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Abstract: Modeling and analyzing human microbiome allows the assessment of the microbial
community and its impacts on human health. Microbiome composition can be quantified using 16S
rRNA technology into sequencing data, which are usually skewed and heavy-tailed with excess
zeros. Clustering methods are useful in personalized medicine by identifying subgroups for patients
stratification. However, there is currently a lack of standardized clustering method for the complex
microbiome sequencing data. We propose a clustering algorithm with a specific beta diversity measure
that can address the presence-absence bias encountered for sparse count data and effectively measure
the sample distances for sample stratification. Our distance measure used for clustering is derived
from a parametric based mixture model producing sample-specific distributions conditional on the
observed operational taxonomic unit (OTU) counts and estimated mixture weights. The method can
provide accurate estimates of the true zero proportions and thus construct a precise beta diversity
measure. Extensive simulation studies have been conducted and suggest that the proposed method
achieves substantial clustering improvement compared with some widely used distance measures
when a large proportion of zeros is presented. The proposed algorithm was implemented to a
human gut microbiome study on Parkinson’s diseases to identify distinct microbiome states with
biological interpretations.

Keywords: clustering; microbiome; unsupervised learning; high-dimension

1. Introduction

Human microbiome carries complicated relationships among species yet profoundly connect
with human health. Studies to understand of the effects of the microbiome on human diseases have
been conducted recently. For example, evidence linking Parkinson’s disease to the gut microbiome is
presented in Hill-Burns’ work [1]. The microorganisms in the human body consist of over 1000 species
of bacteria [2,3]. Modern technology promotes the scope of microbiome research so that the massive
microbiome data can be generated by 16S rRNA sequencing or shotgun metagenomic sequencing.

The microbiome data that is generated by the sequencing technology needs to be classified
into taxonomic groups. The abundance of a species is quantified based on their similarity to
operational taxonomic units (OTUs) and formed into discrete counts of sequence reads. Typical reads
have excessive zeros due to either sampling errors or their unique features that only dominant
microorganisms are shared among samples. Positive reads are usually skewed with extreme sparse
count measures, which are called overdispersion. Traditional statistical methodologies encounter
challenges in microbiome studies and result in potential bias [4–6].

An essential research question of microbiome study is to determine whether the microbiota
can be stratified into subgroups. If so, how many groups are there, and how to interpret the strata,
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i.e., does the classification differentiate treatments, diseases, or genetic types. To answer these questions,
the measurement of similarity between two microbial communities is desirable. Beta diversity has
been proposed to fit diverse purposes, providing various results in assessing the differences between
communities. For microbial composition, beta diversity measures the distance among communities
based on measurement abundance, either observed counts or relative abundance, calculated based on
a dissimilarity or distance measure to quantify the similarity between samples. Many non-parametric
statistical methods have been developed to quantify distance measures. For instance, Euclidean and
Manhattan distances are most commonly used. Other beta diversity metrics, such as Bray-Curtis
Distance (BC) [7], Jensen-Shannon Distance (JS), Jaccard Index, UniFrac distances (unweighted [8],
weighted [9], and generalized [10]) are also frequently applied in microbiome studies. Besides the
distance metrics, graphical network models have also been introduced in Sparse Inverse Covariance
Estimation for Ecological Association Inference (SPIEC-EASI [11,12]). The method applied a centered
log-ratio transformation to the OTU data followed by either neighborhood selection or sparse inverse
covariance selection to estimate the interaction graph. However, the method encounters difficulty in
the underdetermined data regime. For example, the number of OTUs is much larger than the number
of samples. In addition, SPIEC-EASI method relies on a single variance-covariance matrix which
may not be able to completely recover the underlying OTU network due to the complex structure
of the microbial community. In comparison, the mixture models are more flexible from the way of
construction, and it may approximate the real distribution of taxa and lead to more accurate estimations
of distances that are used in clustering.

The clustering of microbiome samples has been achieved in many studies using a variety of
approaches. Clustering algorithms, including distance-based and parametric modeling, have been
used to group subjects according to the microbiome samples. Two main types of distance-based
approaches are hierarchical clustering [13–15] with different linkage options and discrete clusterings
such as k-means [16–19] and Partition Around Medoids (PAM) [20–23]. Discrete clustering requires a
pre-specified number of clusters while different linkages for hierarchical clustering such as Ward
linkage, complete linkage, simple linkage, and average linkage provide rules to agglomerate.
The Dirichlet-multinomial regression model [24] is the most frequently used on microbial metagenomic
data for model-based clustering. Extensions such as the Sparse Dirichlet-multinomial regression
technique [25] and finite mixtures of the Dirichlet-multinomial model [26,27] have been proposed
to improve on different statistical aspects. These regression models investigate the relation between
microbiome composition data and environmental or biological factors. However, currently, only a
univariate analysis could be performed. On the other hand, distance-based clustering allows us to
take multiple OTUs into account simultaneously.

For the clustering algorithms, it is critical to determine the optimal number of clusters K. Therefore,
validation measures for clustering have been explored to identify the ideal number of groups K to
represent data [28–32]. Validation indices are used to measure the quality of a clustering result in
two ways: internal and external. An internal validation index is to use the information from the data
only to decide the optimal number of clusters, such as the Silhouette width index [33], prediction
strength [34], Calinski-Harabasz index [35], and Laplace approximation. Validation scores can be
computed for different K, respectively, and then they identify the optimal K accordingly. An external
validation index, on the other hand, uses prior knowledge to compare the predictive results.

There are different combinations of distance measures and algorithms. Koren et al. [23] computed
the distances with and without the root square of the JS, BC, weighted and unweighted UniFrac
distances and selected the number of clusters with the prediction strength and the silhouette index
used in the PAM algorithm. Unlike Koren’s approach, Hong et al. [14] applied K-means with Euclidean
distance to identify two clusters, in which they believe the number of clusters makes biologically sense
in their study. It is noticeable that no standard clustering pipelines are available, and therefore the
various approaches to the recognition of subgroups lead to widely different results. This phenomenon
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is more evident for microbiome datasets due to the features of microbial data—overdispersion and
excessive zeros, which will cause more variations in the process of gathering microbiome into groups.

We develop an innovative clustering approach taking a mixture distribution, rather than a beta
diversity metric, as the distance measure and applying a clustering algorithm to the microbiome data
to characterize sub-populations. The algorithm also involves selecting the optimal number of clusters
based on chosen internal indices, and the results are compared between several distance measures
and different evaluation methods. The performance of the proposed algorithm is evaluated through
comprehensive simulation studies and a real human gut microbiome dataset on Parkinson’s diseases.

2. Materials and Methods

A mixture model is a probabilistic model for representing subpopulations within an overall
population, which are frequently used in unsupervised learning [36–39]. Simple distributions
such as Binomial, Poisson, and Gaussian are occasionally unable to model more complex data.
For instance, microbiome data may consist not only one mode (zeros and low counts), high probability
mass for larger counts, and smaller probability mass for high counts. In this case, the data is
better to be modelled in terms of a mixture of several components, where each component is a
simple probabilistic distribution.

To deal with the unique characteristics of microbiome data—sparsity with abundant zeros,
we incorporate a mixture model proposed by Shestopaloff [40] to attain the beta diversity measures for
partition. The mixture model focuses on the distribution of a single OTU across a population which can
address the problem of sparsity between samples. It parametrically models the counts’ underlying rate
distribution, including low counts OTUs and extremely high counts. For pairwise distances between
individual samples, the formulated mixture’s probability is used in L2 norms distances.

By using such a model, the beta diversity measure contains information regarding zero part in
the data and distinguishes between the structural and sampling zeros. The proposed mixture models
assume the observed counts are from a Poisson distribution with individual-specific rates, and the
rates are sampled from some general population distribution, which can be approximated by a set of
mixture components. Conditional on the estimated population rate distribution, the subject-specific
rate distribution is estimated through individual mixture distribution given the observed sample
counts and resolution. After that, beta diversity measure can be calculated by assessing the pairwise
differences between samples for a particular OTU using the individual mixture distribution.

2.1. Mixture Model

To introduce some notations for the following section, let nij be the number of times an OTU was
observed from a sample, where i is the subject, i = 1, . . . , I and j is the OTU, j = 1, . . . , J. Resolution Ni
is the sum of the total reads of an individual; thus, it is defined as Ni = ∑j nij. To connect the general
population distribution to the collected data, the rates can be scaled by the average total reads N̄j for
OTU j, N̄j = ∑i Nij/I. Therefore, the relative resolution tij is defined as tij = Nij/N̄j.

The mixture model consists of five components to accommodate the complexity of microbiome
data. For individuals who are never disclosed to OTU j, the model assigns a zero point mass
P(nij = 0) = 1. For the rates close to zero, a set of adjacent left-skewed distributions with consecutive
parameters is used to represent the low rates. For larger rates, the model accommodates a set of
Gamma distribution with parameters which are all integers and are derived from the posterior of
the Poisson rate λ given an observed count n, that is λ|n ∼ Γ(n + 1, 1). For higher counts that are
less dense, the parameters are defined by truncating the interval uniformly after transforming the
data range by a log scale. Lastly, for the even higher counts which are too sparse, the model selects a
sufficiently large cut-off point and combines all the observations greater than that point into a high
point mass P(nij > C) = 1.

The parts other than zeros and extreme high point masses consist of several components with
fixed parameters from Gamma distributions. Since each OTU’s distribution is estimated independently,
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we target one OTU per time and drop the subscript j onward. Define the estimated weights for
each mixture components described above as ~w = (wz, w1, . . . , wM, wh) where wz is the weight for
zero point mass, wm where m = 1, . . . , M is the weight for the Gamma components, and wh is the
weight for the high point mass. Weights estimation is utilized to compose the final mixture model
and can be calculated by minimizing the squared differences between the observed aggregated
counts and the expected ones. For a particular OTU, the observed aggregated counts can be
expressed as yk = ∑i I(ni = k), where k is the number of counts observed in a sample. The expected
aggregated counts are the probability of observing k counts from each mixture component in a sample.
For the Gamma components, counts are distributed in negative binomial distribution NB(αm, βm

ti+βm
)

conditioned on the relative resolution ti. Define the probability of observing a count k from the mth
mixture component conditional on ti is pkmi = PNB(K = k|αm, βm, ti). The expected aggregate counts
ŷk from all mixture components is

ŷk = ∑m ŷkm
= ∑m wm · pkm · I

(1)

The estimate of weights ~w is obtained by optimizing the objective function

argmin~w ∑
k∈~k

[yk − ∑
wm∈~w

wm · pkm · I]2 (2)

s.t. ∑
m

wm = 1, wm ≥ 0, ∀m

and using bootstrap replicates to find an optimal set of models as mixture components. Details of the
bootstrap approach can be found in Appendix A.

For each subject i, the probability density function (PDF) of the mixture model is defined as the
product of the individual-specific mixture weights and the count probability from mixture components

Pi = [Pi(z),Pi(0), . . . ,Pi(C),Pi(C+)]

= ~wT
i · [P(z),P(0), . . . ,P(C),P(C+)],

(3)

where
P(k) = [PGz(k), PG1(k), ..., PGM (k), PGh(k)],

and
Pi(z) = wGz ,

Pi(h) = 1−
C

∑
k=1
Pi(k)− wGz

2.2. Distance Measures

2.2.1. L2 Norms Distances

After finalizing the mixture model distribution, distance measures can be calculated through the
pairwise distances between samples using probability distribution. Three distance measures based on
L2 norms are considered for comparisons: discrete L2 PDF norms (L2-D PDF), discrete L2 CDF norms
(L2-D CDF), and continuous L2 CDF norms (L2-C CDF).

Given a mixture distribution’s PDF as Pi and its cumulative density function (CDF) as Fi for
subject i, the distance of discrete L2 PDF norms are computed by

DL2−D,PDF(i, j) = ‖Pi −Pj‖2

= [P(k)]2 ∑
q∈~q

(wi − wj)
2 (4)
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for i, j = 1, . . . , I and i 6= j, where ~q = (z, 0, 1, ..., M, h)′. Similarly, the distance of discrete L2 CDF
norms can be calculated analogously using the cumulative density function instead of the PDF.

The continuous L2 CDF norms can be calculated based on the CDF of two individual-specific
mixture models. The L2-C CDF norms can be computed by

DL2−C,CDF(Fi, Fj) =
∫ C

0
[Fi(k)−Fj(k)]2dk

= (wi − wj)
TGq1,q2(wi − wj)

(5)

where Gq1,q2 is a matrix such that
∫ C

0 Gq1(k)Gq2(k)dk represents the two components (q1, q2) in the
mixture model. See details of the derivation in [40].

2.2.2. Other Distances

Other than the distance measures we obtained using the mixture model, some other metrics
are selected for comparison, including two standard beta diversity metrics for any ecological
distance-based measures, Manhattan and Euclidean distances, and three distance measures specific
in microbiome analysis—Bray-Curtis measure, weighted, and generalized UniFrac distances.
An unweighted UniFrac distance is not considered in this study since it does not contain taxa
abundance information.

Let xij and xik, for i = 1, ..., n, be the observed counts of OTU i in samples j and k, respectively.
Let bi be the length of the branch i in a phylogenetic tree. The Euclidean distance is defined as

DE[j, k] =

√
n

∑
i=1

(xij − xik)2. (6)

The Manhattan distance is defined as

DM[j, k] =
n

∑
i=1
|xij − xik|. (7)

The Bray-Curtis distance measure is defined as

DBC[j, k] =
∑n

i=1 |xij − xik|
∑n

i=1(xij + xik)
. (8)

The weighted UniFrac distance is defined as

Dw[j, k] =
∑n

i=1 bi|xij − xik|
∑n

i=1 bi(xij + xik)
. (9)

And the generalized UniFrac distance is defined as

Dg(0.5)[j, k] =
∑n

i=1 bi
√

xij + xik|
xij−xik
xij+xik

|

∑n
i=1 bi

√
xij + xik

. (10)

Note that due to possible zeros in the denominator in Equation (8)–(10), we add a sufficiently small
number (1× 10−8) in addition to the sum of observed counts. Sensitivity analysis was done and
proved that adding a sufficiently small number in the denominator to avoid zeros does not affect the
accuracy results.
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2.3. Clustering Validation Indices

The clustering assessment utilizes the partition of data by quantifying the results of a clustering
algorithm. The indices measure how well the clustering performed regarding both within and between
clusters separability. Validation indices can be divided into internal indices and external assessments.
When there are no standard labels of the data to evaluate the partition result, internal indices are
considered as an assessment of the clustered data itself. Many internal validation indices have been
proposed to choose the optimal number of clusters. The number of clusters is data-driven and is
usually required to specify in advance by clustering algorithms. Approaches to select the optimal
number for partition consider all possible choices that fit the algorithms and then find the best fit of
the data after comparing indices. On the other hand, external assessment scores are calculated by
directly comparing the partition results with the prior labels, given that the labels are not used in the
model-building stage.

2.3.1. Internal Validation Indices

Among the internal indices, similarities are observed in different indices measures. The Dunn
index (DI) [41] is a metric for evaluating the separability of within clusters and between clusters. It is
the quotient of the minimal distance between points of different clusters and the most substantial
within-cluster distance. Let Ck be a cluster of vectors. The diameter of the cluster, which is the largest
distance separating two points in cluster Ck is calculated by ∆k = maxi,j∈Rk ,i 6=j||Sk

i − Sk
j ||. Consider Ck′

as another cluster other than Ck. Let δ(Ck, Ck′) be the inter-cluster distance metric for clusters Ck and
Ck′ . It is measured by the distance between their closest points:

δ(Ck, Ck′) = mini∈Rk ,j∈Rk′
‖Sk

i − Sk′
j ‖, (11)

where Sk
i in cluster Ck and Sk′

j in Ck′ . The Dunn index is defined as

DIk =
mink 6=k′δ(Ck, Ck′)

max1≤k≤K∆k
. (12)

2.3.2. External Validation Assessment Measures

The results from clustering can be quantified by two measures: accuracy and Jaccard index.
Both only consider the results obtained by the optimal number of clusters. Accuracy is how close
the clustering results compared to the true cluster index. It is defined as the proportion of correctly
clustered subjects. Note that when the clustered number of group c is less than the true number of
clusters k, the accuracy of c groups are considered. When c is greater than k, a combination of k out of c
groups with the highest accuracy is adopted. Jaccard index measures similarity between the clustered
results and the original cluster labels which are defined as the ratio of the number of correctly classified
subjects (intersection of predicted and real sets) to the number of the total sample size of the two
groups (union of two sets):

J(C, K) =
|C ∩ K|
|C ∪ K| .

2.4. Partitioning Algorithms for Clustering

Partitioning Around Medoids (PAM) algorithm introduced by Kaufman [20], as produced
clustering results of this paper, is an adaption of K-means clustering, yet more computational
efficient [42] and more robust to the random noises in the data [43]. The aim of clustering for
pre-specified K groups is approached in the partitioning algorithm by incorporating two phases:
initialization of K medoids and refinement of the initial medoids within clusters. The algorithm
takes a greedy search technique in the first step to locate the K medoids in the data with the least
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computation. Then it uses a swap operation within the neighborhood in the second phase to minimize
the objective function

∑
j∈Cm

d(m, j),

where Cm is the cluster containing object m and d(m, j) is the sum of the distances from object j to the
closest medoid m.

PAM follows steepest-ascent hill climber algorithm, which can be summarized as follows:

1. Initialize: randomly choose K of the n points in the dataset to be the initial cluster medoids.
2. Assign each data point to the closest medoid based on distance.
3. Refine: for each medoid m and non-medoid data point j, swap j and m and compute the total

cost by the new medoid j. Select the best medoid in terms of minimum cost.
4. Repeat steps 2 and 3 until all the medoids are fixed.

A flowchart can be found in Figure 1. PAM selects the points from the original data as medoids,
which reduces the difficulty in explaining the cluster. Computation time can be saved by pre-calculating
a distance matrix for all the data points. Then in the swap procedure for every iteration, scanning the
matrix could be quickly done. In addition, as the refinement phase in step 3 is slow, re-calculation
of the distance from only the points that have been moved between clusters to the new medoids in
each iteration helps boost efficiency. For all the remaining points, distances can be re-used in objective
function calculation.

The Algorithm 1 shows the detailed steps of the proposed clustering procedure using the
mixture distribution.

Figure 1. A flowchart to illustrate PAM algorithm for two clusters.

Algorithm 1: for clustering based on joint mixture distribution:

1. Specify L models for mixture models with components G1, . . . , GM

2. Bootstrap B datasets. For each bootstrap dataset, estimate and select the optimal model
based on the distance between observed and expected aggregated counts

3. Calculate weights for the selected model in each replicate and combine with weights for
each component to obtain the final weights for the joint mixture model

4. Estimate the subject-specific mixture distribution and calculate the probability of a subject
from each component in the mixture model

5. Calculate the distances using L2 PDF and CDF norms
6. Cluster based on the distances using PAM
7. Compare the scores from internal indices and select the optimal number of clusters as in

the final algorithm
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2.5. Simulation Studies

We conduct extensive simulation studies to evaluate the performance of the proposed algorithm
with selected internal validation indices to finalize the optimal number of clusters for the clustering
algorithm. To test how well the method performs in clustering, we derive the accuracy and the
Jaccard index.

We simulate the data to mimic the OTU counts and their complex structure with class labels.
We consider two scenarios with two sub-classes and three sub-classes, and each sub-class contains
200 subjects for total sample sizes of 400 and 600, respectively. All the results are replicated 100 times.

The simulation procedure for each OTU is as follows:

1. Determine the number of rates ri in each sub-class using Beta(αc, βc).
2. Generate the rate ri distribution in each sub-class from a mixture distribution with M components

including a zero point mass and M− 1 Gamma distributions. The number M is randomly chosen
between 5 and 15.

3. Sample the number of rates from Mrate ∼ Multinomial(P(M1), P(M2), ..., P(M5), Nc) where Nc

is the sample size for sub-class c.
4. Sample ti for each subject from a Uni f orm(2/3, 4/3).
5. Generate the observed count ni ∼ Poisson(riti).

For each scenario, 25 OTUs are simulated. The simulated count data contains three sets of zero
proportions (ZP), first set with 13–27% zeros (low ZP) in each sub-class, second set with 39–61% zeros
(medium ZP), and third set with 84–93% zeros (high ZP), to examine clustering performance under
different ZP scenarios. ZP in every dataset is controlled by varying αc in Beta distribution from Step 1.
The details of the mixture distribution estimation can be found in Appendix B.

3. Results

3.1. Simulation Results

Figures 2 and 3 show the clustering results of simulated datasets under different scenarios with
varying ZPs and number of sub-classes. The distance-based algorithm performance is evaluated
through the accuracy and the Jaccard index and presented in boxplots. Specifically, L2.d.pdf, L2.d.cdf,
L2.c.cdf, Manhattan, Euclidean, BC, wUniFrac, and gUniFrac represent the clustering results from a
distance calculated by the mixture model using L2 norms with discrete variable’s PDF, discrete
variable’s CDF, continuous variable’s CDF, Manhattan distance, Euclidean distance, Bray-Curtis
distance, weighted UniFrac distance, and generalized UniFrac distance, respectively. All the distances
were calculated based on the relative abundance data. We conducted additional simulations to calculate
the Manhattan, Euclidean, and Bray-Curtis distances after log-transformation. As we explained
in methodology, since unweighted UniFrac distances neglect the abundance information and only
consider presence/absence of species of branches in a phylogenetic tree, it is not included in the
simulation studies. The top three boxplots in Figure 2 illustrate the accuracy of eight comparative
distance metrics for high, medium, and low ZP scenarios when the simulated dataset contains
two sub-classes. The bottom three boxplots are the accuracy of the 3-subclass simulation scenario.
Our proposed distance measures are marked in green as opposed to the other distance metrics in blue.
Jaccard index boxplots (Figure 3) are constructed in the same way as in Figure 2. Mean accuracy (MA)
and mean Jaccard index (MJI) are shown in Table 1, calculated by averaging the 100 replicates results
in each scenario.

We observed that by implementing the proposed distance measures in the clustering algorithm,
both accuracy and Jaccard index outperform the results by other distance metrics, especially when
the datasets contain a substantial amount of zeros. Clustering using the three proposed L2 norms
in both 2-subclass and 3-subclass scenarios has considerable improvements with the increase of
zero proportions in the datasets. The mean accuracy calculated based on 100 replicates achieves
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around 0.6 for the proposed L2 norms under high ZP design in 2-subclass scenarios and 0.45 in
3-subclass scenarios. For scenarios with fewer zeros, the L2-norm distance measures have competitive
clustering performance as the competing distance metrics. Among the three L2 norms, the L2 discrete
PDF distance has better clustering performance across ZP settings. Out of six settings that we
investigated in the 3-subclass scenario, the generalized UniFrac distance and the Manhattan distance
with log-transformation provide the best partition with a high and low proportion of zeros, respectively.
In contract, the L2 norms show advantages in terms of MA and MJI in the rest of scenarios. Noticeably,
the generalized UniFrac distance shows a large variability in the estimation of accuracy. Overall,
Manhattan, Euclidean, Bray-Curtis, and weighted UniFrac distance metrics do not distinguish the
proportion of zeros in 2-subclass datasets and provide close to the random guess accuracy of 0.5 in
2-subclass scenarios. Jaccard index reveals a similar pattern as accuracy.
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Figure 2. Accuracy boxplots for simulated data. Two-subclass and three-subclass scenarios are
considered. Three different cases of proportion of zeros (ZP) are evaluated - high ZP, medium ZP,
and low ZP, are presented in left, middle, and right, respectively. For each box of the boxplots, the center
line represents the median, the two vertical lines represent the 25th percentiles to the 75th percentiles.
The whiskers of the boxplots show 1.5 interquartile range (IQR) below the 25th percentiles and 1.5 IQR
above the 75th percentiles. The mean are shown in blue diamond dots.
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Figure 3. Jaccard index boxplots for simulated data. Two-subclass and three-subclass scenarios are
considered. Three different cases of proportion of zeros (ZP) are evaluated - high ZP, medium ZP,
and low ZP, are presented in left, middle, and right, respectively. For each box of the boxplots, the center
line represents the median, the two vertical lines represent the 25th percentiles to the 75th percentiles.
The whiskers of the boxplots show 1.5 interquartile range (IQR) below the 25th percentiles and 1.5 IQR
above the 75th percentiles. The mean are shown in blue diamond dots.

The average number of clusters over all the iterations are presented in Table 2. The L2-D CDF
norm predicts the number of clusters the most accurate in 2-subclass scenarios. On the other hand,
generalized UniFrac distance and Manhattan distance with log transformation have closer prediction
to the actual cluster numbers in the 3-subclass scenarios. However, Bray-Curtis, weighted UniFrac,
and generalized UniFrac distances overestimate number of clusters dramatically in the two-subclass
situations. Thus, the results in three-subclass scenarios are doubtful to some extent.
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Table 1. Mean accuracy (MA) and mean Jaccard index (MJI) estimations. A bold value represents the
best cases under each scenario. Distances calculation was conducted on the simulated data inputs
with and without log-transformation: Manhattan_log, Euclidean_log, Bray-Curtis_log were models
using log-transformation, while L2-D PDF, L2-D CDF, L2-C CDF, Manhattan, Euclidean, Bray-Curtis,
weighted UniFrac, and generalized UniFrac were without log-transformation.

Two-Subclass Scenarios

High ZP Medium ZP Low ZP

Distance MA MJI MA MJI MA MJI

L2-D PDF 0.608 0.435 0.547 0.365 0.534 0.359
L2-D CDF 0.591 0.419 0.547 0.374 0.534 0.363
L2-C CDF 0.600 0.428 0.556 0.371 0.505 0.327
Manhattan 0.530 0.357 0.518 0.340 0.516 0.331
Euclidean 0.530 0.357 0.518 0.341 0.516 0.331
Bray-Curtis 0.467 0.288 0.434 0.258 0.427 0.253
Weighted UniFrac 0.445 0.260 0.437 0.258 0.451 0.270
Generalized UniFrac 0.605 0.420 0.407 0.241 0.441 0.274
Manhattan_log 0.534 0.360 0.520 0.334 0.499 0.317
Euclidean_log 0.534 0.360 0.516 0.333 0.502 0.320
Bray-Curtis_log 0.467 0.287 0.431 0.254 0.427 0.252

Three-Subclass Scenarios

High ZP Medium ZP Low ZP

Distance MA MJI MA MJI MA MJI

L2-D PDF 0.456 0.281 0.386 0.230 0.373 0.223
L2-D CDF 0.427 0.261 0.375 0.226 0.381 0.228
L2-C CDF 0.452 0.277 0.383 0.226 0.386 0.228
Manhattan 0.366 0.222 0.364 0.217 0.367 0.217
Euclidean 0.375 0.229 0.364 0.220 0.384 0.234
Bray-Curtis 0.379 0.211 0.348 0.193 0.369 0.207
Weighted UniFrac 0.376 0.210 0.351 0.198 0.374 0.217
Generalized UniFrac 0.470 0.274 0.346 0.197 0.374 0.219
Manhattan_log 0.383 0.234 0.379 0.227 0.404 0.243
Euclidean_log 0.371 0.225 0.377 0.224 0.390 0.228
Bray-Curtis_log 0.378 0.212 0.355 0.199 0.378 0.215

Table 2. Average number of clusters for all simulation scenarios. Optimal number of clusters in each
replicate is calculated by Dunn internal indices. A bold value represents the closest estimation of
number of clusters to the ground truth.

Two-Subclass Scenarios Three-Subclass Scenarios

Distance High ZP Medium ZP Low ZP High ZP Medium ZP Low ZP

L2-D PDF 2.47 2.73 2.30 2.48 2.74 2.35
L2-D CDF 2.26 2.28 2.28 2.16 2.43 2.30
L2-C CDF 2.40 2.46 2.65 2.26 2.88 2.63
Manhattan 2.87 2.73 2.84 2.48 2.68 2.63
Euclidean 2.86 2.72 2.85 2.93 2.85 2.91
Bray-Curtis 3.08 3.47 3.44 3.31 3.57 3.44
Weighted UniFrac 3.38 3.39 3.23 3.35 3.36 3.29
Generalized UniFrac 2.88 3.39 3.16 3.01 3.34 3.20
Manhattan_log 2.72 2.95 3.11 2.82 2.91 2.98
Euclidean_log 2.76 2.94 3.05 2.46 2.80 2.78
Bray-Curtis_log 3.08 3.50 3.44 2.80 3.48 3.17
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4. Real Data Implementation

To demonstrate how well our proposed method works, we analyze the data from
Hill-Burns et al. [1] that relates the gut microbiome to Parkinson’s disease (PD). The dataset contains
stool samples of 197 PD cases and 130 controls. 16S rRNA amplicon sequencing of DNA was extracted
for microbial composition performed by Illumina MiSeq. OTUs were picked using a reference of
Greengenes 16S rRNA gene sequence database [44] at 97% similarity released in August 2013. The study
has shown the association between the dysbiosis of gut microbiome and PD. Besides, the case-only
analysis identifies a significant interaction effect between the microbiome and PD medications,
including catechol-O-methyl transferase (COMT) inhibitors, anticholinergics, and carbidopa/levodopa.

We apply our algorithm to the PD cases to explore the sub-populations of the PD using gut
mirobiome data. The pre-processing step is done by including OTUs on the genus level and excluding
ones with the probability of zero relative abundances higher than 80%, resulting in a total of 280 OTUs
used for all the samples in our analysis. We compare the proposed L2 norms with the other three
distance metrics with and without log-transformation on the relative abundance data. Various internal
indices are applied to distance measures for sensitivity analysis. Selection results of the number of
clusters are illustrated in Table 3. The maximum number of clusters is set to ten, meaning that the
optimal number is between 2 and 10. Different combinations of distances and internal indices provide
moderate variations. For Dunn and Xie-Beni [45] indices, L2 norms tend to cluster the data into
two or three subgroups while in both with and without log-transformation situations, Manhattan,
Euclidean, and Bray-Curtis metrics prefer more clusters except for non-transformed Euclidean distance.
Wemmert-Gancarski index provides fewer subgroups than the others across the distance measures.
No profound trend is found for the Silhouette index.

To illustrate the clustering algorithm, the L2-D PDF norm is selected as an example for further
analysis. We explore OTUs between two clusters for the dataset, and the top 5 significantly different
OTUs between clusters are Akkermansia, Anaerotruncus, Bacteroides, Anaerococcus, and Akkermansia.
Among these OTUs, Akkermansia [1,46] has previous reported associations. The characteristics of the
five OTUs are summarized in Table 4.

Table 3. Mean with standard deviation and median for OTUs that are significantly different (p < 0.001)
between two clusters using Dunn internal indices and L2-D PDF distance.

Distance Dunn Silhouette Index Wemmert-Gancarski Xie-Beni

L2 discrete PDF 2 7 2 2
L2 discrete CDF 3 2 2 3
L2 continuous CDF 2 5 3 3
Manhattan 10 4 4 10
Euclidean 3 3 3 3
Bray-Curtis 7 10 2 10
Manhattan_log 9 2 10 10
Euclidean_log 5 2 5 5
Bray-Curtis_log 9 9 2 10



Microorganisms 2020, 8, 1612 13 of 18

Table 4. Optimal number of clusters for distance metrics by various internal indices.

OTU Full Sample (n = 197) Cluster 1 (n = 166) Cluster 2 (n = 31)

g_Akkermansia
Mean (sd) 404.3 (956.8) 479.7 (1025.2) 0.9 (1.4)
Median (Min,Max) 1 (0,5284) 3.5 (0,5284) 1 (0,7)

g_Anaerotruncus
Mean (sd) 4.5 (11.8) 4.2 (12.5) 6.2 (7.2)
Median (Min,Max) 0 (0,120) 0 (0,120) 3 (0,27)

g_Bacteroides
Mean (sd) 0.6 (1.5) 0.5 (1.4) 1.3 (1.8)
Median (Min,Max) 0 (0,9) 0 (0,9) 0 (0,5)

g_Anaerococcus
Mean (sd) 8.8 (40.5) 8.8 (43.6) 8.8 (16.3)
Median (Min,Max) 0 (0,352) 0 (0,352) 2 (0,79)

g_Akkermansia_
Mean (sd) 198.8 (811.5) 0.7 (1.9) 1259.8 (1709.5)
Median (Min,Max) 0 (0,6278) 0 (0,17) 378 (53,6278)

5. Discussion

We simulate six different scenarios to evaluate the performance of the proposed method
thoroughly, using the accuracy and the Jaccard index to reflect clustering results, considering different
zero proportions under 2-subclass and 3-subclass settings. Both the accuracy and the Jaccard index
are improved or competitive compared to other distance metrics, suggesting better separation among
subgroups. Our method performs the best in high and medium zero proportion scenarios, therefore,
it is recommended to use our clustering algorithm when a large number of zeros presenting in the data.
Under the PAM framework, all distance matrices (Manhattan, Euclidean, Bray-Curtis, and UniFrac)
can be used as inputs for clustering. However, as shown in our simulation studies, the pairwise
distances calculated by the mixture model perform better than the other distance matrices under a
variety of scenarios.

The clustering algorithm involves multiple options, such as the choice of distance measures,
the internal indices to specify the number of clusters, and the approach to clustering. Due to a lack of
widely accepted standardization, making different choices at each step may lead to various outcomes.
Many choices are available regarding the selection of the number of clusters. The decision to make
about the optimal number of clusters each time highly relies on data structure, thus case-specific.
As we choose to use the Dunn index as internal validation indices for simulation studies, sensitivity
analysis is performed using other internal indices. All the considered indices are also compared in
real data. Our algorithm classifies subgroups among the PD cases and presented the ability to identify
statistically significant distinct OTUs which have association with PD.

The proposed method focuses on distance-based clustering. The next step is to perform partition
based on models such as Dirichlet-multinomial and compare with our method. We will also explore
the possibility of extending the proposed method to adopt longitudinal trajectories of subjects for deep
insights into the dynamic biological mechanisms. The proposed method could be easily extended
to high dimensional data with overdispersion. Besides that, we are working on the extension of this
proposed method on other microbiome and disease correlation data.

As all clustering methods, one limitation of this algorithm is that suitable internal indices are
hard to select for every new data. Thus an optimal and robust number of clusters is difficult to obtain.
Besides, for the L2-norm distances, variable selection is not possible to be developed in clustering.
Nevertheless, the proposed algorithm incorporates ad-hoc distance for microbial sequencing data,
which provides effective clustering and broader vision to investigate the connection between the
microbiome and human health. The introduced clustering algorithm can be seen as a good additional
tool for the analysis of microbial data besides the currently used methods.
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6. Conclusions

In this article, we propose a distance-based unsupervised machine learning method to cluster
subjects based on their microbial structure. We show that our method provide funtional partitions
among subjects under various scenarios in simulation studies, and we apply it to a gut microbiome
dataset for Parkinson’s disease. The distance measures we adopted in the clustering algorithm
are capable of capturing the underlying rate distributions of microbial counts, through mixture
distributions which take account to zero inflation and overdispersed values. L2 norms are calculated
based on the mixture distributions’ PDF and CDF, respectively, and further used in partition around
mediod for clustering.
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Abbreviations

The following abbreviations are used in this manuscript:

OTU operational taxonomic unit
BC Bray-Curtis distance
JS Jenson-Shannon distance
PAM partition around medoids
DI Dunn index
MA mean accuracy
MJI mean Jaccard index
PD Parkinson’s disease

Appendix A. Mixture Model

Appendix A.1. Individual Mixture Distribution Estimation

A non-parametric bootstrap is adopted to estimate a mixture model with a practical consideration
to avoid overspecified and overfitted bootstrap data. The selection of the best model among all
bootstrap datasets is unnecessary since the final model will be a set of weighted optimal models from
all the datasets so that every component can be incorporated in the estimation. Define a set of models
Ψl , l = 1, . . . , L with different mixture components combination. Sample B subsets from the original
data and estimate weights ~wbl for each model l and subset b. In each bootstrap dataset, the estimated
aggregated counts ~̂yl = ∑k ŷkl , k = 0, . . . , C, C+ for model l are compared with the observed aggregated
counts ~y through the distance D(~y, ~̂yl) for l = 1, . . . L and the best model l∗b with minimum distance is
chosen in subset b. The selected optimal model has weight v(l) = ∑b I(l∗b = l)/B, and the weight for
each component in the mixture distribution is wm = ∑l v(l)wml .

Once we have an estimate of the mixture component weights ~w for the final set of mixture
components G = (Gz, G1, G2, . . . , GM, Gh), the individual-specific mixture probabilities condition on ~w
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can be obtained for each component. Specifically, the probability of observing counts k from subject i
being from each mixture component Gq can be written as

P(i ∈ Gq) =


I(k = 0), if q = z

wq
Γ(k+αq)

Γ(k+1)Γ(αq)

(
βq

ti+βq

)αq (
1− βq

ti+βq

)k
, if q = 1, ..., M

I(k > C), if q = h

(A1)

Denote the individual-specific mixture weights as ~wi = (wiz, wi1, . . . , wiM, wih), and weights are
calculated as wiq = P(i ∈ Gq)/ ∑q P(i ∈ Gq). Since the model components G remains the same for all
the samples, the individual-specific mixture weights become the only variation to compute pairwise
distances among samples. Hence distances are calculated based on two parts, individual weights
and the probability of an observed count through Poisson-Gamma mixture probabilities NB(αq, βq

1+βq
)

from mixture component Gq. The probability of observing count k from mixture component Gq,
q = z, 1, ..., M, h is

PGq(k) =


I(K = 0), if q = z

PNB(K = k|αq, βq), if q = 1, ...M

I(K > C), if q = h

(A2)

Note that the distribution can estimate structural and non-structural zeros separately,
where PGz(0) = wz is for structure zeros and P(k = 0) = ∑q PGq(0)− wz is for non-structure zeros.

Appendix B. Simulation

Appendix B.1. Mixture Distribution Estimation

The underlying mixture distributionis modeled with pre-set four parts to estimate the
simulated data.

• Low rate part: set five Gamma distribution Γ(1, 2), Γ(1, 1), Γ(2, 1), Γ(3, 1), Γ(4, 1), and five
models, with the first model including all the distributions, the second model including the
last 4 distributions, until the fifth model including only the last Gamma distribution;

• Medium rate part: one model with four Gamma distribution Γ(5, 1), Γ(6, 1), Γ(7, 1), Γ(8, 1);
• Higher rate part: one model with three Gamma distribution Γ(11, 1), Γ(18, 1), Γ(19, 1); each α

value in Gamma distribution is chosen by uniformly binned the OTUs on a log-transformed scale
from 8% to the 85% quantile;

• High count part: a point mass which combines all the counts greater than the 85% quantile.

The estimation of the joint model is replicated through 300 bootstraps. The estimates of weights
in the model are obtained by minimizing the least squares objective function using the Broyden-
Fletcher-Goldfarb-Shanno algorithm [47]. We used R packages NLoptr [48] for the model estimation,
and cluster [49] and clustCrit [50] for comparison of clustering performance between distance measures.

The appendix is an optional section that can contain details and data supplemental to the main
text. For example, explanations of experimental details that would disrupt the flow of the main text,
but nonetheless remain crucial to understanding and reproducing the research shown; figures of
replicates for experiments of which representative data is shown in the main text can be added here if
brief, or as Supplementary data. Mathematical proofs of results not central to the paper can be added
as an appendix.
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