figure S10. Superimposed β-Galactosidase monomers: 1 and 2 represent the flexible loop regions 532543 and 657-672, respectively, of the modeled bga_hla. *Halorubrum lacusprofundi*, hla (red); *Thermus thermophilus* A4, 1KWG (green); *Bacillus circulans* sp. *Alkalophilus*, 3TTS (yellow); *Bifidobacterium animalis* subsp. lactis B1-04, 4UNI (orange); *Bifidobacterium bifidum* S17, 4UZS (pink); *Marinomonas* ef1, 6Y2K (wheat); *Rahnella* sp. R3, 5E9A (grey); *Geobacillus stearothermophilus*, 4OIF (cyan); *Bifidobacterium* species 5XB7 (blue).

Figure S11. Ratio of amino acids on the solvent-exposed surface in hla_bga and its structural homologs.
 Halorubrum lacusprofundi, hla_bga; bga-mesophile (3TTS, 4UZS, 4UNI, 5XB7); bga-psychrophile
 (5E9A, 6Y2K); bga-thermophile (1KWG, 4OIF).

Figure S12. Backbone RMSD plots over time for the three independent simulations of the three investigated systems at the four explored temperatures (10, 27, 47 and 72 °C).

Figure S13. Effect of temperature on the hla_bga monomer and trimer backbone RMSD. Values are averaged on the last 20 ns of the simulations for each system. Corresponding trendlines are shown with relative correlation coefficients (R2) and equations.

Figure S14. RMSF values averaged over the last 20 ns of the three simulations ran for each investigated system at 10, 27, 47 and 72 °C. Hla_bga loops 532-543 and 657-672 are highlighted by a blueish shadow.

401 References402

- DasSarma, S.; Capes, M.D.; Karan, R.; DasSarma, P. Amino acid substitutions in coldadapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. *PLoS One* **2013**, *8*, e58587.
- 406 2. Hidaka, M.; Fushinobu, S.; Ohtsu, N.; Motoshima, H.; Matsuzawa, H.; Shoun, H.; 407 Wakagi, T. Trimeric crystal structure of the glycoside hydrolase family 42 β-408 galactosidase from Thermus thermophilus A4 and the structure of its complex with 409 galactose. *Journal of molecular biology* **2002**, *322*, 79-91.
- A10 3. Ohtsu, N.; Motoshima, H.; Goto, K.; Tsukasaki, F.; MATsUzAWA, H. Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4: enzyme purification and characterization, and gene cloning and sequencing. *Bioscience, biotechnology, and biochemistry* **1998**, *62*, 1539-1545.
- 414 4. Fan, Y.; Yi, J.; Hua, X.; Feng, Y.; Yang, R.; Zhang, Y. Structure analysis of a glycosides
 415 hydrolase family 42 cold-adapted β-galactosidase from Rahnella sp. R3. *RSC advances*416 2016, 6, 37362-37369.
- Fan, Y.; Hua, X.; Zhang, Y.; Feng, Y.; Shen, Q.; Dong, J.; Zhao, W.; Zhang, W.; Jin, Z.;
 Yang, R. Cloning, expression and structural stability of a cold-adapted β-galactosidase
 from Rahnella sp. R3. *Protein expression and purification* 2015, *115*, 158-164.
- 420 6. Godoy, A.S.; Camilo, C.M.; Kadowaki, M.A.; Muniz, H.d.S.; Espirito Santo, M.; 421 Murakami, M.T.; Nascimento, A.S.; Polikarpov, I. Crystal structure of $\beta \rightarrow 6$ -422 galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular 423 determinants of the enzymatic activity and its inhibition by α - galactose. *The FEBS* 424 *journal* **2016**, *283*, 4097-4112.
- 425 7. Maksimainen, M.; Paavilainen, S.; Hakulinen, N.; Rouvinen, J. Structural analysis, 426 enzymatic characterization, and catalytic mechanisms of β - galactosidase from Bacillus 427 circulans sp. alkalophilus. *The FEBS journal* **2012**, 279, 1788-1798.
- 8. Solomon, H.V.; Tabachnikov, O.; Lansky, S.; Salama, R.; Feinberg, H.; Shoham, Y.;
 Shoham, G. Structure–function relationships in Gan42B, an intracellular GH42 βgalactosidase from Geobacillus stearothermophilus. *Acta Crystallographica Section D: Biological Crystallography* 2015, *71*, 2433-2448.
- 432 9. Tabachnikov, O.; Shoham, Y. Functional characterization of the galactan utilization
 433 system of G eobacillus stearothermophilus. *The FEBS journal* 2013, 280, 950-964.
- 434 10. Viborg, A.H.; Fredslund, F.; Katayama, T.; Nielsen, S.K.; Svensson, B.; Kitaoka, M.; Lo 435 Leggio, L.; Abou Hachem, M. A $\beta 1 - 6/\beta 1 - 3$ galactosidase from B ifidobacterium 436 animalis subsp. lactis B 1 - 04 gives insight into sub - specificities of β - galactoside 437 catabolism within B ifidobacterium. *Molecular microbiology* **2014**, *94*, 1024-1040.
- 438 11. Viborg, A.H.; Katayama, T.; Arakawa, T.; Hachem, M.A.; Leggio, L.L.; Kitaoka, M.;
- 439 Svensson, B.; Fushinobu, S. Discovery of α-L-arabinopyranosidases from human gut
 440 microbiome expands the diversity within glycoside hydrolase family 42. *Journal of*441 *Biological Chemistry* 2017, 292, 21092-21101.

442 12. Mangiagalli, M.; Lapi, M.; Maione, S.; Orlando, M.; Brocca, S.; Pesce, A.; Barbiroli, A.; 443 Camilloni, C.; Pucciarelli, S.; Lotti, M., et al. The co-existence of cold activity and

444		thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary
445		arrangement. The FEBS Journal n/a, doi:10.1111/febs.15354.
446	13.	Graziano, G.; Merlino, A. Molecular bases of protein halotolerance. <i>Biochim Biophys</i>
447		Acta 2014, 1844, 850-858, doi:10.1016/j.bbapap.2014.02.018.
448	14.	Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P.J.F.i.m. Discovery,
449		molecular mechanisms, and industrial applications of cold-active enzymes. 2016, 7,
450		1408.
451	15.	Karshikoff, A.; Ladenstein, R.J.P.e. Proteins from thermophilic and mesophilic
452		organisms essentially do not differ in packing. 1998, 11, 867-872.
453	16.	Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer,
454		F.T.; de Beer, T.A P.; Rempfer, C.; Bordoli, L., et al. SWISS-MODEL: homology
455		modelling of protein structures and complexes. Nucleic Acids Research 2018, 46, W296-
456		W303, doi:10.1093/nar/gky427.
457	17.	Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.;
458		Söding, J.; Lupas, A.N.; Alva, V. A Completely Reimplemented MPI Bioinformatics
459		Toolkit with a New HHpred Server at its Core. J Mol Biol 2018, 430, 2237-2243,
460		doi:10.1016/j.jmb.2017.12.007.