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Abstract: Vast evolutionary distances separate the known herpesviruses, adapted to colonise
specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families
share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many
important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are
available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions
invites novel solutions: immunocompromised patients presenting particular challenges. A conserved
enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously
in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics
has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable
Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential
roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously
conserved Ung active site has previously been explored as a therapeutic target. However, exquisite
selectivity and better drug-like characteristics might instead be obtained via targeting structural
variations within another motif of catalytic importance in Ung. The motif structure is unique within
each Subfamily and essential for viral survival. This unique signature in highly conserved Ung
constitutes an attractive exploratory target for the development of novel beneficial therapeutics.

Keywords: herpes; herpesvirus; uracil-DNA glycosylase; Ung; antiviral; drug discovery; novel
chemical entity

1. Introduction

In this article, the emphasis will be on focusing evidence to encourage structure-based drug design
activity on the conserved uracil-DNA glycosylases encoded by diverse herpesviruses. The specific
differences between the uracil-DNA glycosylase enzymes encoded by herpesviruses subfamilies are
important in this regard. It is also worth considering these differences as compared to the host-encoded
version of the enzyme. Drug discovery targeted at the much more highly conserved active site is less
interesting from that fact alone, but also since drug-like properties are the key.

The context is that although there are many successful therapeutic agents indicated for herpesvirus
treatment, their use in more challenging healthcare settings is found unsatisfactory, particularly
in regard to immunocompromised patients (i.e., autoimmune-suppressing medication, transplant
patients, and those with underlying health conditions, such as those living with HIV). The major
problems are toxicity and, to some extent, resistance phenomena, which in healthier patients, would be
self-limiting. It is acknowledged that many advanced therapies and vaccination approaches are at the
forefront of antiherpetic therapy research, but the role of small molecules in certain healthcare contexts
could easily prove more cost-effective at scale.

Previous efforts at drug discovery, specifically targeting the HSV-1 UL2 gene product, are
presented as a contrasting approach to the de novo tactics suggested herein, i.e., from the perspective
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of considering the properties most attractive in a lead compound. To support the notion of a new target
focus within the catalytically important structural features of these otherwise very well conserved
enzyme domains, the biological strategies of viruses, in general, to avoid uracil-DNA glycosylases are
considered. In contrast, the alternative way in which herpesviruses have dealt with innate immune
factors in order to retain a working relationship with uracil-DNA glycosylases is also presented.
In herpesviruses, the adaptations to the viral copy of the enzyme are subfamily-specific, and suggest
potentially more drug-like exquisite specificity than via targeting of the very well conserved enzyme
active site. Targeting this area, it is suggested, will be specific to a herpesvirus subfamily and quite
separate also from the host enzyme in this region of the molecular structure.

2. Herpesviruses

Herpesviruses of the taxonomic Order Herpesvirales, are ancient virions with extensive genetic
repertoires in genomes ranging in length from 0.1 to 0.3Mb (data according to NCBI Viral Genomes
at the time of writing; see, e.g., NC_001987 and NC_009127). Herpesviruses under discussion here
belong to the taxonomic Family Herpesviridae. Herpesviridae are commonly classified into three major
taxonomic Subfamilies: Alphaherpesvirinae (e.g., in humans: HSV-1, HSV-2, VZV), Betaherpesvirinae
(e.g., in humans: hCMV, and Roseoloviruses 6A, 6B, and 7), and Gammaherpesvirinae (e.g., in humans:
EBV, and KSHV)† († Colloquially referred to in this work as, respectively: alphaherpesviruses, or via
the symbol α; betaherpesviruses, or via the symbol β; gammaherpesviruses or via the symbol γ.)
(Table 1) [1].

Table 1. Pathogenic herpesviruses of humans *.

Virus
Common Name

Virus
Numeric Name

Herpesviridae
Subfamily

Reference
Genome

Accession Code

Genome
Length

Uracil-DNA
Glycosylase

Accession Code

HSV-1 HHV-1

Alphaherpesvirinae

NC_001806 152222 YP_009137076

HSV-2 HHV-2 NC_001798 154675 YP_009137153

VZV HHV-3 NC_001348 124884 NP_040181

HCMV HHV-5

Betaherpesvirinae

NC_006273 235646 YP_081554

- HHV-6A NC_001664 159378 NP_042974

- HHV-6B NC_000898 162114 NP_050260

- HHV-7 NC_001716 153080 YP_073819

EBV HHV-4 **
Gammaherpesvirinae

NC_007605 171823 YP_401679

KSHV HHV-8 NC_009333 137969 YP_001129398

* The table represents major human pathogens with complete genome records, but does not include zoonotic viruses.
** HHV-4 Type 2 is not included in this table. The dash symbol in the leftmost column indicates there is no common
or colloquial name, other than descriptive, e.g. Roseola [causing] virus.

In terms of tropism, the range of specialised cell types that herpesviruses have adapted to enter
and propagate within is broad: neural, muscular, epithelial, and immune system cells of various types.
Such tropism is a function of the enormous length of time that these viruses have interacted with and
adapted to their hosts and is no doubt an underlying reason for their endemic success. Regardless of
the subfamily, but dependent upon the type of cell involved, herpesviruses will exhibit two discrete
cellular phases: the lytic phase, and the latent phase. In their endemic state, herpesvirus genomes are
observed to be predominantly latent: usually residing as epigenomic circular DNA in vertebrate cell
nuclei [2].

The lytic phase comprises viral entry and expansion through replication: thus permitting spread
of virions to neighbouring cells. This pattern of infection resulted in the archaic naming of these
viruses: The Greek word “herpes”, refers to “slow-moving creeping” and is cognate of the Latin
“serpere” the sense of a “snake-like creeping” [3], both of which describe the appearance of the
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propagative lytic spread of shingles or common cold sores. Such appearance is, therefore, descriptive
of Alphaherpesvirinae lytic phase replication and cellular egress visible on human external epithelia.

In latency, the viral genome undergoes stable nuclear sojourn in the form of episomal circular
DNA; except, however, in the betaherpesvirus Roseoloviruses HHV-6A and HHV-6B, which in ~1% of the
human population is integrated into host chromosomes by homologous recombination at predominantly
the sub-telomeric regions, and are also thus capable of being passed on in the germline [4,5]. Viral
episomes can reactivate via sensing of organismal environmental triggers, to enter the lytic phase and
thereby intercellular virion propagation (i.e., pathogenesis), which can occur periodically during the
lifetime of a host. These characteristics of virus-host interactions ensure that herpesviruses remain
endemic among host populations. Estimates of infection probability with Herpesviridae, during human
lifespans across several decades, approach saturation in endemic populations for the best-studied
human pathogenic types [1,2].

3. Herpesviridae and Human Health Considerations

Due to their propensity to reactivate from latency, Herpesviridae in humans are frequently
pathogenic in a periodically acute sense. Certain pathogenic outcomes are disabling episodically,
resulting in either essentially complete functional recovery, or else permanent damage to cells or
tissue structures. There is a risk of fatality due to the primary effects of herpesvirus infection such as
oncogenesis, encephalitis, oedema or haemorrhage. There can also be secondary effects: For example,
morbid systemic complications, or bacterial superinfection; in the worst cases these secondary issues
can also result in fatality [1,2,4–7].

In modern healthcare settings, depending to some extent upon local factors, herpesviruses present
important post-surgical and tissue-transplant complications that are imperfectly controlled with
currently available therapies. The nature of herpesvirus pathogenicity problems is that although the
viruses are endemic at high levels in many populations, their life-threatening etiologic presentation is
sporadic; therefore, serious cases would normally manifest in numbers more on a par with orphan
diseases [2].

Exacerbation of the pathogenic effects of herpesviruses can be due to underlying health conditions,
or else iatrogenic in particular healthcare settings requiring immunosuppression. One mode of
acquisition of a new infection is via transfer of infected donor material in situations such as transfusion
and transplant [2,5]. Screening and treatment of donor material can significantly lower the risk of new
infection via this route. However, extant infections can be caused to flare up or to become chronically
problematic via immunosuppression: For example, to suppress autoimmune indications, or to permit
transplant of matched donor tissue.

In most situations, treatment with current antivirals indicated for that specific use will result in
the successful management of herpesvirus infections [2,5,6]. General success has thus been sufficient
to curtail urgent interest in the financially risky extensive development of novel antivirals targeting
orthogonal weak points in the replicative cycles of these viruses. The risk of going after new targets
is exemplified by the recent disappointing phase III clinical trial results with marivabir, in spite of
encouraging phase II data [8].

The range of successful antiherpetics historically approved for use in therapy, nevertheless,
targets different replicative stages in the herpesviruses. The major deployed drugs include acyclovir,
famciclovir, ganciclovir, cidofovir and letermovir [2]. Notwithstanding the success of these drugs,
there are toxicity effects and resistance phenomena in the immunocompromised/ immunosuppressed
population [1,2,4–7]. Therefore, alternative therapeutic agents that could also lower the viral load
or reduce the viability of virus progeny, but that act in novel modes with less toxicity compared
to those currently available, would improve control of these important viral pathogens. This may,
analogously to drugs developed to treat orphan diseases, be worth the financial risk: Particularly in
special healthcare settings, due to recognised problems with current treatment outcomes.
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4. Uracil in DNA and its Relevance to Viruses

It has been considered that the primary occurrence of uracil in DNA in a normal cell is via
spontaneous deamination of cytosine bases under ambient cellular conditions; an event estimated to
occur around 600 times per day per human cell [9]. Environmental mutagens such as bisulphite can
appreciably accelerate the number of deamination events [10]. Failure to act upon uracil thus occurring
in DNA, would result in the transition of a C:G base-pair to an A:T base-pair upon replication. Cytosine
deaminates at an accelerated rate in single stranded DNA [11,12], thus too 5-methyl cytosine converting
to thymine, which thus appears as a mismatched base in the context of the canonical cytosine base
pair with guanine. The spontaneous T:G mismatch is as promutagenic as spontaneously arising DNA
uracil (Figure 1; Table 2) [13,14].
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Figure 1. DNA pyrimidines and their interconversion. The pyrimidine uracil as a deoxynucleotide is a
precursor in thymidine biosynthesis. Deoxyuridine can accrue in DNA by misincorporation under
conditions of nucleotide pool perturbation and imbalance such as during viral replication; its unique
structure can create dysfunction in gene regulation. The DNA base cytosine is also converted to
5-methylcytosine in epigenetic imprinting. Both cytosine and 5-methylcytosine can convert in situ to
uracil and to thymine, respectively, via spontaneous loss of the 4-amino group under ambient cellular
conditions. This conversion in the context of the original base pair is considered promutagenic and
must be repaired to retain sequence fidelity upon replication. Enzymes listed by KEGG Orthology are:
2.1.1.37 (cytosine-5)-methyltransferase; 2.1.1.45 thymidylate synthase; 2.7.1.21 thymidine kinase; 2.7.4.6
nucleoside diphosphate kinase; 2.7.4.9 thymidylate kinase; 3.1.3.89 HD-domain 5′-nucleotidase; 3.5.4.5
cytidine deaminase; 3.5.4.12 dCMP deaminase.

Viruses can, due to their population sizes during replication, sample fitness via mutation [15].
Nevertheless, coding sequences and regulatory motifs are at risk if excessive levels of mutation should
accrue [16]. There is, however, mounting evidence from recent uracil-sequencing technologies that
DNA uracil may be a managed signal for tissue-specific gene regulation [17]. In that case, it is possible
for relevant cellular programs utilising uracil to be usurped by viruses to their advantage or/and to
the detriment of the cell. Certainly, herpesviruses orchestrate large-scale degradation of host nucleic
acids and rapid biosynthesis of progeny, managed with their own encoded nucleotide biosynthesis
and DNA uracil-excision related proteins.

Uracil can also be misincorporated by DNA polymerases, which do not appreciably distinguish
between deoxyuridine or thymidine nucleotides (exceptions are DNA polymerases of archaea, and
of some bacteriophages). A deoxyuridine misincorporation event is insured against in normal cells
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due to the nucleotide biosynthesis pathways biasing heavily against deoxyuridine triphosphate
through the action of dUTPase enzymes, and the diversion of dUMP to thymidine biosynthesis [18].
Relevant to the focus of this article, it should be noted that nucleotide pool imbalances, in general,
contribute to increased error rates by DNA polymerases and that viral replication is likely to perturb
this [19]; also, viral DNA polymerases tend to exhibit lower replicative fidelity than cellular counterpart
enzymes [20]. A dUTPase is, in fact, encoded by Herpesviridae, although in betaherpesviruses it is
apparently not functional, but potentially, the phenotype is rescued by another viral protein [21].
Uracil in a regulatory sequence of a gene could potentially deleteriously modulate the affinity of gene
regulatory factors [22–24] because unlike thymine it lacks a 5-methyl group; thus, some insurance
against uracil occurring in DNA would benefit virus progeny fitness.

Table 2. Perturbation of DNA fidelity and cellular regulation by pyrimidine deamination events.

Canonical State Protective Factors Post-Error State Consequence of Error Repair Measure

C:G base-pair dsDNA state or
protein complex U:G mistmatch promutagenic UDG

5-me C:G base-pair
dsDNA state or
protein complex T:G mismatch promutagenic TDG

T:A base-pair dUTPase and DNA
polymerase U:A base-pair dysregulatory UDG

The leftmost column indicates the pyrimidine base in the context of its canonical base pair within
a DNA duplex. The second column indicates natural cellular states that afford some insurance against
uracil substituting for the canonical pyrimidine: DNA in a canonical duplex, or when bound to
proteins that do not unwind it into single strands, is protected in that rates of cytosine deamination
are reduced. In addition, dUTPase keeps the levels of dUTP low enough that misincorporation
by DNA polymerase is negligible under normal cellular functioning conditions; cellular replicative
polymerases are high-fidelity enzymes, and this is yet another protective measure that normally keeps
uracil from being introduced as a partner base for adenine. The third column indicates the state of the
pyrimidine after substitution in the context of its base partnering either as a pair or mismatch: The U:A
base-pair is most likely to interfere with gene regulation primarily due to uracil lacking a methyl
compared to thymine. The mismatches of uracil or thymine with guanine could lead to regulatory
dysfunction, or permanent mutations unless repaired, as indicated in the penultimate column. In the
final column on the right, UDG means primarily Ung, but it could also be some other uracil-DNA
glycosylase superfamily enzyme type under certain circumstances. TDG is a [UDG-superfamily]
thymine-DNA glycosylase.

5. Uracil-DNA Glycosylase in the Maintenance of DNA Integrity

Uracil-DNA glycosylase (UDG) is a name that describes a superfamily of DNA base excision
repair-initiating enzymes that share a common protein structural fold and related active site
architecture [25]. UDG enzymes primarily recognise uracil in DNA, the occurrence of which is
potentially promutagenic, and act to specifically remove uracil bases by cleavage of the N-glycosyl
bond to the deoxyribose; this produces an abasic site in the DNA. A sequential process of action by
other enzymes is thus triggered, in the so-called base excision repair (BER) pathway, which returns the
DNA chemistry to its canonical state to maintain DNA sequence fidelity (Figure 2).
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where enzymatic conversion of DNA cytosine to uracil is known to occur, are: (1) Following sensing 
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Figure 2. The base excision repair pathway. (A) Uracil spontaneously occurs in DNA due to the
deamination of cytosine bases. If left uncorrected, the uracil-containing strand will give rise to a
permanently mutated daughter strand upon replication. (B) A uracil-DNA glycosylase (UDG) cleaves
the uracil base from the DNA backbone, leaving an abasic site in the DNA. (C) An AP-endonuclease
(APE) cleaves the phosphodiester backbone, 5′ of an abasic site [AP refers to apyrimidinic, or
lacking a pyrimidine; it can also refer to apurinic in other contexts]. (D) A type-B DNA polymerase
(POLB), typically involved in short-patch DNA repair, resynthesises several bases complementary
to the undamaged strand while displacing the cleaved strand beginning at the nick generated by
AP-endonuclease. (E) A Flap-Endonuclease (FEN) cleaves off the displaced DNA strand after the
B-type DNA polymerase has dissociated, leaving behind a nick in the DNA duplex. (F) A DNA ligase
(LIG) seals the nick to return DNA to its canonical pre-damaged state.

6. Uracil-DNA Glycosylase Can Also Contribute to Irreversible DNA Damage

The occurrence of multiple, proximal uracil residues spaced at oligonucleotide lengths from each
other on opposing strands, would cause the initial steps of the BER pathway to create double-strand
breaks with the loss of intervening oligo-length sequences (Figure 3) [26]. Although high concentrations
of uracil bases in DNA would not occur naturally under ambient conditions, fascinatingly, this is
something that can be enzymatically induced by cellular factors. The situations where enzymatic
conversion of DNA cytosine to uracil is known to occur, are: (1) Following sensing of virus DNA in the
cytoplasm [27,28]; and (2) under programmed conditions in the humoral immune response [29,30].
In addition, relevant as regards unusually high concentrations of DNA uracil: Viruses such as
HIV-1 appear to involve a uracil-DNA stage prior to retroviral integration [31–33]; and, certain
bacteriophages comprise thymine-free uracil-DNA genomes [34–37]. In all cases, cellular Ung in
concert with AP-endonuclease would act as a potent restriction enzyme upon invading uracil-rich
pathogen DNA [38].
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Figure 3. UDG can contextually disrupt DNA integrity. The destructive effect on DNA chain integrity
after the action of uracil-DNA glycosylase (UDG) and AP-endonuclease (APE) during initiation of BER,
on uracil-containing DNA in situations where: (a) Uracil occurs in a single-stranded DNA molecule,
in which case there could be stalling or disruption of DNA replication, or of ssDNA-transfer processes
such as in bacterial conjugation or in virus replication or packaging. (b) There are unusually high levels
of uracil in duplex DNA, in which case backbone breaks will be enzymatically created on both strands
of dsDNA at close proximity. At short oligonucleotide lengths, the hydrogen bonding forces between
complementary base pairs are insufficient to resist the thermal disintegration of the duplex, and the
consequence is chain fragmentation that is incompatible with high-fidelity DNA repair.

7. The Ung-Type Uracil-DNA Glycosylase Is Central to the Host Pathogen Response

A UDG was the first described enzymatic activity involved in a process of overt DNA damage
repair [39]. The UDG described in those initial studies is known as Ung, and is ubiquitous in the major
kingdoms of life (N.B. excluding archaea, which instead employ other branches of UDG superfamily
enzymes). In fact, the ubiquity of Ung extends to its appearance in the genomes of some viruses:
For example, Ung is encoded by poxviruses [40,41], and herpesviruses [41–52].

Cellular utilisation of Ung activity is not limited to its role in DNA repair (Figure 4), thus Ung is
observed to play important roles in other key cellular programs, such as innate cellular immunity as a
frontline defence against viral pathogens. The importance of this role for Ung is underlined by the fact
that diverse virus lineages, whether targeting prokaryotes or eukaryotes, actively silence Ung at the
mRNA or/and at the protein level [41,53–60]. It would appear that viruses, in general, are sensitive
to uracil in DNA for varying reasons. Some retroviruses, such as HIV-1, apparently strategically
manage uracil-DNA to efficiently integrate into host genomic DNA and must, therefore, silence as well
as co-opt Ung [31,32]. Other viruses, as observed in unrelated lineages of bacteriophages, generate
single-stranded DNA intermediates during replication or assembly [60–63]. Naked single-stranded
DNA is at much higher risk of cytosine deamination than either protein-coated single strands [64],
or duplex DNA [11]. Furthermore, BER acting at a randomly occurring uracil residue in single-stranded
DNA would create deleterious strand breakage upon the action of AP-endonuclease in the wake of
Ung activity (Figure 3a).

Ung acts as part of both the innate and humoral immune response pathways downstream of
AID and APOBEC (Apolipoprotein B mRNA Editing Catalytic polypeptide-like family) enzymes,
which enzymatically deaminate cytosine in DNA [65,66]. In the innate response, this is triggered
by pathogen DNA detection in the cytoplasm. Interestingly, herpesviruses have been reported to
antagonise APOBEC3 and thus will not succumb to restriction by Ung [67,68]. This property would
enable herpesviruses to utilise Ung for its more beneficial properties in DNA repair, but does not in itself
reveal why they encode their own, adapted copy. In other types of virus, appreciable accumulation of
DNA uracil in the wake of APOBEC activity will result in base-excision by Ung in close proximity
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on both strands of the affected DNA and thus pathogen DNA fragmentation due to BER-induced
double-strand breaks (Figure 3b; Figure 4). In bacteria, Ung is present residually and is therefore a
potent restriction enzyme against viral DNA that accumulates uracil as it is rapidly expanding (i.e., due
to relatively lower fidelity of viral DNA polymerases and the effects of nucleotide pool bias) especially
if utilising single-stranded intermediates [59–63]; as mentioned earlier, viruses employing uracil as a
substitute for thymine are a prime target for Ung [38].Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 18 
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chemical events, Ung initiates DNA repair by base excision repair (BER); in the pathogen response,
UDG follows APOBEC3 enzymes that deaminate cytosine in pathogen DNA to cause hyperuracilation.
On the right side of the schematic: Development of humoral immunity. Ung acts downstream of the
cytidine deaminase AID, which generates uracil residues in (i) Immunoglobulin variable chain regions
to initiate somatic hyper mutation (SHM), generating variable chain diversity; and (ii) immunoglobulin
class switch regions to initiate class switch recombination (CSR), permitting successful antibody variable
chains to be deployed via alternative antibody scaffolds, e.g., IgM to IgG. The role of Ung and APE are
the same as in BER, but the different pathways (error-prone repair, or non-homologous end joining)
deploy alternative suites of proteins downstream to create the intended outcome.

Ung plays a similar role in the maturation of the humoral immune system at the genetic level.
This is in the context of two essential processes: (a) Somatic Hypermutation [29], in which antibody
variable domains are created, and (b) class switch recombination [30], in which antibody heavy chain
types can be swapped for successfully selected antibody variable domains. Ung acts subsequent
to activation-induced deaminase (AID), which first enzymatically converts cytosine to uracil under
strictly controlled conditions: Error-prone repair follows in SHM, while non-homologous end joining
follows in CSR, to complete these molecular processes (Figure 4).

8. Herpesviruses and Ung, a Surprising Relationship and Remarkable Exaptation

An operational Ung gene is, as described, essential to cellular survival. Typically Ung catalytic
domains are highly conserved in protein sequence and structure, and particularly so in the active site.
It is probably not surprising to consider that due to the role of Ung in innate cellular immunity against
viral pathogens, a diversity of invading virus types sequester Ung predominantly to silence it. It is,
therefore, somewhat enigmatic to consider that all known herpesviruses encode an Ung, and that,
furthermore, at least the gammaherpesviruses also additionally utilise the host cell encoded Ung [69].
If that is not surprising enough, γ-herpesvirus Ung includes the exaptation of a key motif essential
for Ung catalysis to underpin viral replication competence (Figure 5) [49–52]. The aforementioned
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Ung catalytic motif is, in fact, the same one that, in the host Ung and its canonical relatives in
bacteria, is targeted by viruses that silence the cellular Ung protein as part of their replication strategy
(Figure 5) [70–72].
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Figure 5. Sequence and structure alignment of the herpesvirus adapted motif central to Ung
catalysis. (a) Multiple sequence alignment of the Ung minor groove DNA intercalation loop motif,
generated via structural superposition of protein chains: UNG2 (Human), UL2 (HHV-1), and ORF46
/ HHV8GK18_gp50 (HHV-8), using the program Chimera: PDB accession codes are used (UNG2 =

1SSP; UL2 = 1LAU; ORF46 = 5NNU, chain A). Ung sequences for which there is currently no deposited
molecular structure (i.e., β-herpesviruses) are indicated in blue font (beta 1 = HHV-5; beta 2 = HHV-6A;
beta 3 = HHV-6B; beta 4 = HHV-7). Residue positions lacking structural equivalence are shown
in lower case with gross differences in grey font. The Ung catalytic leucine residue is in dark red
font as are (in lower case) positionally equivalent betaherpesvirus residues. (b) Cartoon structure
excerpts of the aligned region only, overlaid (from 1LAU, 1SSP and 5NNU). (c) The sequence aligned is
displayed as a darker shaded region of the entire Ung molecule in its biological contexts: (i) 5NNU:
ORF46 (HHV-8) Ung [chain A] in complex with dsDNA [chains S and T] (ii) 1SSP: UNG2 (Human)
[chain E] in complex with dsDNA [chains A and B], (iii) 1UDH: UNG2 [chain E] in complex with Ugi
[chain I], a protein mimic of DNA that specifically targets Ung. Highlighted in dark red is the Ung
catalytic leucine (i),(ii),(iii) and catalysed DNA residue (i),(ii); highlighted in dark blue (i) and unique to
gammaherpesvirus Ung is a key residue of an exaptation that precisely deforms DNA (also highlighted
dark blue) as a possible signal essential to viral DNA replication assembly in gammaherpesviruses:
This novel exaptation, shown for 5NNU (HHV-8 Ung), is conserved in HHV-4 (deposited as pdb
structure 2J8X – not shown).

Ung substrate search and engagement for catalysis involves initial docking with DNA by
electrostatic alignment and then a subtle distortion of the duplex upon complex formation.
The distortion induced in DNA by the unusual shape of the Ung DNA binding surface both elicits and
prolongs a property of dynamic cellular DNA known as breathing [73]. DNA breathing is a natural
phenomenon of base pairs fleetingly breaking in response to DNA shape modulation: In the aqueous
cellular environment, DNA is subject to continuous molecular impact forces that are translated into
motion. In addition, protein complex formation at any point will induce subtle or gross structural
manipulation of the DNA duplex, this is translated along the DNA axis to dissipate the strain forces.
All of these events are also contextual upon the local DNA sequence composition. The result is that
base pairs in duplex DNA not only tilt or twist to remain hydrogen bonded, but those bonding forces
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are also often overcome, which induces natural DNA breathing; under normal cellular conditions
thermal forces are considered constant.

Upon complex formation with Ung, the DNA duplex is pinched to produce mild deformation and
will thus elicit breathing events in weakly paired bases, such as A:T/A:U pairs or G:U/G:T mismatches.
Prolongation of this Ung-induced DNA breathing occurs when a mobile component of the Ung
structure, known as the minor groove DNA intercalation loop, automatically swings in upon complex
formation, displacing the pyrimidine nucleotide into the active site vicinity. A breathing base pair
with adenine or a mismatch with guanine will be overpowered by the concerted motion of this loop.
The apical residue on the loop, now interior to the DNA helix, will form a pseudo-base pair with the
purine. The loop apical residue is most usually a leucine side chain, may rarely be phenylalanine, and
is potentially a lysine or arginine in a betaherpesvirus Ung).

Entry to the Ung active site for the flipped-out pyrimidine is carefully screened. A peripheral
external cavity would exquisitely capture the 5-methyl moiety of a thymine base to sterically avert the
catalysis of canonical DNA. Consequently, Ung is unable to initiate repair of a G:T mismatch [this is
the role of other DNA repair enzymes]. A cytosine base is chemically incompatible with the passage
into the active site cavity. Exquisitely in terms of substrate selectivity, uracil is able to enter the active
site, where hydrolysis of the N-glycosyl bond is immediate. Although extended in duration when
compared to natural DNA breathing events, the residence time of the pseudo base pair is finite, and
the Ung complex with DNA will rapidly dissociate, thus any free uracil base could leave the active site
after catalysis. Importantly, an abasic site in duplex DNA is also promutagenic, thus the ability of Ung
to easily bind back there will also attract downstream proteins [43,74,75].

Relevant to gauging the importance of Ung to virus replication strategies, the concerted motion
of the aforementioned Ung loop and the aliphatic property of the apical residue, are targeted by
diverse anti-restriction proteins encoded by unrelated viruses. The virus-encoded inhibitor proteins
target Ung by amino acid mimicry of DNA contacts, arrayed in the unusual pinched shape normally
induced in DNA by Ung. Intriguingly this conserved mechanism has evolved convergently from three
independent, unrelated protein architectures: Ugi [and its structural homologue SAUGI, a horizontally
transferred gene found in SCCmec mobile genetic elements of Staphylococcaceae] from myoviruses,
p56 from salasviruses and Vpr from primate lentiviruses. Charge-based alignment and contact
from the inhibitor protein elicits concerted Ung loop motion, resulting in an effectively irreversible
sterically-blockaded sequestration of Ung via hydrophobic trapping of the apical aliphatic side chain
of the Ung loop by the virus inhibitor protein (Figure 5) [41,70–72,76].

The minor groove DNA binding loop sequence itself, and its interaction with the rigid part of the
Ung catalytic domain, is quite sequence variable in both length and residue type. This is in contrast
with the very well conserved active site pocket, which has been the focus to date, of novel chemical
entities for inhibition of Ung.

The loop sequence in the gammaherpesvirus Ung is moreover an exaptation related to virus
lytic replication initiation. It is disordered but takes up a conserved structure (i.e., a structure that is
conserved in both Ung of HHV-4 and HHV-8) upon binding of DNA or of a viral protein inhibitor.
Unusual sequence deviations of a probably different nature are seen in the same loop inβ-herpesviruses.
Although not investigated in as much detail at the present time, structural molecular insights could
also provide the potential for similar approaches to selective inhibition. This key motif in Ung, is,
therefore, a promising target for the design and development of novel antiviral compounds [41,76],
especially given the structural differences relative to the host cell enzyme (Figure 5).

9. Uracil in DNA and Its Potential Significance for Herpesviruses in Latency

In quiescent cells harbouring latent herpesvirus genomes, significant uracil in viral DNA could
accumulate over long periods. Such DNA would be at risk of irreparable breakage should it encounter
Ung activity upon reactivation, which is ironic given this would most likely be the virus encoded
Ung. Therefore, although host Ung would be present continuously in active cell types to routinely
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prevent accumulation of uracil in viral DNA, the virus-encoded Ung would need to be maintained in
cell types that are quiescent [24,42,77]. Interestingly, it would appear that the different Subfamilies of
Herpesviridae have been able to adapt their use of the host or viral Ung, to suit the cell type in which
latency is maintained.

10. Tropism of Herpesviruses as a Factor in Consideration of Targeting Ung

Taking into consideration the types of cells that harbour or spread herpesviruses may be radically
different in their states of activity or quiescence, the potential role of Ung in these processes may also
need to vary. In alphaherpesvirinae, lytic replication occurs in active epithelial cells, but latency is in the
quiescent neuronal cells of peripheral sensory ganglia. In the betaherpesvirinae, cell tropism is broad
with organs, glands, neuronal, epithelial and immune cells providing detectable virus presence during
pathogenesis. It is surmised that the immune cells, such as monocytes, macrophages, and CD4+ T
lymphocytes are the sites of latency, due to pathological effects of replication being seen in the other
mentioned tissue types. Similarly, in gammaherpesvirinae, tropism is broad, majorly involving epithelia
and immune system cells, but also smooth muscle. Latency and reactivation in gammaherpesvirinae,
appears to be possible in a variety of cell types [1]. Of interest, viral Ung is essential in murine
gammaherpesvirus 68 depending upon the level of cellular Ung activity. In cells such as lung, where
host Ung activity is relatively low, the supplemental activity of the viral enzyme is essential for
replicative fitness [77].

11. The Reported Roles of Ung in Herpesvirus Fitness

Ung, in alphaherpesviruses, is a product of the UL2 open reading frame [78]. Mutant viruses
lacking a UL2 gene product appear to be compromised in their ability to reactivate from latency [42].
Given the quiescent state of the peripheral sensory ganglia, it is, therefore, surmised that UL2 is
required for the maintenance of viral episomes in these cells [24,42]. UL2 may also play roles in the
lytic phase of HHV-1 [42,79], which is substantiated by analysis of recent interactome data (including
only virus-virus protein interactions; the data also includes indications for Ung interactions from other
herpesvirus Subfamilies) [80]. There is no data on whether human UNG2 (the nuclear isoform of host
cellular Ung) might also contribute to fitness of alphaherpesviruses. New approaches promise to shed
light on replicative dynamics [81], thus questions such as these could well be answered in due course.

In betaherpesviruses, studies indicated that in HHV-5, Ung (the gene product of UL114) was
essential for effective lytic phase initiation and also accelerated the rate of replication. It was also
reported that UL114 is also a factor in the maintenance of HHV-5 latency [45–47]; a role for UL114
in lytic replication is also reported [48]. Not much is known about any role of Ung in Roseoloviruses
(HHV-6A, HHV-6B, and HHV-7), but these viruses all encode an Ung with adaptive similarities to
UL114 of HHV-5.

In gammaherpesviruses, the virus-encoded Ung (known as BKRF3 in HHV-4, and ORF46 in
HHV-8) is likely to be an essential component of the lytic replisome in HHV-4 [49,50], and similarities
in structural data supporting a possible mode for its interactions indicate this is probably the case also
in HHV-8 (Figure 5) [51,52], and interestingly the human UNG2 isoform is known to be recruited to
the maintenance of latency by the protein LANA in HHV-8 (Figure 6) [69].
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ellipse). Subfamily and virus are indicated in black text with uracil-DNA glycosylase encoded by that
virus in blue text. Placement of text indicates the location UDG is currently thought to act (latent phase
in the nucleus, and lytic phase in the cytosol) and the type of evidence supporting the premise (cyan
text). Host cell encoded UNG2 is indicated with the named virus subfamily in dark red text, and
placement indicates the phase of action (latency reactivation).

12. A consideration of Specific Selectivity of Novel Chemical Entities for Herpesvirus Ung

Herpesvirus Ung, specifically the UL2 gene product of HHV-1, has previously been a subject
of medicinal chemistry investigations [82–86]. Compounds were designed to take advantage of the
exquisite specificity of Ung for a uracil base, and to develop series towards selectivity versus the host
cell protein UNG2. The active site pocket of Ung is known, from nearly 200 structures deposited
in the protein data bank to date, to be particularly well conserved in any example thus far studied
from bacteria, to viruses and parasites, to eukaryotes. Nevertheless, preliminary medicinal chemistry
research was able to develop compounds with an encouraging selectivity, albeit at sub-millimolar/
micromolar affinity [82,83]. More recently, it was described that a hydrophobic crevice runs from
the active site in Ung, towards the protein core, explaining previous data; and, this could be taken
advantage of to further refine specificity [86].

Considering the approach described, two obvious flaws present themselves when looking ahead
to lead compound development. The first is that the starting point of these compounds is a nucleoside
analogue. Therefore, given this is the basis of the current most successful antiherpetic drugs, it is
unlikely that the need to obtain compounds with lower toxicity profiles than currently approved drugs
would be fulfilled via such series. Second, the manner in which the nucleoside analogue is engineered
for specificity into a hydrophobic cleft requires various lengths of aliphatic tails to be attached. General
practice in drug design would probably choose to avoid the development of series via compounds
likely to have very poor solubility characteristics from the outset. Therefore, this approach to the
development of novel chemical entities for selective inhibition of herpesvirus Ung, versus the host
enzyme, is unlikely to result in useful lead candidates.

The knowledge of specific differences between Ung of, in particular the β- and γ-herpesviruses,
versus the canonical UNG2 of the host have matured since the aforementioned approach to Ung
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medicinal chemistry was examined. Structural biology has shown that in the Ung of γ-herpesviruses
HHV-4 and HHV-8, there is a conserved novel structured elaboration of a critical DNA-binding
loop essential for Ung substrate catalysis (Figure 5) [51,52]. Without this adaptation to the loop,
it would appear that viral lytic phase replication is critically or fatally impaired in HHV-4 [50], and
encouragingly independent data would suggest Ung is similarly indispensable also in theβ-herpesvirus
HHV-5 [45,46]. Whether the replicative roles of viral Ung will involve the differently adapted loop in
the betaherpesvirus Subfamily, remains to be seen.

The loop elaboration in γ-herpesviruses is observed to be natively unstructured and to take up
a rigidified form conserved in three dimensions when Ung is engaged with a DNA substrate [52].
The complex with duplex DNA is arranged such that it appears a signal is evolved in the DNA structure,
relevant to replisome assembly [52]. This may be the reason why abrogation of the loop adaptation in
herpersvirus Ungs ablates replication so effectively [50]. It is proposed that the near-surface location
of this site, and the general mixed polar nature of the environs and within the loop structure itself,
lends itself well to a structure-based drug design campaign (Figure 5) [41]. In fact protein engineering
studies involving the Ung inhibitor protein SaUgi, which targets the Ung DNA binding cleft and minor
groove DNA binding loop region show that impressive selectivity between Ung encoded by human,
bacterial, α-herpesvirus and γ-herpesvirus can be demonstrated [76].

13. Summary and Conclusions

It is discussed that herpesviruses have retained and adapted a genomic copy of an Ung gene.
The gene is apparently critical to viral fitness, and murine models lend further support that its absence
leads to a rapid loss of viral fitness [87]. It is also noted that the host-encoded UNG2 may also be active,
or an accessory to reactivation, in latency in the γ-herpesvirus HHV-8 [69]. Although considering
the targeting of the host enzyme UNG2 may appear risky, a limited regimen that contributes to
the weakening of the virus pool in an at-risk patient may be worth having access to. Inhibitors
specific for UNG2 have been developed [88,89], which it is true are based on nucleotide chemistry;
nevertheless targeting of the catalytic loop as discussed earlier [41,76], could give better scope for
drug-like properties (i.e., lower hydrophobicity versus initial designs against Ung, and improvement
of toxicity profiles versus current antiherpetics) likely to progress through lead optimisation to trials.

On another matter, functional conservation of exaptation within a subfamily (namely, the
γ-herpesviruses) may be relevant to Ung function data within other subfamilies (namely, the
β-herpesviruses) but structure-based drug design cannot be considered in the latter subfamily
at the present time because no betaherpesvirus Ung structures have been deposited to date. It has
been seen that good practice in drug discovery may still lead to late-stage drug candidate failures [8],
but there is a need for compounds with good solubility characteristics, and lower toxicity, particularly
in immune-compromised healthcare settings [1,2,4–7]. It is proposed that the Ungs of herpesviruses
provide suitable ground to develop programmes that could reasonably deliver the required outcomes
for future therapeutics.
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